1
|
Tanaka Y, Tajima K, Kusumoto R, Kobori Y, Fukui N, Shinokubo H. End-to-End Bent Perylene Bisimide Cyclophanes by Double Sulfur Extrusion. J Am Chem Soc 2024; 146:16332-16339. [PMID: 38813992 PMCID: PMC11177258 DOI: 10.1021/jacs.4c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Bending inherently planar π-cores consisting of only six-membered rings has traditionally been challenging because a powerful transformation is required to compensate for the significant strain energy associated with bending. Herein, we demonstrate that sulfur extrusion can achieve substantial molecular bending of a perylene structure to form a substructure of a Vögtle belt, a proposed yet hitherto elusive carbon nanotube fragment. Bent perylene bisimide (PBI) derivatives were synthesized through a double-sulfur-extrusion reaction from the corresponding sulfur-containing V-shaped precursors with an internal alkyl tether. The effect of bending the inherently planar PBI core, which is a recent topic of interest for the design of advanced organic electronic and optoelectronic materials, was investigated systematically. Increasing the curvature leads to a red shift in the absorption and emission spectra, while the fluorescence quantum yields remain high. This stands in contrast with the nonemissive features of previously reported nonplanar PBI derivatives based on conjugative tethers. Detailed photophysical measurements indicated that the increasing curvature with shorter alkyl tethers (i) slightly facilitates intersystem crossing and (ii) significantly suppresses the internal conversion in the excited state of the present bent PBI derivatives. The latter characteristics originate from the restricted dynamic motion associated with the charge-transfer (CT) character between the core chromophores and the N-aryl units.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keita Tajima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryota Kusumoto
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi ,Saitama332-0012, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO,
Japan Science and Technology Agency (JST), Kawaguchi ,Saitama332-0012, Japan
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
2
|
Odajima M, Fukui N, Shinokubo H. Dinaphthooxepine Bisimide Undergoes Oxygen Extrusion Reaction upon Electron Injection at Room Temperature. Org Lett 2023; 25:282-287. [PMID: 36602262 DOI: 10.1021/acs.orglett.2c04173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the synthesis and properties of a dinaphthooxepine bisimide (DNOBI), a nonplanar perylene bisimide (PBI) analogue with an inserted oxygen atom. A DNOBI underwent an oxygen-extrusion reaction smoothly upon electron injection at room temperature, affording PBI in good yield. Studies on the reaction mechanism suggest that the injection of two electrons triggers the isomerization of DNOBI to dinaphthooxanorcaradiene bisimide, which is a key step in inducing the oxygen-extrusion reaction.
Collapse
Affiliation(s)
- Mai Odajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
3
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Odajima M, Tajima K, Fukui N, Shinokubo H. Non-Planar Perylene Bisimide Analogues with Inserted Carbonyl and Methylene Subunits. Angew Chem Int Ed Engl 2021; 60:15838-15843. [PMID: 33928728 DOI: 10.1002/anie.202104882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 01/04/2023]
Abstract
The synthesis and properties of dinaphthotropone bisimide (DNTrBI) and dinaphthocycloheptatriene bisimide (DNCHepBI) are described. Their molecular design is conceptually based on the insertion of a carbon atom into a perylene bisimide (PBI) core. These molecules adopt non-planar structures due to the presence of a seven-membered ring. The PBI derivative into which a carbonyl group was inserted (DNTrBI) immediately underwent nonradiative decay and/or intersystem crossing in its excited state. The PBI derivative into which a methylene group was inserted (DNCHepBI) was susceptible to deprotonation on account of the two electron-withdrawing naphthalene monoimide units. Subsequent aerobic oxidation resulted in the formation of a C-C bond at the central methylene unit, thus affording a σ-dimer. The formation of this C-C bond is dynamically redox-active, i.e., electron injection into the σ-dimer almost quantitatively regenerated the deprotonated DNCHepBI.
Collapse
Affiliation(s)
- Mai Odajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Keita Tajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
5
|
Odajima M, Tajima K, Fukui N, Shinokubo H. Non‐Planar Perylene Bisimide Analogues with Inserted Carbonyl and Methylene Subunits. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mai Odajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Keita Tajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|