1
|
Godoy I, Korsten P, Perry SE. Mother of all bonds: Influences on spatial association across the lifespan in capuchins. Dev Sci 2024; 27:e13486. [PMID: 38414216 DOI: 10.1111/desc.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
In humans, being more socially integrated is associated with better physical and mental health and/or with lower mortality. This link between sociality and health may have ancient roots: sociality also predicts survival or reproduction in other mammals, such as rats, dolphins, and non-human primates. A key question, therefore, is which factors influence the degree of sociality over the life course. Longitudinal data can provide valuable insight into how environmental variability drives individual differences in sociality and associated outcomes. The first year of life-when long-lived mammals are the most reliant on others for nourishment and protection-is likely to play an important role in how individuals learn to integrate into groups. Using behavioral, demographic, and pedigree information on 376 wild capuchin monkeys (Cebus imitator) across 20 years, we address how changes in group composition influence spatial association. We further try to determine the extent to which early maternal social environments have downstream effects on sociality across the juvenile and (sub)adult stages. We find a positive effect of early maternal spatial association, where female infants whose mothers spent more time around others also later spent more time around others as juveniles and subadults. Our results also highlight the importance of kin availability and other aspects of group composition (e.g., group size) in dynamically influencing spatial association across developmental stages. We bring attention to the importance of-and difficulty in-determining the social versus genetic influences that parents have on offspring phenotypes. RESEARCH HIGHLIGHTS: Having more maternal kin (mother and siblings) is associated with spending more time near others across developmental stages in both male and female capuchins. Having more offspring as a subadult or adult female is additionally associated with spending more time near others. A mother's average sociality (time near others) is predictive of how social her daughters (but not sons) become as juveniles and subadults (a between-mother effect). Additional variation within sibling sets in this same maternal phenotype is not predictive of how social they become later relative to each other (no within-mother effect).
Collapse
Affiliation(s)
- Irene Godoy
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica
| | - Peter Korsten
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Susan E Perry
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica
- Department of Anthropology, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Siracusa ER, Pereira AS, Brask JB, Negron-Del Valle JE, Phillips D, Platt ML, Higham JP, Snyder-Mackler N, Brent LJN. Ageing in a collective: the impact of ageing individuals on social network structure. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220061. [PMID: 36802789 PMCID: PMC9939263 DOI: 10.1098/rstb.2022.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 02/21/2023] Open
Abstract
Ageing affects many phenotypic traits, but its consequences for social behaviour have only recently become apparent. Social networks emerge from associations between individuals. The changes in sociality that occur as individuals get older are thus likely to impact network structure, yet this remains unstudied. Here we use empirical data from free-ranging rhesus macaques and an agent-based model to test how age-based changes in social behaviour feed up to influence: (i) an individual's level of indirect connectedness in their network and (ii) overall patterns of network structure. Our empirical analyses revealed that female macaques became less indirectly connected as they aged for some, but not for all network measures examined. This suggests that indirect connectivity is affected by ageing, and that ageing animals can remain well integrated in some social contexts. Surprisingly, we did not find evidence for a relationship between age distribution and the structure of female macaque networks. We used an agent-based model to gain further understanding of the link between age-based differences in sociality and global network structure, and under which circumstances global effects may be detectable. Overall, our results suggest a potentially important and underappreciated role of age in the structure and function of animal collectives, which warrants further investigation. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| | - André S. Pereira
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Josefine Bohr Brask
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Arizona, AZ 85281, USA
| | - Cayo Biobank Research Unit
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
- Center for Evolution and Medicine, Arizona State University, Arizona, AZ 85281, USA
- School of Life Sciences, Arizona State University, Arizona, AZ 85281, USA
- School for Human Evolution and Social Change, Arizona State University, Arizona, AZ 85281, USA
- Department of Neuroscience, University of Pennsylvania, PA 19104, USA
- Department of Psychology, University of Pennsylvania, PA 19104, USA
- Department of Marketing, University of Pennsylvania, PA 19104, USA
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, PA 19104, USA
- Department of Psychology, University of Pennsylvania, PA 19104, USA
- Department of Marketing, University of Pennsylvania, PA 19104, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Arizona, AZ 85281, USA
- School of Life Sciences, Arizona State University, Arizona, AZ 85281, USA
- School for Human Evolution and Social Change, Arizona State University, Arizona, AZ 85281, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
3
|
Balasubramaniam KN, Aiempichitkijkarn N, Kaburu SSK, Marty PR, Beisner BA, Bliss-Moreau E, Arlet ME, Atwill E, McCowan B. Impact of joint interactions with humans and social interactions with conspecifics on the risk of zooanthroponotic outbreaks among wildlife populations. Sci Rep 2022; 12:11600. [PMID: 35804182 PMCID: PMC9263808 DOI: 10.1038/s41598-022-15713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Pandemics caused by pathogens that originate in wildlife highlight the importance of understanding the behavioral ecology of disease outbreaks at human–wildlife interfaces. Specifically, the relative effects of human–wildlife and wildlife-wildlife interactions on disease outbreaks among wildlife populations in urban and peri-urban environments remain unclear. We used social network analysis and epidemiological Susceptible-Infected-Recovered models to simulate zooanthroponotic outbreaks, through wild animals’ joint propensities to co-interact with humans, and their social grooming of conspecifics. On 10 groups of macaques (Macaca spp.) in peri-urban environments in Asia, we collected behavioral data using event sampling of human–macaque interactions within the same time and space, and focal sampling of macaques’ social interactions with conspecifics and overall anthropogenic exposure. Model-predicted outbreak sizes were related to structural features of macaques’ networks. For all three species, and for both anthropogenic (co-interactions) and social (grooming) contexts, outbreak sizes were positively correlated to the network centrality of first-infected macaques. Across host species and contexts, the above effects were stronger through macaques’ human co-interaction networks than through their grooming networks, particularly for rhesus and bonnet macaques. Long-tailed macaques appeared to show intraspecific variation in these effects. Our findings suggest that among wildlife in anthropogenically-impacted environments, the structure of their aggregations around anthropogenic factors makes them more vulnerable to zooanthroponotic outbreaks than their social structure. The global features of these networks that influence disease outbreaks, and their underlying socio-ecological covariates, need further investigation. Animals that consistently interact with both humans and their conspecifics are important targets for disease control.
Collapse
Affiliation(s)
- Krishna N Balasubramaniam
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, CB1 1PT, UK. .,Department of Population Health and Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, 95616, USA.
| | | | - Stefano S K Kaburu
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Pascal R Marty
- Department of Population Health and Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, 95616, USA.,Zoo Zürich, Zürichbergstrasse 221, 8044, Zurich, Switzerland
| | - Brianne A Beisner
- Animal Resources Division, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA, 95616, USA.,California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Malgorzata E Arlet
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 61614, Poznan, Poland
| | - Edward Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, 95616, USA
| | - Brenda McCowan
- Department of Population Health and Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, 95616, USA.,California National Primate Research Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Kessler MJ, Rawlins RG. A 75-year pictorial history of the Cayo Santiago rhesus monkey colony. Am J Primatol 2016; 78:6-43. [PMID: 25764995 PMCID: PMC4567979 DOI: 10.1002/ajp.22381] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/25/2014] [Indexed: 01/19/2023]
Abstract
This article presents a pictorial history of the free-ranging colony of rhesus monkeys (Macaca mulatta) on Cayo Santiago, Puerto Rico, in commemoration of the 75th anniversary of its establishment by Clarence R. Carpenter in December 1938. It is based on a presentation made by the authors at the symposium, Cayo Santiago: 75 Years of Leadership in Translational Research, held at the 36th Annual Meeting of the American Society of Primatologists in San Juan, Puerto Rico, on 20 June 2013.
Collapse
Affiliation(s)
- Matthew J Kessler
- Office of Laboratory Animal Resources, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
- Caribbean Primate Research Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Richard G Rawlins
- Caribbean Primate Research Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
5
|
Georgiev AV, Thompson ME, Mandalaywala TM, Maestripieri D. Oxidative stress as an indicator of the costs of reproduction among free-ranging rhesus macaques. J Exp Biol 2015; 218:1981-5. [PMID: 25908058 PMCID: PMC4510843 DOI: 10.1242/jeb.121947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/20/2015] [Indexed: 11/20/2022]
Abstract
Sex differences in longevity may reflect sex-specific costs of intra-sexual competition and reproductive effort. As male rhesus macaques experience greater intrasexual competition and die younger, we predicted that males would experience greater oxidative stress than females and that oxidative stress would reflect sex-specific measures of reproductive effort. Males, relative to females, had higher concentrations of 8-OHdG and malondialdehyde, which are markers of DNA oxidative damage and lipid peroxidation, respectively. Older macaques had lower 8-OHdG levels than younger ones, suggesting that oxidative stress decreases in parallel with known age-related declines in reproductive investment. Among males, a recent period of social instability affected oxidative status: males who attacked others at higher rates had higher 8-OHdG levels. Multiparous lactating females with daughters had higher 8-OHdG levels than those with sons. No differences in antioxidant capacity were found. These results lend initial support for the use of oxidative stress markers to assess trade-offs between reproductive effort and somatic maintenance in primates.
Collapse
Affiliation(s)
- Alexander V Georgiev
- Institute for Mind and Biology, The University of Chicago, 940 E 57th St, Chicago, IL 60637, USA
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, 500 University Blvd NE, Albuquerque, NM 87131, USA
| | - Tara M Mandalaywala
- Institute for Mind and Biology, The University of Chicago, 940 E 57th St, Chicago, IL 60637, USA Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Dario Maestripieri
- Institute for Mind and Biology, The University of Chicago, 940 E 57th St, Chicago, IL 60637, USA
| |
Collapse
|