1
|
Yin R, Wack M, Hassen-Khodja C, McDuffie MT, Bliss G, Horn EJ, Kothari C, McLarney B, Davis R, Hanson K, O'Boyle M, Betancur C, Avillach P. Phenome-wide profiling identifies genotype-phenotype associations in Phelan-McDermid syndrome using family-sourced data from an international registry. Mol Autism 2024; 15:40. [PMID: 39350236 PMCID: PMC11443936 DOI: 10.1186/s13229-024-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by 22q13 deletions that include the SHANK3 gene or pathogenic sequence variants in SHANK3. It is characterized by global developmental delay, intellectual disability, speech impairment, autism spectrum disorder, and hypotonia; other variable features include epilepsy, brain and renal malformations, and mild dysmorphic features. Here, we conducted genotype-phenotype correlation analyses using the PMS International Registry, a family-driven registry that compiles clinical data in the form of family-reported outcomes and family-sourced genetic test results. METHODS Data from the registry were harmonized and integrated into the i2b2/tranSMART clinical and genomics data warehouse. We gathered information from 401 individuals with 22q13 deletions including SHANK3 (n = 350, ranging in size from 10 kb to 9.1 Mb) or pathogenic or likely pathogenic SHANK3 sequence variants (n = 51), and used regression models with deletion size as a potential predictor of clinical outcomes for 328 phenotypes. RESULTS Our results showed that increased deletion size was significantly associated with delay in gross and fine motor acquisitions, a spectrum of conditions related to poor muscle tone, renal malformations, mild dysmorphic features (e.g., large fleshy hands, sacral dimple, dysplastic toenails, supernumerary teeth), lymphedema, congenital heart defects, and more frequent neuroimaging abnormalities and infections. These findings indicate that genes upstream of SHANK3 also contribute to some of the manifestations of PMS in individuals with larger deletions. We also showed that self-help skills, verbal ability and a range of psychiatric diagnoses (e.g., autism, ADHD, anxiety disorder) were more common among individuals with smaller deletions and SHANK3 variants. LIMITATIONS Some participants were tested with targeted 22q microarrays rather than genome-wide arrays, and karyotypes were unavailable in many cases, thus precluding the analysis of the effect of other copy number variants or chromosomal rearrangements on the phenotype. CONCLUSIONS This is the largest reported case series of individuals with PMS. Overall, we demonstrate the feasibility of using data from a family-sourced registry to conduct genotype-phenotype analyses in rare genetic disorders. We replicate and strengthen previous findings, and reveal novel associations between larger 22q13 deletions and congenital heart defects, neuroimaging abnormalities and recurrent infections.
Collapse
Affiliation(s)
- Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Maxime Wack
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Hassen-Khodja
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael T McDuffie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | - Cartik Kothari
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Rebecca Davis
- Phelan-McDermid Syndrome Foundation, Osprey, FL, 34229, USA
| | - Kristen Hanson
- Phelan-McDermid Syndrome Foundation, Osprey, FL, 34229, USA
| | - Megan O'Boyle
- Phelan-McDermid Syndrome Foundation, Osprey, FL, 34229, USA
| | - Catalina Betancur
- INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Sorbonne Université, 75005, Paris, France.
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
McCoy MD, Sarasua SM, DeLuca JM, Davis S, Rogers RC, Phelan K, Boccuto L. Genetics of kidney disorders in Phelan-McDermid syndrome: evidence from 357 registry participants. Pediatr Nephrol 2024; 39:749-760. [PMID: 37733098 DOI: 10.1007/s00467-023-06146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder caused by SHANK3 pathogenic variants or chromosomal rearrangements affecting the chromosome 22q13 region. Previous research found that kidney disorders, primarily congenital anomalies of the kidney and urinary tract, are common in people with PMS, yet research into candidate genes has been hampered by small study sizes and lack of attention to these problems. METHODS We used a cohort of 357 people from the Phelan-McDermid Syndrome Foundation International Registry to investigate the prevalence of kidney disorders in PMS using a cross-sectional design and to identify 22q13 genes contributing to these disorders. RESULTS Kidney disorders reported included vesicoureteral reflux (n = 37), hydronephrosis (n = 36), dysplastic kidneys (n = 19), increased kidney size (n = 19), polycystic kidneys (15 cases), and kidney stones (n = 4). Out of 315 subjects with a 22q13 deletion, 101 (32%) had at least one kidney disorder, while only one out of 42 (2%) individuals with a SHANK3 pathogenic variant had a kidney disorder (increased kidney size). We identified two genomic regions that were significantly associated with having a kidney disorder with the peak associations observed near positions approximately 5 Mb and 400 Kb from the telomere. CONCLUSIONS The candidate genes for kidney disorders include FBLN1, WNT7B, UPK3A, CELSR1, and PLXNB2. This study demonstrates the utility of patient registries for uncovering genetic contributions to rare diseases. Future work should focus on functional studies for these genes to assess their potential pathogenic contribution to the different subsets of kidney disorders.
Collapse
Affiliation(s)
- Megan D McCoy
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | - Sara M Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA.
| | - Jane M DeLuca
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | - Stephanie Davis
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| | | | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, 33916, USA
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
3
|
Smith MS, Sarasua SM, Rogers C, Phelan K, Boccuto L. Lymphedema is associated with CELSR1 in Phelan-McDermid syndrome. Clin Genet 2023; 104:472-478. [PMID: 37232218 DOI: 10.1111/cge.14364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Lymphedema is a troubling condition present in many disorders including the rare genetic disorder known as Phelan-McDermid syndrome (PMS). The neurobehavioral features of PMS, also known as 22q13.3 deletion syndrome, have been investigated, but little research exists on lymphedema in PMS. In this investigation, clinical and genetic data from 404 people with PMS were reviewed from the PMS-International Registry revealing a prevalence of 5% with lymphedema. Lymphedema was reported in 1 out of 47 people (2.1%) with PMS due to a SHANK3 variant and 19 out of 357 people (5.3%) with PMS due to 22q13.3 deletions. Lymphedema was more common among those in their teens or adulthood (p = 0.0011) and those with deletions >4 Mb. People with lymphedema had significantly larger deletions (mean 5.375 Mb) than those without lymphedema (mean 3.464 Mb, p = 0.00496). Association analysis identified a deletion of the CELSR1 gene to be the biggest risk factor (OR = 12.9 95% CI [2.9-56.2]). Detailed assessment of 5 subjects identified all had deletions of CELSR1, developed symptoms of lymphedema starting at age 8 or older, and typically responded well to standard therapy. In conclusion, this is the largest assessment of lymphedema in PMS to date and our results suggest that individuals with deletions >4 Mb or those with CELSR1 deletions should be assessed for lymphedema.
Collapse
Affiliation(s)
- Marie S Smith
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA
| | - Sara M Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists & Research Institute, Fort Myers, Florida, USA
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Sarasua SM, DeLuca JM, Rogers C, Phelan K, Rennert L, Powder KE, Weisensee K, Boccuto L. Head Size in Phelan-McDermid Syndrome: A Literature Review and Pooled Analysis of 198 Patients Identifies Candidate Genes on 22q13. Genes (Basel) 2023; 14:540. [PMID: 36980813 PMCID: PMC10048319 DOI: 10.3390/genes14030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a multisystem disorder that is associated with deletions of the 22q13 genomic region or pathogenic variants in the SHANK3 gene. Notable features include developmental issues, absent or delayed speech, neonatal hypotonia, seizures, autism or autistic traits, gastrointestinal problems, renal abnormalities, dolichocephaly, and both macro- and microcephaly. Assessment of the genetic factors that are responsible for abnormal head size in PMS has been hampered by small sample sizes as well as a lack of attention to these features. Therefore, this study was conducted to investigate the relationship between head size and genes on chromosome 22q13. A review of the literature was conducted to identify published cases of 22q13 deletions with information on head size to conduct a pooled association analysis. Across 56 studies, we identified 198 cases of PMS with defined deletion sizes and head size information. A total of 33 subjects (17%) had macrocephaly, 26 (13%) had microcephaly, and 139 (70%) were normocephalic. Individuals with macrocephaly had significantly larger genomic deletions than those with microcephaly or normocephaly (p < 0.0001). A genomic region on 22q13.31 was found to be significantly associated with macrocephaly with CELSR1, GRAMD4, and TBCD122 suggested as candidate genes. Investigation of these genes will aid the understanding of head and brain development.
Collapse
Affiliation(s)
- Sara M. Sarasua
- Healthcare Genetics and Genomics Program, Clemson University School of Nursing, Clemson, SC 29634, USA
| | - Jane M. DeLuca
- Healthcare Genetics and Genomics Program, Clemson University School of Nursing, Clemson, SC 29634, USA
| | | | - Katy Phelan
- Florida Cancer Specialists & Research Institute, Fort Myers, FL 33908, USA
| | - Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Katherine Weisensee
- Department of Sociology, Anthropology and Criminal Justice, Clemson University, Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Program, Clemson University School of Nursing, Clemson, SC 29634, USA
| |
Collapse
|
5
|
DiCriscio AS, Wain KE, Smith J, Beiler D, Walsh LK, Holdren K, Troiani V. Higher scores on autonomic symptom scales in pediatric patients with neurodevelopmental disorders of known genetic etiology. Brain Behav 2022; 12:e2813. [PMID: 36423250 PMCID: PMC9759134 DOI: 10.1002/brb3.2813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Features of underlying autonomic dysfunction, including sleep disturbances, gastrointestinal problems, and atypical heart rate, have been reported in neurodevelopmental conditions, including autism spectrum disorder (ASD). The current cross-sectional, between-groups study aimed to quantify symptoms of autonomic dysfunction in a neurodevelopmental pediatric cohort characterized by clinical diagnoses as well as genetic etiology. METHOD The Pediatric Autonomic Symptom Scales (PASS) questionnaire was used to assess autonomic features across a group of patients with clinical neurodevelopmental diagnoses (NPD; N = 90) and genetic etiologies. Patients were subdivided based on either having a clinical ASD diagnosis (NPD-ASD; n = 37) or other non-ASD neurodevelopmental diagnoses, such as intellectual disability without ASD, speech and language disorders, and/or attention deficit hyperactivity disorder (NPD-OTHER; n = 53). Analyses focused on characterizing differences between the NPD group compared to previously published reference samples, as well as differences between the two NPD subgroups (NPD-ASD and NPD-OTHER). RESULTS Our results indicate higher PASS scores in our NPD cohort relative to children with and without ASD from a previously published cohort. However, we did not identify significant group differences between our NPD-ASD and NPD-OTHER subgroups. Furthermore, we find a significant relationship between quantitative ASD traits and symptoms of autonomic function. CONCLUSION This work demonstrates the utility of capturing quantitative estimates of autonomic trait dimensions that may be significantly linked with psychosocial impairments and other core clinical features of ASD.
Collapse
Affiliation(s)
- Antoinette S DiCriscio
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA
| | - K E Wain
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA
| | - J Smith
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA
| | - D Beiler
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA
| | - L K Walsh
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA
| | - K Holdren
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA
| | - Vanessa Troiani
- Geisinger Health System, Autism & Developmental Medicine Institute (ADMI), Lewisburg, Pennsylvania, USA.,Department of Imaging Science and Innovation, Center for Health Research, Geisinger, Danville, Pennsylvania, USA.,Neuroscience Institute, Geisinger, Danville, Pennsylvania, USA.,Department of Basic Sciences, Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| |
Collapse
|
6
|
García-Bravo C, Palacios-Ceña D, García-Bravo S, Pérez-Corrales J, Pérez-de-Heredia-Torres M, Martínez-Piédrola RM. Social and Family Challenges of Having a Child Diagnosed with Phelan-McDermid Syndrome: A Qualitative Study of Parents' Experiences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10524. [PMID: 36078244 PMCID: PMC9518052 DOI: 10.3390/ijerph191710524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Phelan-McDermid Syndrome (PMS) in children causes significant challenges affecting social and family relationships. The purpose of this study was to explore the experience of parents with children diagnosed with PMS regarding interactions with their social environment; (2) Methods: A qualitative descriptive study was conducted. Participants were recruited using non-probabilistic purposeful sampling. In total, 32 parents of children with PMS were included. In-depth interviews and researchers' field notes were used to collect the data. An inductive thematic analysis was performed; (3) Results: Five themes were identified: (a) challenges in the relationship as a couple; (b) challenges within the family and close social relationships; (c) challenges in the educational-school environment; (d) challenges in the health environment and with health professionals, and (e) reconnection through the PMS association. It would be beneficial for parents to create training programs on PMS in the educational and healthcare settings, to promote the participation of professionals in the PMS association and to develop care programs focusing in their physical, psychological and social health.
Collapse
Affiliation(s)
- Cristina García-Bravo
- Research Group in Evaluation and Assessment of Capacity, Functionality and Disability of Universidad Rey Juan Carlos (TO+IDI), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Domingo Palacios-Ceña
- Research Group of Humanities and Qualitative Research in Health Science of Universidad Rey Juan Carlos (Hum&QRinHS), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | | | - Jorge Pérez-Corrales
- Research Group of Humanities and Qualitative Research in Health Science of Universidad Rey Juan Carlos (Hum&QRinHS), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Marta Pérez-de-Heredia-Torres
- Research Group in Evaluation and Assessment of Capacity, Functionality and Disability of Universidad Rey Juan Carlos (TO+IDI), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Rosa Mª Martínez-Piédrola
- Research Group in Evaluation and Assessment of Capacity, Functionality and Disability of Universidad Rey Juan Carlos (TO+IDI), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| |
Collapse
|
7
|
Patient-Reported Outcomes following Genetic Testing for Familial Hypercholesterolemia, Breast and Ovarian Cancer Syndrome, and Lynch Syndrome: A Systematic Review. J Pers Med 2021; 11:jpm11090850. [PMID: 34575627 PMCID: PMC8467628 DOI: 10.3390/jpm11090850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Patient-reported outcomes (PROs) and PRO measures (PROMs) are real-world evidence that can help capture patient experiences and perspectives regarding a clinical intervention such as genetic testing. Objective: To identify and capture methods and qualitative PRO themes among studies reporting PROs following genetic testing for FH, breast and ovarian cancer syndrome, and Lynch syndrome. Methods: A systematic review was conducted via PubMed/MEDLINE, EMBASE, and Yale University’s TRIP Medical Databases on articles published by April 2021. Results: We identified 24 studies published between 1996 and 2021 representing 4279 participants that reported PROs following genetic testing for FH, breast and ovarian cancer syndrome, and Lynch syndrome. Studies collected and reported PROs from validated PROM instruments (n = 12; 50%), validated surveys (n = 7; 26%), and interviews (n = 10; 42%). PRO themes ranged across all collection methods (e.g., psychological, knowledge, coping and satisfaction, concern about stigma/discrimination, etc.). Conclusions: Important gaps identified include (1) most studies (n = 18; 75%) reported PROs following genetic testing for breast and ovarian cancer, and (2) populations reporting PROs overall were largely of White/Caucasian/Northern European/Anglo-Saxon descent. We offer recommendations and describe real-world implications for the field moving forward.
Collapse
|
8
|
Yates J, Gutiérrez-Sacristán A, Jouhet V, LeBlanc K, Esteves C, DeSain TN, Benik N, Stedman J, Palmer N, Mellon G, Kohane I, Avillach P. Finding commonalities in rare diseases through the undiagnosed diseases network. J Am Med Inform Assoc 2021; 28:1694-1702. [PMID: 34009343 PMCID: PMC8324228 DOI: 10.1093/jamia/ocab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 11/14/2022] Open
Abstract
Objective When studying any specific rare disease, heterogeneity and scarcity of affected individuals has historically hindered investigators from discerning on what to focus to understand and diagnose a disease. New nongenomic methodologies must be developed that identify similarities in seemingly dissimilar conditions. Materials and Methods This observational study analyzes 1042 patients from the Undiagnosed Diseases Network (2015-2019), a multicenter, nationwide research study using phenotypic data annotated by specialized staff using Human Phenotype Ontology terms. We used Louvain community detection to cluster patients linked by Jaccard pairwise similarity and 2 support vector classifier to assign new cases. We further validated the clusters’ most representative comorbidities using a national claims database (67 million patients). Results Patients were divided into 2 groups: those with symptom onset before 18 years of age (n = 810) and at 18 years of age or older (n = 232) (average symptom onset age: 10 [interquartile range, 0-14] years). For 810 pediatric patients, we identified 4 statistically significant clusters. Two clusters were characterized by growth disorders, and developmental delay enriched for hypotonia presented a higher likelihood of diagnosis. Support vector classifier showed 0.89 balanced accuracy (0.83 for Human Phenotype Ontology terms only) on test data. Discussions To set the framework for future discovery, we chose as our endpoint the successful grouping of patients by phenotypic similarity and provide a classification tool to assign new patients to those clusters. Conclusion This study shows that despite the scarcity and heterogeneity of patients, we can still find commonalities that can potentially be harnessed to uncover new insights and targets for therapy.
Collapse
Affiliation(s)
- Josephine Yates
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Vianney Jouhet
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Thomas N DeSain
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nick Benik
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Stedman
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Palmer
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Mellon
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Corresponding Author: Paul Avillach, MD, PhD, 10 Shattuck Street, 02115 Boston, MA, USA;
| |
Collapse
|
9
|
Bourgeois FT, Avillach P, Turner MA. The urgent need for research coordination to advance knowledge on COVID-19 in children. Pediatr Res 2021; 90:250-252. [PMID: 33177674 PMCID: PMC7656217 DOI: 10.1038/s41390-020-01259-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/14/2022]
Affiliation(s)
- Florence T. Bourgeois
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA USA
| | - Paul Avillach
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Mark A. Turner
- grid.10025.360000 0004 1936 8470Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
10
|
Sanders SJ, Sahin M, Hostyk J, Thurm A, Jacquemont S, Avillach P, Douard E, Martin CL, Modi ME, Moreno-De-Luca A, Raznahan A, Anticevic A, Dolmetsch R, Feng G, Geschwind DH, Glahn DC, Goldstein DB, Ledbetter DH, Mulle JG, Pasca SP, Samaco R, Sebat J, Pariser A, Lehner T, Gur RE, Bearden CE. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat Med 2019; 25:1477-1487. [PMID: 31548702 PMCID: PMC8656349 DOI: 10.1038/s41591-019-0581-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
De novo and inherited rare genetic disorders (RGDs) are a major cause of human morbidity, frequently involving neuropsychiatric symptoms. Recent advances in genomic technologies and data sharing have revolutionized the identification and diagnosis of RGDs, presenting an opportunity to elucidate the mechanisms underlying neuropsychiatric disorders by investigating the pathophysiology of high-penetrance genetic risk factors. Here we seek out the best path forward for achieving these goals. We think future research will require consistent approaches across multiple RGDs and developmental stages, involving both the characterization of shared neuropsychiatric dimensions in humans and the identification of neurobiological commonalities in model systems. A coordinated and concerted effort across patients, families, researchers, clinicians and institutions, including rapid and broad sharing of data, is now needed to translate these discoveries into urgently needed therapies.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - Audrey Thurm
- National Institute of Mental Health, Bethesda, MD, USA
| | - Sebastien Jacquemont
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Elise Douard
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Meera E Modi
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Alan Anticevic
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ricardo Dolmetsch
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior and Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - David H Ledbetter
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA, USA
| | - Anne Pariser
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Thomas Lehner
- National Institute of Mental Health, Bethesda, MD, USA
| | - Raquel E Gur
- Department of Psychiatry, Neuropsychiatry Section, and the Lifespan Brain Institute, Perelman School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Addington AM. Introduction to special section on Leveraging Electronic Health Records for psychiatric genetic research. Am J Med Genet B Neuropsychiatr Genet 2018; 177:599-600. [PMID: 30381872 DOI: 10.1002/ajmg.b.32686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Anjené M Addington
- Genomics Research Branch, National Institute of Mental Health in Bethesda, Bethesda, Maryland
| |
Collapse
|
12
|
Kothari C, Wack M, Hassen‐Khodja C, Finan S, Savova G, O'Boyle M, Bliss G, Cornell A, Horn EJ, Davis R, Jacobs J, Kohane I, Avillach P. Phelan-McDermid syndrome data network: Integrating patient reported outcomes with clinical notes and curated genetic reports. Am J Med Genet B Neuropsychiatr Genet 2018; 177:613-624. [PMID: 28862395 PMCID: PMC5832521 DOI: 10.1002/ajmg.b.32579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023]
Abstract
The heterogeneity of patient phenotype data are an impediment to the research into the origins and progression of neuropsychiatric disorders. This difficulty is compounded in the case of rare disorders such as Phelan-McDermid Syndrome (PMS) by the paucity of patient clinical data. PMS is a rare syndromic genetic cause of autism and intellectual deficiency. In this paper, we describe the Phelan-McDermid Syndrome Data Network (PMS_DN), a platform that facilitates research into phenotype-genotype correlation and progression of PMS by: a) integrating knowledge of patient phenotypes extracted from Patient Reported Outcomes (PRO) data and clinical notes-two heterogeneous, underutilized sources of knowledge about patient phenotypes-with curated genetic information from the same patient cohort and b) making this integrated knowledge, along with a suite of statistical tools, available free of charge to authorized investigators on a Web portal https://pmsdn.hms.harvard.edu. PMS_DN is a Patient Centric Outcomes Research Initiative (PCORI) where patients and their families are involved in all aspects of the management of patient data in driving research into PMS. To foster collaborative research, PMS_DN also makes patient aggregates from this knowledge available to authorized investigators using distributed research networks such as the PCORnet PopMedNet. PMS_DN is hosted on a scalable cloud based environment and complies with all patient data privacy regulations. As of October 31, 2016, PMS_DN integrates high-quality knowledge extracted from the clinical notes of 112 patients and curated genetic reports of 176 patients with preprocessed PRO data from 415 patients.
Collapse
Affiliation(s)
- Cartik Kothari
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusetts
| | - Maxime Wack
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusetts
| | | | - Sean Finan
- Boston Children's HospitalBostonMassachusetts
| | | | | | | | | | | | | | | | - Isaac Kohane
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusetts
| | - Paul Avillach
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|