1
|
Wójtowicz A, Kowalczyk K, Szewczyk K, Madetko-Talowska A, Wójtowicz W, Huras H, Bik-Multanowski M, Beata N. Array Comparative Genomic Hybridization (aCGH) Results among Patients Referred to Invasive Prenatal Testing after First-Trimester Screening: A Comprehensive Cohort Study. Diagnostics (Basel) 2024; 14:2186. [PMID: 39410589 PMCID: PMC11475562 DOI: 10.3390/diagnostics14192186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Invasive prenatal testing with chromosomal microarray analysis after first-trimester screening is a relevant option but there is still debate regarding the indications. Therefore, we evaluated the prevalence of numerical chromosomal aberrations detected by classic karyotype and clinically relevant copy number variants (CNVs) in prenatal samples using array comparative genomic hybridization (aCGH) stratified to NT thickness: 4.5 mm, and by the presence/absence of associated structural anomalies detected by ultrasonography. Materials and Methods: Retrospective cohort study carried out at two tertiary Polish centers for prenatal diagnosis (national healthcare system) in central and south regions from January 2018 to December 2021. A total of 1746 prenatal samples were received. Indications for invasive prenatal testing included high risk of Down syndrome in the first-trimester combined test (n = 1484) and advanced maternal age (n = 69), and, in 193 cases, other reasons, such as parental request, family history of congenital defects, and genetic mutation carrier, were given. DNA was extracted directly from amniotic fluid (n = 1582) cells and chorionic villus samples (n = 164), and examined with classic karyotype and aCGH. Results: Of the entire cohort of 1746 fetuses, classical karyotype revealed numerical chromosomal aberrations in 334 fetuses (19.1%), and aCGH detected CNV in 5% (n = 87). The frequency of numerical chromosomal aberrations increased with NT thickness from 5.9% for fetuses with NT < p95th to 43.3% for those with NT > 4.5 mm. The highest rate of numerical aberrations was observed in fetuses with NT > 4.5 mm having at least one structural anomaly (50.2%). CNVs stratified by NT thickness were detected in 2.9%, 2.9%, 3.5%, 4.3%, 12.2%, and 9.0% of fetuses with NT < 95th percentile, 95th percentile-2.9 mm, 3.0-3.4 mm, 3.5-3.9 mm, 4.0-4.5 mm, and >4.5 mm, respectively. After exclusion of fetuses with structural anomalies and numerical aberrations, aCGH revealed CNVs in 2.0% of fetuses with NT < 95th percentile, 1.5% with NTp95-2.9 mm, 1.3% with NT 3.0-3.4 mm, 5.4% with NT 3.5-3.9 mm, 19.0% with NT 4.0-4.5 mm, and 14.8% with NT > 4.5 mm. Conclusions: In conclusion, our study indicates that performing aCGH in samples referred to invasive prenatal testing after first-trimester screening provides additional clinically valuable information over conventional karyotyping, even in cases with normal NT and anatomy.
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland;
| | - Katarzyna Kowalczyk
- Department of Medical Genetics, Institute of Mother and Child, 30-663 Warsaw, Poland; (K.K.); (N.B.)
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Jagiellonian University Medical College, 30-551 Kraków, Poland; (K.S.); (A.M.-T.); (M.B.-M.)
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, 30-551 Kraków, Poland; (K.S.); (A.M.-T.); (M.B.-M.)
| | - Wojciech Wójtowicz
- Information Technology Systems Department, Faculty of Management and Social Communication, Jagiellonian University, 30-348 Kraków, Poland;
| | - Hubert Huras
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland;
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Jagiellonian University Medical College, 30-551 Kraków, Poland; (K.S.); (A.M.-T.); (M.B.-M.)
| | - Nowakowska Beata
- Department of Medical Genetics, Institute of Mother and Child, 30-663 Warsaw, Poland; (K.K.); (N.B.)
| |
Collapse
|
2
|
Li H, Hu J, Wu Q, Qiu J, Zhang L, Zhu J. Chromosomal abnormalities detected by chromosomal microarray analysis and pregnancy outcomes of 4211 fetuses with high-risk prenatal indications. Sci Rep 2024; 14:15920. [PMID: 38987582 PMCID: PMC11237145 DOI: 10.1038/s41598-024-67123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
With the gradual liberalization of the three-child policy and the development of assisted reproductive technology in China, the number of women with high-risk pregnancies is gradually increasing. In this study, 4211 fetuses who underwent chromosomal microarray analysis (CMA) with high-risk prenatal indications were analysed. The results showed that the overall prenatal detection rate of CMA was 11.4% (480/4211), with detection rates of 5.82% (245/4211) for abnormal chromosome numbers and 5.58% (235/4211) for copy number variants. Additionally, the detection rates of clinically significant copy number variants were 3.78% (159/4211) and 1.8% (76/4211) for variants of uncertain significance. The detection rates of fetal chromosomal abnormalities were 6.42% (30/467) for pregnant women with advanced maternal age (AMA), 6.01% (50/832) for high-risk maternal serum screening (MSS) results, 39.09% (224/573) with abnormal non-invasive prenatal testing (NIPT) results, 9.21% (127/1379) with abnormal ultrasound results, and 5.1% (49/960) for other indications. Follow-up results were available for 4211 patients, including 3677 (3677/4211, 87.32%) whose infants were normal after birth, 462 (462/4211, 10.97%) who terminated their pregnancy, 51 (51/4211, 1.21%) whose infants were abnormal after birth, and 21 (21/4211, 0.50%) who refused follow-up. The results of this study demonstrate significant variation in the diagnostic rate of chromosomal microarray analysis across different indications, providing valuable guidance for clinicians to assess the applicability of CMA technology in prenatal diagnosis.
Collapse
Affiliation(s)
- Huafeng Li
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Juan Hu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Qingyu Wu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Jigang Qiu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Li Zhang
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China
| | - Jinping Zhu
- Genetic Medical Center, Women and Children's Health Care Hospital of Linyi, Liyin, 276014, China.
| |
Collapse
|
3
|
Chaves TF, Ocampos M, Barbato IT, de Camargo Pinto LL, de Luca GR, Barbato Filho JH, Bernardi P, Costa Netto Muniz Y, Francesca Maris A. A cohort study of neurodevelopmental disorders and/or congenital anomalies using high resolution chromosomal microarrays in southern Brazil highlighting the significance of ASD. Sci Rep 2024; 14:3762. [PMID: 38355898 PMCID: PMC10867078 DOI: 10.1038/s41598-024-54385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chromosomal microarray (CMA) is the reference in evaluation of copy number variations (CNVs) in individuals with neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and/or autism spectrum disorder (ASD), which affect around 3-4% of the world's population. Modern platforms for CMA, also include probes for single nucleotide polymorphisms (SNPs) that detect homozygous regions in the genome, such as long contiguous stretches of homozygosity (LCSH). These regions result from complete or segmental chromosomal homozygosis and may be indicative of uniparental disomy (UPD), inbreeding, population characteristics, as well as replicative DNA repair events. In this retrospective study, we analyzed CMA reading files requested by geneticists and neurologists for diagnostic purposes along with available clinical data. Our objectives were interpreting CNVs and assess the frequencies and implications of LCSH detected by Affymetrix CytoScan HD (41%) or 750K (59%) platforms in 1012 patients from the south of Brazil. The patients were mainly children with NDDs and/or congenital anomalies (CAs). A total of 206 CNVs, comprising 132 deletions and 74 duplications, interpreted as pathogenic, were found in 17% of the patients in the cohort and across all chromosomes. Additionally, 12% presented rare variants of uncertain clinical significance, including LPCNVs, as the only clinically relevant CNV. Within the realm of NDDs, ASD carries a particular importance, owing to its escalating prevalence and its growing repercussions for individuals, families, and communities. ASD was one clinical phenotype, if not the main reason for referral to testing, for about one-third of the cohort, and these patients were further analyzed as a sub-cohort. Considering only the patients with ASD, the diagnostic rate was 10%, within the range reported in the literature (8-21%). It was higher (16%) when associated with dysmorphic features and lower (7%) for "isolated" ASD (without ID and without dysmorphic features). In 953 CMAs of the whole cohort, LCSH (≥ 3 Mbp) were analyzed not only for their potential pathogenic significance but were also explored to identify common LCSH in the South Brazilians population. CMA revealed at least one LCSH in 91% of the patients. For about 11.5% of patients, the LCSH suggested consanguinity from the first to the fifth degree, with a greater probability of clinical impact, and in 2.8%, they revealed a putative UPD. LCSH found at a frequency of 5% or more were considered common LCSH in the general population, allowing us to delineate 10 regions as potentially representing ancestral haplotypes of neglectable clinical significance. The main referrals for CMA were developmental delay (56%), ID (33%), ASD (33%) and syndromic features (56%). Some phenotypes in this population may be predictive of a higher probability of indicating a carrier of a pathogenic CNV. Here, we present the largest report of CMA data in a cohort with NDDs and/or CAs from the South of Brazil. We characterize the rare CNVs found along with the main phenotypes presented by each patient and show the importance and usefulness of LCSH interpretation in CMA results that incorporate SNPs, as well as we illustrate the value of CMA to investigate CNV in ASD.
Collapse
Affiliation(s)
- Tiago Fernando Chaves
- Laboratório de Polimorfismos Genéticos (LAPOGE), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Maristela Ocampos
- Laboratory Neurogene (former), Florianopolis, SC, Brazil
- Mercolab Diagnóstica (actual), Florianopolis, SC, Brazil
| | | | | | | | | | - Priscila Bernardi
- University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | - Yara Costa Netto Muniz
- Laboratório de Polimorfismos Genéticos (LAPOGE), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelica Francesca Maris
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Children's Hospital Joana de Gusmão, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Cai M, Lv A, Zhao W, Xu L, Lin N, Huang H. Intrauterine ultrasound phenotyping, molecular characteristics, and postnatal follow-up of fetuses with the 15q11.2 BP1-BP2 microdeletion syndrome: a single-center, retrospective clinical study. BMC Pregnancy Childbirth 2024; 24:23. [PMID: 38172840 PMCID: PMC10763152 DOI: 10.1186/s12884-023-06223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES The 15q11.2 BP1-BP2 microdeletion is associated with neurodevelopmental diseases. However, most studies on this microdeletion have focused on adults and children. Thus, in this study, we summarized the molecular characteristics of fetuses with the 15q11.2 BP1-BP2 microdeletion and their postnatal follow-up to guide prenatal diagnosis. METHODS Ten thousand fetuses were retrospectively subjected to karyotype analysis and chromosome microarray analysis. RESULTS Chromosome microarray analysis revealed that 37 (0.4%) of the 10,000 fetuses had 15q11.2 BP1-BP2 microdeletions. The fragment size of the 15q11.2 BP1-BP2 region was approximately 312-855 kb and encompassed TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. Twenty-five of the 37 fetuses with this microdeletion showed phenotypic abnormalities. The most common ultrasonic structural abnormality was congenital heart disease, followed by renal dysplasia and Dandy-Walker malformation. The 15q11.2 BP1-BP2 microdeletion was inherited from the father and mother in 6 and 10 cases, respectively, and de novo inherited in 4 cases. In the postnatal follow-up, 16.1% of the children had postnatal abnormalities. CONCLUSION Fetuses with the 15q11.2 BP1-BP2 microdeletion showed high proportions of phenotypic abnormalities, but the specificity of penetrance was low. Thus, fetuses with this syndrome are potentially at a higher risk of postnatal growth/behavioral problems and require continuous monitoring of growth and development.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Aixiang Lv
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
5
|
Zhang S, Xu Y, Lu D, Fu D, Zhao Y. Combined use of karyotyping and copy number variation sequencing technology in prenatal diagnosis. PeerJ 2022; 10:e14400. [PMID: 36523456 PMCID: PMC9745786 DOI: 10.7717/peerj.14400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Karyotyping and genome copy number variation sequencing (CNV-seq) are two techniques frequently used in prenatal diagnosis. This study aimed to explore the diagnostic potential of using a combination of these two methods in order to provide a more accurate clinical basis for prenatal diagnosis. Methods We selected 822 pregnant women undergoing amniocentesis and separated them into six groups according to different risk indicators. Karyotyping and CNV-seq were performed simultaneously to compare the diagnostic performance of the two methods. Results Among the different amniocentesis indicators, abnormal fetal ultrasounds accounted for 39.29% of the total number of examinees and made up the largest group. The abnormal detection rate of non-invasive prenatal testing (NIPT) high risk was 37.93% and significantly higher than the other five groups (P < 0.05). The abnormal detection rate of mixed indicators was significantly higher than the history of the adverse reproductive outcomes group (P = 0.0151). The two methods combined found a total of 119 abnormal cases (14.48%). Karyotyping detected 57 cases (6.93%) of abnormal karyotypes, 30 numerical aberrations, and 27 structural aberrations. CNV-seq identified 99 cases (12.04%) with altered CNVs, 30 cases of chromosome aneuploidies, and 69 structural aberrations (28 pathogenic, eight that were likely pathogenic, and 33 microdeletion/duplication variants of uncertain significance (VUS)). Thirty-seven cases were found abnormal by both methods, 20 cases were detected abnormally by karyotyping (mainly mutual translocation and mostly balanced), and 62 cases of microdeletion/duplication were detected by CNV-seq. Steroid sulfatase gene (STS) deletion was identified at chromosome Xp22.31 in three cases. Postnatal follow-up confirmed that babies manifested skin abnormalities one week after birth. Six fetuses had Xp22.31 duplications ranging from 1.5 Kb to 1.7 Mb that were detected by CNV-seq. Follow-up showed that five babies presented no abnormalities during follow-up, except for one terminated pregnancy due to a history of adverse reproductive outcomes. Conclusion The combination of using CNV-seq and karyotyping significantly improved the detection rate of fetal pathogenic chromosomal abnormalities. CNV-seq is an effective complement to karyotyping and improves the accuracy of prenatal diagnosis.
Collapse
Affiliation(s)
- Suhua Zhang
- Department of Gynaecology and Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yang Zhou, Jiangsu Province, China
| | - Yuexin Xu
- Department of Gynaecology and Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yang Zhou, Jiangsu Province, China
| | - Dan Lu
- Department of Gynaecology and Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yang Zhou, Jiangsu Province, China
| | - Dan Fu
- Department of Gynaecology and Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yang Zhou, Jiangsu Province, China
| | - Yan Zhao
- Medical Research Center, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yang Zhou, Jiangsu Province, China
| |
Collapse
|
6
|
Wójtowicz A, Madetko-Talowska A, Wójtowicz W, Szewczyk K, Huras H, Bik-Multanowski M. Cardiovascular Anomalies among 1005 Fetuses Referred to Invasive Prenatal Testing-A Comprehensive Cohort Study of Associated Chromosomal Aberrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10019. [PMID: 36011653 PMCID: PMC9408756 DOI: 10.3390/ijerph191610019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This retrospective cohort study comprehensively evaluates cardiovascular anomalies (CVAs) and associated extracardiac structural malformations (ECMs) among 1005 fetuses undergoing invasive prenatal testing at a single tertiary Polish center in the context of chromosomal aberrations detected in them by array comparative genomic hybridization (aCGH) and G-band karyotyping. The results of our study show that CVAs are among the most common malformations detected in fetuses undergoing invasive prenatal testing, as they affected 20% of all cases seen in our department. Septal defects predominated among fetuses with numerical aberrations, while conotruncal defects were the most common findings among fetuses with pathogenic copy number variants (CNVs). In 61% of cases, CVAs were associated with ECMs (the diagnosis was confirmed postnatally or in cases of pregnancy termination by means of autopsy). The most common ECMs were anomalies of the face and neck, followed by skeletal defects. In total, pathogenic chromosomal aberrations were found in 47.5% of CVAs cases, including 38.6% with numerical chromosomal aberrations. Pathogenic CNVs accounted for 14.5% of cases with CVAs and normal karyotype. Thus, our study highlights the importance of assessing the anatomy of the fetus, and of the genetic testing (preferably aCGH) that should be offered in all CVA and ECM cases.
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Wojciech Wójtowicz
- Information Technology Systems Department, Faculty of Management and Social Communication, Jagiellonian University, 30-348 Kraków, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Hubert Huras
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | | |
Collapse
|
7
|
Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J, Brun P, Fabro M, Galain M, Fernández CS, Taboas M, Bruque CD, Kolomenski JE, Izquierdo A, Berenstein A, Cosentino V, Martinoli C, Vilas M, Rittler M, Mendez R, Furforo L, Liascovich R, Groisman B, Rozental S, Dain L. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Genes (Basel) 2022; 13:1172. [PMID: 35885957 PMCID: PMC9317700 DOI: 10.3390/genes13071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital anomalies (CA) affect 3-5% of newborns, representing the second-leading cause of infant mortality in Argentina. Multiple congenital anomalies (MCA) have a prevalence of 2.26/1000 births in newborns, while congenital heart diseases (CHD) are the most frequent CA with a prevalence of 4.06/1000 births. The aim of this study was to identify the genetic causes in Argentinian patients with MCA and isolated CHD. We recruited 366 patients (172 with MCA and 194 with isolated CHD) born between June 2015 and August 2019 at public hospitals. DNA from peripheral blood was obtained from all patients, while karyotyping was performed in patients with MCA. Samples from patients presenting conotruncal CHD or DiGeorge phenotype (n = 137) were studied using MLPA. Ninety-three samples were studied by array-CGH and 18 by targeted or exome next-generation sequencing (NGS). A total of 240 patients were successfully studied using at least one technique. Cytogenetic abnormalities were observed in 13 patients, while 18 had clinically relevant imbalances detected by array-CGH. After MLPA, 26 patients presented 22q11 deletions or duplications and one presented a TBX1 gene deletion. Following NGS analysis, 12 patients presented pathogenic or likely pathogenic genetic variants, five of them, found in KAT6B, SHH, MYH11, MYH7 and EP300 genes, are novel. Using an algorithm that combines molecular techniques with clinical and genetic assessment, we determined the genetic contribution in 27.5% of the analyzed patients.
Collapse
Affiliation(s)
- Marisol Delea
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lucia S. Massara
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Lucia D. Espeche
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - María Paz Bidondo
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Unidad Académica de Histologia, Embriologia, Biologia Celular y Genética, Facultad de Medicina UBA, Paraguay 2155, Buenos Aires 1121, Argentina
| | - Pablo Barbero
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jaen Oliveri
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Paloma Brun
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Mónica Fabro
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | - Micaela Galain
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | | | - Melisa Taboas
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jorge E. Kolomenski
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá”. Gallo 1330, Buenos Aires 1425, Argentina;
| | - Ariel Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Gallo 1330, Buenos Aires 1425, Argentina;
| | - Viviana Cosentino
- Hospital Interzonal General de Agudos Luisa Cravenna de Gandulfo, Balcarce 351, Lomas de Zamora 1832, Argentina;
| | - Celeste Martinoli
- Hospital Sor Maria Ludovica, Calle 14 1631, La Plata 1904, Argentina;
| | - Mariana Vilas
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Mónica Rittler
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rodrigo Mendez
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lilian Furforo
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rosa Liascovich
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Boris Groisman
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Sandra Rozental
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Liliana Dain
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | | |
Collapse
|
8
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
9
|
Vaknin N, Azoulay N, Tsur E, Tripolszki K, Urzi A, Rolfs A, Bauer P, Achiron R, Lipitz S, Goldberg Y, Berger R, Shohat M. High rate of abnormal findings in Prenatal Exome Trio in low risk pregnancies and apparently normal fetuses. Prenat Diagn 2021; 42:725-735. [PMID: 34918830 DOI: 10.1002/pd.6077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Data on the value of exome sequencing in fetuses with no structural anomalies are limited, especially in the early stages of pregnancy and in low risk pregnancies. We investigated the yield of targeted clinical prenatal trio exome sequencing (pES) in pregnancies with and without fetal structural anomalies. METHODS We performed pES in 353 pregnancies: Group 1 included 143 pregnancies with high clinical suspicion for a genetic disease: pregnancies with increased nuchal translucency, ultrasound structural defects, intrauterine growth restriction, polyhydramnios, or effusion/nuchal edema. Group 2 included 210 pregnancies with no notable abnormal fetal ultrasound findings. 2a. Low risk pregnancies with minor ultrasound findings, referred to the geneticist due to mildly increased risk for genetic disease (50); and 2b. Normal pregnancy surveillance (160). RESULTS Overall, 26 (7.36%) fetal analyses had pathogenic (P)/likely pathogenic (LP) variants. In group 1, 20/143 (13.99%) cases had P/LP variants. In group 2, 6/210 (2.86%) cases were found to have P/LP variants [5/50 in (2a) and 1/160 in (2b)]. CONCLUSION These results show a high rate of abnormal findings on pES even in apparently normal pregnancies.
Collapse
Affiliation(s)
- Noam Vaknin
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noy Azoulay
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Erez Tsur
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | | | | | | | | | - Reuven Achiron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Shlomo Lipitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | - Mordechai Shohat
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Bioinformatics Unit, Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
10
|
Wu X, Su L, Xie X, He D, Chen X, Wang M, Wang L, Zheng L, Xu L. Comprehensive analysis of early pregnancy loss based on cytogenetic findings from a tertiary referral center. Mol Cytogenet 2021; 14:56. [PMID: 34863241 PMCID: PMC8645092 DOI: 10.1186/s13039-021-00577-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background Pregnancy loss is one of the most common complications during pregnancy. Clinical consultation based on etiology analysis are critical for reducing anxiety and distress. This study aimed to perform a comprehensive analysis for products of conception (POC) in miscarriage based on genetic etiology and clinical information. Methods A retrospective study was conducted according to cytogenetic findings of 1252 POC from spontaneous pregnancy loss over 11 years. The frequencies and profiles of chromosomal abnormalities were discussed according to the classification of women with different maternal ages, previous miscarriage history, normal live birth history, and different modes of conception. Results A total of 667 (53.2%) chromosomal abnormalities were observed, including 592 (47.3%) cases of numerical abnormalities, 38 (3.0%) cases of structural abnormalities, and 37 (3.0%) cases of mosaic aberrations. In women above 40 years of age, the rates of chromosomal abnormalities and viable autosomal trisomy were significantly higher than those in women with ≤ 29, 30–34, and 35–39 years of age (p < 0.05). The frequency of abnormal karyotype in women with normal live birth history was 61.1%, significantly higher than 52.5% in women without normal live birth history (p < 0.05). There was no significant differences among women without, with 1–2, and ≥ 3 previous miscarriages regarding the rate of abnormal karyotype (p > 0.05); viable autosomal trisomy was less common in women with ≥ 3 previous miscarriages than women with < 3 miscarriages. The frequency of chromosomal abnormalities was 49.0% and 55.0% in women with assisted conception and natural conception (p > 0.05), respectively; monosomy X was more frequently detected in women with natural conception than assisted conception. Conclusion The frequencies and profiles of chromosomal abnormalities in early miscarriages are strongly associated with clinical information including maternal age, previous miscarriage, live birth history, and mode of conception. Cytogenetic analysis of POC should be recommended to women with a first miscarriage and women with normal live birth history.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.,Department of Laboratory Medicine, Fujian Medical University, No. 88 Jiaotong Road, Fuzhou, 350002, Fujian, China
| | - Linjuan Su
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Xiaorui Xie
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Deqin He
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Meiying Wang
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Linshuo Wang
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Lin Zheng
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Provincial Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, No. 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
11
|
Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:2029-2037. [PMID: 34211152 DOI: 10.1038/s41436-021-01242-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To develop an evidence-based clinical practice guideline for the use of exome and genome sequencing (ES/GS) in the care of pediatric patients with one or more congenital anomalies (CA) with onset prior to age 1 year or developmental delay (DD) or intellectual disability (ID) with onset prior to age 18 years. METHODS The Pediatric Exome/Genome Sequencing Evidence-Based Guideline Work Group (n = 10) used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence to decision (EtD) framework based on the recent American College of Medical Genetics and Genomics (ACMG) systematic review, and an Ontario Health Technology Assessment to develop and present evidence summaries and health-care recommendations. The document underwent extensive internal and external peer review, and public comment, before approval by the ACMG Board of Directors. RESULTS The literature supports the clinical utility and desirable effects of ES/GS on active and long-term clinical management of patients with CA/DD/ID, and on family-focused and reproductive outcomes with relatively few harms. Compared with standard genetic testing, ES/GS has a higher diagnostic yield and may be more cost-effective when ordered early in the diagnostic evaluation. CONCLUSION We strongly recommend that ES/GS be considered as a first- or second-tier test for patients with CA/DD/ID.
Collapse
|
12
|
Chin HL, O'Neill K, Louie K, Brown L, Schlade-Bartusiak K, Eydoux P, Rupps R, Farahani A, Boerkoel CF, Jones SJM. An approach to rapid characterization of DMD copy number variants for prenatal risk assessment. Am J Med Genet A 2021; 185:2541-2545. [PMID: 34018669 DOI: 10.1002/ajmg.a.62349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022]
Abstract
Prenatal detection of structural variants of uncertain significance, including copy number variants (CNV), challenges genetic counseling, and creates ambiguity for expectant parents. In Duchenne muscular dystrophy, variant classification and phenotypic severity of CNVs are currently assessed by familial segregation, prediction of the effect on the reading frame, and precedent data. Delineation of pathogenicity by familial segregation is limited by time and suitable family members, whereas analytical tools can rapidly delineate potential consequences of variants. We identified a duplication of uncertain significance encompassing a portion of the dystrophin gene (DMD) in an unaffected mother and her male fetus. Using long-read whole genome sequencing and alignment of short reads, we rapidly defined the precise breakpoints of this variant in DMD and could provide timely counseling. The benign nature of the variant was substantiated, more slowly, by familial segregation to a healthy maternal uncle. We find long-read whole genome sequencing of clinical utility in a prenatal setting for accurate and rapid characterization of structural variants, specifically a duplication involving DMD.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Kristal Louie
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay Brown
- Department of Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kamilla Schlade-Bartusiak
- Department of Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrice Eydoux
- Department of Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Farahani
- Preventum Personalized Healthcare, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Bajaj Lall M, Agarwal S, Paliwal P, Saviour P, Joshi A, Joshi A, Mahajan S, Bijarnia-Mahay S, Dua Puri R, Verma IC. Prenatal Diagnosis by Chromosome Microarray Analysis, An Indian Experience. J Obstet Gynaecol India 2021; 71:156-167. [PMID: 34149218 PMCID: PMC8167018 DOI: 10.1007/s13224-020-01413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Karyotyping has been the gold standard for prenatal chromosome analysis. The resolution should be higher by chromosome microarray analysis (CMA). The challenge lies in recognizing benign and pathogenic or clinically significant copy number variations (pCNV) and variations of unknown significance (VOUS). The aim was to evaluate the diagnostic yield and clinical utility of CMA, to stratify the CMA results in various prenatal referral groups and to accumulate Indian data of pCNVs and VOUS for further interpretation to assist defined genetic counseling. METHODS Karyotyping and CMA were performed on consecutive referrals of 370 prenatal samples of amniotic fluid (n = 274) and chorionic villi (n = 96) from Indian pregnant women with high maternal age (n = 23), biochemical screen positive (n = 61), previous child abnormal (n = 59), abnormal fetal ultrasound (n = 205) and heterozygous parents (n = 22). RESULTS AND CONCLUSION The overall diagnostic yield of abnormal results was 5.40% by karyotyping and 9.18% by CMA. The highest percentage of pCNVs were found in the group with abnormal fetal ultrasound (5.40%) as compared to other groups, such as women with high maternal age (0.81%), biochemical screen positive (0.54%), previous abnormal offspring (0.81%) or heterozygous parents group (1.62%). Therefore, all women with abnormal fetal ultrasound must undergo CMA test for genotype-phenotype correlation. CMA detects known and rare deletion/duplication syndromes and characterizes marker chromosomes. Accumulation of CNV data will form an Indian Repository and also help to resolve the uncertainty of VOUS. Pretest and posttest genetic counseling is essential to convey benefits and limitations of CMA and help the patients to take informed decisions.
Collapse
Affiliation(s)
- Meena Bajaj Lall
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Shruti Agarwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Preeti Paliwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Pushpa Saviour
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Anju Joshi
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Arti Joshi
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Surbhi Mahajan
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - I. C. Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, 110060 India
| |
Collapse
|
14
|
Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland. Hum Genet 2021; 140:1011-1029. [PMID: 33710394 PMCID: PMC8197721 DOI: 10.1007/s00439-021-02268-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.
Collapse
|
15
|
Yuan H, Shangguan S, Li Z, Luo J, Su J, Yao R, Zhang S, Liang C, Chen Q, Gao Z, Zhu Y, Zhang S, Li W, Lu W, Zhang Y, Xie H, Liu F, Wang Q, Lin Y, Liu L, Wang X, Liang L, Zhong J, Li H, Qiu H, Zhang H, Yan M, Mireguli M, Liu Y, Zhang D, Wang H, Lv H, Xie B, Gui C, Cui X, Zou L, Wang J, Gusella JF, Shen Y, Chen X. CNV profiles of Chinese pediatric patients with developmental disorders. Genet Med 2021; 23:669-678. [PMID: 33402738 DOI: 10.1038/s41436-020-01048-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To examine the overall genomic copy-number variant (CNV) landscape of Chinese pediatric patients with developmental disorders. METHODS De-identified chromosomal microarray (CMA) data from 10,026 pediatric patients with developmental disorders were collected for re-evaluating the pathogenic CNV (pCNV) yields of different medical conditions and for comparing the frequency and phenotypic variability of genomic disorders between the Chinese and Western patient populations. RESULTS The overall yield of pCNVs in the Chinese pediatric patient cohort was 21.37%, with variable yields for different disorders. Yields of pCNVs were positively associated with phenotypic complexity and intellectual disability/developmental delay (ID/DD) comorbidity for most disorders. The genomic burden and pCNV yield in neurodevelopmental disorders supported a female protective effect. However, the stratification analysis revealed that it was seen only in nonsyndromic ID/DD, not in nonsyndromic autism spectrum disorders or seizure. Furthermore, 15 known genomic disorders showed significantly different frequencies in Chinese and Western patient cohorts, and profiles of referred clinical features for 15 known genomic disorders were also significantly different in the two cohorts. CONCLUSION We defined the pCNV yields and profiles of the Chinese pediatric patients with different medical conditions and uncovered differences in the frequency and phenotypic diversity of genomic disorders between Chinese and Western patients.
Collapse
Affiliation(s)
- Haiming Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China.,Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | | | - Zhengchang Li
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiasun Su
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ruen Yao
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shun Zhang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Chen Liang
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qian Chen
- Department of Neurology, the affiliated hospital of Capital Institute of Pediatrics, Beijing, China
| | - Zhijie Gao
- Department of Neurology, the affiliated hospital of Capital Institute of Pediatrics, Beijing, China
| | - Yanli Zhu
- Department of Neurology, the affiliated hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Weiliang Lu
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Zhang
- Department of Lab center, Capital Institute of Pediatrics, Beijing, China
| | - Hua Xie
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Liu
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qingming Wang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China.,Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Yangyang Lin
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China.,Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Liying Liu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Xiuming Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Children Medicine Center, Shanghai, China
| | - Liyang Liang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Children's Hospital, Nanchang, China
| | - Haibo Li
- Central Laboratory of Birth Defects Prevention and Control, Ningbo Women & Children's Hospital, Ninbo, China
| | - Haiyan Qiu
- Department of Pediatrics, Ningbo Women & Children's Hospital, Ninbo, China
| | - Huifeng Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mei Yan
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Maimaiti Mireguli
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yanhui Liu
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China.,Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproduction, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Lv
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bobo Xie
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunrong Gui
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaodai Cui
- Department of Lab center, Capital Institute of Pediatrics, Beijing, China
| | - Liping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China. .,Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Chen
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
16
|
Wu X, An G, Xie X, Su L, Cai M, Chen X, Li Y, Lin N, He D, Wang M, Huang H, Xu L. Chromosomal microarray analysis for pregnancies with or without ultrasound abnormalities in women of advanced maternal age. J Clin Lab Anal 2020; 34:e23117. [PMID: 31762079 PMCID: PMC7171339 DOI: 10.1002/jcla.23117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chromosomal microarray analysis (CMA) has been suggested to be routinely conducted for fetuses with ultrasound abnormalities (UA), especially with ultrasound structural anomalies (USA). Whether to routinely offer CMA to women of advanced maternal age (AMA) without UA when undergoing invasive prenatal testing is inconclusive. OBJECTIVE This study aimed to evaluate the efficiency of CMA in detecting clinically significant chromosomal abnormalities in fetuses, with or without UA, of women with AMA. METHODS Data from singleton pregnancies referred for prenatal CMA due to AMA, with or without UA were obtained. The enrolled cases were divided into AMA group (group A) and AMA accompanied by UA group (group B). Single nucleotide polymorphism (SNP) array technology and conventional karyotyping were performed simultaneously. RESULTS A total of 703 cases were enrolled and divided into group A (N = 437) and group B (N = 266). Clinically significant abnormalities were detected by CMA in 52 cases (7.4%, 52/703; the value in group A was significantly lower than that in group B (3.9% vs 13.2%, P < .05); no statistic difference was observed with respect to submicroscopic variants of clinical significance between the two groups (0.9% vs 2.6%, P > .05). CONCLUSIONS Chromosomal microarray analysis should be available to all women with AMA undergoing invasive prenatal testing, regardless of ultrasound findings.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Gang An
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaorui Xie
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Linjuan Su
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Meiying Cai
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xuemei Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ying Li
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Deqin He
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Meiying Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
17
|
Malinowski J, Miller DT, Demmer L, Gannon J, Pereira EM, Schroeder MC, Scheuner MT, Tsai ACH, Hickey SE, Shen J. Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. Genet Med 2020; 22:986-1004. [PMID: 32203227 PMCID: PMC7222126 DOI: 10.1038/s41436-020-0771-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Exome and genome sequencing (ES/GS) are performed frequently in patients with congenital anomalies, developmental delay, or intellectual disability (CA/DD/ID), but the impact of results from ES/GS on clinical management and patient outcomes is not well characterized. A systematic evidence review (SER) can support future evidence-based guideline development for use of ES/GS in this patient population. Methods We undertook an SER to identify primary literature from January 2007 to March 2019 describing health, clinical, reproductive, and psychosocial outcomes resulting from ES/GS in patients with CA/DD/ID. A narrative synthesis of results was performed. Results We retrieved 2654 publications for full-text review from 7178 articles. Only 167 articles met our inclusion criteria, and these were primarily case reports or small case series of fewer than 20 patients. The most frequently reported outcomes from ES/GS were changes to clinical management or reproductive decision-making. Two studies reported on the reduction of mortality or morbidity or impact on quality of life following ES/GS. Conclusion There is evidence that ES/GS for patients with CA/DD/ID informs clinical and reproductive decision-making, which could lead to improved outcomes for patients and their family members. Further research is needed to generate evidence regarding health outcomes to inform robust guidelines regarding ES/GS in the care of patients with CA/DD/ID.
Collapse
Affiliation(s)
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Laurie Demmer
- Atrium Health's Levine Children's Hospital, Charlotte, NC, USA
| | - Jennifer Gannon
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri, Kansas City, MO, USA
| | - Elaine Maria Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maren T Scheuner
- Division of Medical Genetics, Department of Pediatrics and Division of Hematology-Oncology, Department of Medicine, University of California, San Francisco, CA, USA.,San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Anne Chun-Hui Tsai
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
18
|
Chromosomal Aberrations in Pediatric Patients with Developmental Delay/Intellectual Disability: A Single-Center Clinical Investigation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9352581. [PMID: 31781653 PMCID: PMC6875000 DOI: 10.1155/2019/9352581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Introduction Chromosomal microarray analysis (CMA) has currently been considered as the first-tier genetic test for patients with developmental delay/intellectual disability (DD/ID) in many countries. In this study, we performed an extensive assessment of the value of CMA for the diagnosis of children with ID/DD in China. Methods A total of 633 patients diagnosed with DD/ID in West China Second University Hospital, Sichuan University, were recruited from January 2014 to March 2019. The patients were classified into 4 subgroups: isolated DD/ID, DD/ID with multiple congenital anomalies (MCA), isolated autism spectrum disorders (ASDs), and DD/ID with epilepsy. CMA was performed on Affymetrix 750K platform. Results Among the 633 patients, 127 cases were identified as having pathogenic copy number variations (pCNVs) with an overall positive rate of 20.06%. Of the 127 cases with abnormal results, 76 cases had 35 types of microdeletion/microduplication syndromes (59.84%) including 5 cases caused by uniparental disomy (UPD), and 18 cases had unbalanced rearrangements (14.17%) including 10 cases inherited from parental balanced translocations or pericentric inversions. The diagnostic yields of pCNVs for the subgroups of isolated DD/ID, DD/ID with MCA, isolated ASD, and DD/ID with epilepsy were 18.07% (60/332), 34.90% (52/149), 3.70% (3/81), and 16.90% (12/71), respectively. The diagnostic yield of pCNVs in DD/ID patients with MCA was significantly higher than that of the other three subgroups, and the diagnostic yield of pCNVs in isolated ASD patients was significantly lower than that of the other three subgroups (p < 0.05). Conclusion Microdeletion/microduplication syndromes and unbalanced rearrangements are probably the main genetic etiological factors for DD/ID. DD/ID patients with MCA have a higher rate of chromosomal aberrations. Parents of DD/ID children with submicroscopic unbalance rearrangements are more likely to have chromosome balanced translocations or pericentric inversions, which might have been missed by karyotyping. CMA can significantly improve the diagnostic rate for patients with DD/ID, which is of great value for medical management and clinical guidance for genetic counseling.
Collapse
|
19
|
Submicroscopic aberrations of chromosome 16 in prenatal diagnosis. Mol Cytogenet 2019; 12:36. [PMID: 31391865 PMCID: PMC6681493 DOI: 10.1186/s13039-019-0448-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Nearly 9.89% of chromosome 16 consists of segmental duplications, which makes it prone to non-homologous recombination. The present study aimed to investigate the incidence and perinatal characteristics of submicroscopic chromosome 16 aberrations in prenatal diagnosis. Results A total of 2,414 consecutive fetuses that underwent prenatal chromosomal microarray analysis (CMA) between January 2016 and December 2018 were reviewed. Submicroscopic anomalies of chromosome 16 accounted for 11.1% (15/134) of all submicroscopic anomalies detected in fetuses with normal karyotype, which was larger than the percentage of anomalies in any other chromosome. The 15 submicroscopic anomalies of chromosome 16 were identified in 14 cases; 12 of them had ultrasound abnormalities. They were classified as pathogenic (N = 7), and variants of uncertain significance (N = 8). Seven fetuses with variants of uncertain significance were ended in live-born, and the remaining were end in pregnancy termination. Conclusion Submicroscopic aberrations of chromosome 16 are frequent findings in prenatal diagnosis, which emphasize the challenge of genetic counseling and the value of CMA. Prenatal diagnosis should lead to long-term monitoring of children with such chromosomal abnormalities for better understanding of the phenotype of chromosome 16 microdeletion and microduplication syndromes.
Collapse
|
20
|
Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, Firth HV, Frazier T, Hansen RL, Prock L, Brunner H, Hoang N, Scherer SW, Sahin M, Miller DT. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med 2019; 21:2413-2421. [PMID: 31182824 PMCID: PMC6831729 DOI: 10.1038/s41436-019-0554-6] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose For neurodevelopmental disorders (NDDs), etiological evaluation can
be a diagnostic odyssey involving numerous genetic tests, underscoring the need
to develop a streamlined algorithm maximizing molecular diagnostic yield for
this clinical indication. Our objective was to compare the yield of exome
sequencing (ES) with that of chromosomal microarray (CMA), the current
first-tier test for NDDs. Methods We performed a PubMed scoping review and meta-analysis investigating
the diagnostic yield of ES for NDDs as the basis of a consensus development
conference. We defined NDD as global developmental delay, intellectual
disability, and/or autism spectrum disorder. The consensus development
conference included input from genetics professionals, pediatric neurologists,
and developmental behavioral pediatricians. Results After applying strict inclusion/exclusion criteria, we identified 30
articles with data on molecular diagnostic yield in individuals with isolated
NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES
was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated
conditions. ES yield for NDDs is markedly greater than previous studies of CMA
(15–20%). Conclusion Our review demonstrates that ES consistently outperforms CMA for
evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at
the beginning of the evaluation of unexplained NDDs.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie A Love-Nichols
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kira A Dies
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA.,SFARI, Simons Foundation, New York, NY, USA
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Robin L Hansen
- MIND Institute, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Lisa Prock
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Developmental Medicine Center, Boston Children's Hospital, Boston, MA, USA
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,The Netherlands; Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ny Hoang
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|