1
|
Faialaga NH, Gephart DP, Silva BD, Liu RY. Synthesis of Arenesulfenyl Fluorides and Fluorosulfenylation of Alkenes, Alkynes, and α-Diazocarbonyl Compounds. Angew Chem Int Ed Engl 2024:e202422120. [PMID: 39671513 DOI: 10.1002/anie.202422120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Sulfenyl fluorides are organic compounds of sulfur in formal oxidation state +2 with the formula R-S-F. Although the chloride, bromide, and iodide analogues have been extensively described in the literature, arenesulfenyl fluorides remain essentially unstudied. These structures have been implicated as putative intermediates in established processes to access polyfluorinated sulfur species; however, definitive and direct evidence of their existence has not been obtained, nor has a systematic understanding of their reactivity. Here, we report the synthesis, isolation, and spectroscopic characterization of several arenesulfenyl fluorides, including structural analysis of 2,4-dinitrobenzenesulfenyl fluoride and 4-cyano-2-nitrobenzenesulfenyl fluoride by single-crystal X-ray diffraction. The functional group undergoes direct, efficient, and highly regioselective anti-addition to alkenes and alkynes, as well as insertion by carbenes. The resulting α- or β-fluoro thioether adducts can be readily transformed into useful fluorinated motifs, for example by modification of the sulfur groups (to sulfonamides or sulfonyl fluorides), by sulfur elimination (to generate formal C-H fluorination products), or by Julia-Kocienski olefination (to form vinyl fluorides). Thus, we establish that sulfenyl fluorides are unexpectedly accessible and stable compounds, which serve as versatile reagents for the production of fluorinated organic compounds.
Collapse
Affiliation(s)
- Nathan H Faialaga
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| | - Dana P Gephart
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| | - Breno D Silva
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
2
|
Haritha Kumari A, Jagadesh Kumar J, Sharadha N, Rama Krishna G, Jannapu Reddy R. Visible-Light-Induced Radical Sulfonylative-Cyclization Cascade of 1,6-Enynol Derivatives with Sulfinic Acids: A Sustainable Approach for the Synthesis of 2,3-Disubstituted Benzoheteroles. CHEMSUSCHEM 2024; 17:e202400227. [PMID: 38650432 DOI: 10.1002/cssc.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Benzoheteroles are promising structural scaffolds in the realm of medicinal chemistry, but sustainable synthesis of 2,3-difunctionalized benzoheterole derivatives is still in high demand. Indeed, we have conceptually rationalized the intrinsic reactivity of propargylic-enyne systems for the flexible construction of 2,3-disubstituted benzoheteroles through radical sulfonylative-cyclization cascade under organophotoredox catalysis. We hereby report an efficient visible-light-induced sulfonyl radical-triggered cyclization of 1,6-enynols with sulfinic acids under the dual catalytic influence of 4CzIPN and NiBr2⋅DME, which led to the formation of 2,3-disubstituted benzoheteroles in good to high yields. Additionally, the Rose Bengal (RB)-catalyzed radical sulfonylative-cycloannulation of acetyl-derived 1,6-enynols with sulfinic acids under blue LED irradiation allowed to access 3-(E-styryl)-derived benzofurans and benzothiophenes in moderate to good yields. The scope and limitations of the present strategies were successfully established using different classes of 1,6-enynols and sulfinic acids bearing various sensitive functional groups, yielding the desired products in a highly stereoselective fashion. Plausible mechanistic pathways were also proposed based on the current experimental and control experiments.
Collapse
Affiliation(s)
- Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| |
Collapse
|
3
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Peng G, Yu X, Bai J, Yang R, Wei F, Xiao Q. Divergent Reaction of Alkynes and TsCN: Synthesis of β-Sulfinyl Alkenylsulfones and ( E)-Vinyl Sulfones. J Org Chem 2024; 89:12159-12169. [PMID: 39150242 DOI: 10.1021/acs.joc.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An efficient and high-selectivity approach for the divergent synthesis of β-sulfinyl alkenylsulfones and (E)-vinyl sulfones from alkynes and TsCN is described. A series of disulfurized products were constructed under mild conditions in the absence of transition metals. This transformation featured excellent regio- and stereoselectivity, good functional group compatibility, and broad substrate scope. The copper(I)-catalyzed sulfonation of alkynes with TsCN that affords (E)-vinyl sulfones in good to excellent yields was also developed.
Collapse
Affiliation(s)
- Guiting Peng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xin Yu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Bai
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Ruchun Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Fang Wei
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
5
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
6
|
Tanimoto H, Kyogaku S, Otsuki A, Tomohiro T. Synthesis of Naphthalimide Azocarboxylates Showing Turn-On Fluorescence by Substitution Reaction with Sulfinates. Chem Asian J 2024; 19:e202400145. [PMID: 38483258 DOI: 10.1002/asia.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Indexed: 04/06/2024]
Abstract
The synthesis and characterization of sulfinate addition-responsive fluorescent molecules are described. We found that addition reaction of sulfinates to naphthalimide-substituted azocarboxylates afforded the corresponding sulfonyl hydrazides with high fluorescence quantum yields (up to 0.91 in THF and 0.54 in methanol), which exhibited a large Stokes shift (105 nm) in protic methanol solvent, while the unsubstituted hydrazide and the sulfonyl-position isomer showed no fluorescence in polar solvents.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shogo Kyogaku
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Aoi Otsuki
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
7
|
Tang X, Chen J, Tian J, Wen K, Gao Q, Shi J, Yao X, Wu T. A new method for C(sp2)-H sulfonylmethylation with glyoxylic acid and sodium sulfinates. Org Biomol Chem 2022; 20:1652-1655. [DOI: 10.1039/d2ob00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein describe a C4 sulfonylmethylation of pyrazol-5-amines with glyoxylic acid and sodium sulfinates. The reaction only needed to add water as the solvent, and it featured mild reaction condition,...
Collapse
|
8
|
Zhu L, Song D, Liu YH, Chen MD, Zhang XR, You MY, Zhan JL. Iron-catalyzed regioselective synthesis of ( E)-vinyl sulfones mediated by unprotected hydroxylamines. Org Biomol Chem 2022; 20:9127-9131. [DOI: 10.1039/d2ob01922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An Fe-catalyzed unprotected hydroxylamine mediated Heck-type coupling between sulfinic acids and alkenes furnished structurally important (E)-vinyl sulfones with moderate to good yields, high atom-economy and regioselectivity.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Dian Song
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Yi-Han Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Meng-Di Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Xin-Ru Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Meng-Yan You
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Jun-Long Zhan
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| |
Collapse
|
9
|
Wang X, Luo D, Wang X, Zeng X, Wang X, Hu Y. N,N'-Disulfonylhydrazines: A novel source of sulfonyl moieties for synthesis of diaryl sulfones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|