1
|
Dunay E, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in saliva from sanctuary chimpanzees (Pan troglodytes) in Republic of Congo and Uganda. PLoS One 2023; 18:e0288007. [PMID: 37384730 PMCID: PMC10310015 DOI: 10.1371/journal.pone.0288007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary / Chimpanzee Trust, Entebbe, Uganda
| | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe-Noire, Republic of Congo
| | - Megan F. Cole
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Dutuze MF, Byukusenge M, Shyaka A, Christofferson RC. A systematic review to describe patterns of animal and human viral research in Rwanda. Int Health 2023; 15:113-122. [PMID: 35650601 PMCID: PMC9384174 DOI: 10.1093/inthealth/ihac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
Rwanda is located in the Central East African region where several viral pathogens with global importance were originally described, including human immunodeficiency virus (HIV), Ebola, Zika, Rift Valley Fever (RVF), dengue and a long list of other neglected tropical viral pathogens. Due to many factors, this region has the potential to become a global hotspot for viral emergence. In Rwanda, viral diseases are underreported and the question is whether this is due to the absence of these viruses or a lack of investigation. Like many developing countries, capabilities in Rwanda need improvement despite research efforts throughout the years. This review describes the status of human and animal virus research in Rwanda and identifies relevant research and operational gaps. A comprehensive search was conducted in PubMed for virus research in Rwanda: 233 primary studies on viruses/viral diseases are indexed with connection to Rwanda. From 1958 to 2020, yearly publications generally increased and HIV/acquired immunodeficiency syndrome is the most studied virus. Compared with human viruses, few studies focus on animal and/or zoonotic viruses. The occurrence of the current severe acute respiratory syndrome coronavirus 2 pandemic shows strengthening warning and surveillance systems is critical to efficient preparedness and response. We recommend investment in human capacity, laboratory facilities and research to inform policy for viral surveillance in Rwanda.
Collapse
Affiliation(s)
- M Fausta Dutuze
- Rwanda Institute for Conservation Agriculture, Gashora, Bugesera, Rwanda
| | - Maurice Byukusenge
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | - Anselme Shyaka
- College of Agriculture and Animal Sciences and Veterinary Medicine, University of Rwanda, Kigali, Rwanda.,Center for One Health, University of Global Health Equity, 23WV + R53, Kigali, Rwanda
| | - Rebecca C Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Smiley Evans T, Lowenstine LJ, Ssebide B, Barry PA, Kinani JF, Nizeyimana F, Noheli JB, Okello R, Mudakikwa A, Cranfield MR, Mazet JAK, Johnson CK, Gilardi KV. Simian homologues of human herpesviruses and implications for novel viral introduction to free-living mountain gorillas. Am J Primatol 2023; 85:e23439. [PMID: 36263518 PMCID: PMC11017921 DOI: 10.1002/ajp.23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023]
Abstract
The endangered mountain gorilla (Gorilla beringei beringei) in Rwanda, Uganda, and the Democratic Republic of Congo is frequently in contact with humans through tourism, research activities, and illegal entry of people into protected gorilla habitat. Herpesviruses, which are ubiquitous in primates, have the potential to be shared in any setting where humans and gorillas share habitat. Based on serological findings and clinical observations of orofacial ulcerated lesions resembling herpetic lesions, an alpha-herpesvirus resembling human herpes simplex virus type 1 (HSV-1) has long been suspected to be present in human-habituated mountain gorillas in the wild. While the etiology of orofacial lesions in the wild has not been confirmed, HSV-1 has been suspected in captively-housed mountain gorillas and confirmed in a co-housed confiscated Grauer's gorilla (Gorilla beringei graueri). To better characterize herpesviruses infecting mountain gorillas and to determine the presence/absence of HSV-1 in the free-living population, we conducted a population-wide survey to test for the presence of orally shed herpesviruses. DNA was extracted from discarded chewed plants collected from 294 individuals from 26 groups, and samples were screened by polymerase chain reaction using pan-herpesvirus and HSV-1-specific assays. We found no evidence that human herpesviruses had infected free-ranging mountain gorillas. However, we found gorilla-specific homologs to human herpesviruses, including cytomegaloviruses (GbbCMV-1 and 2), a lymphocryptovirus (GbbLCV-1), and a new rhadinovirus (GbbRHV-1) with similar characteristics (i.e., timing of primary infection, shedding in multiple age groups, and potential modes of transmission) to their human counterparts, human cytomegalovirus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, respectively.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Linda J Lowenstine
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Benard Ssebide
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Peter A Barry
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Jean Felix Kinani
- One Health Approach for Conservation (OHAC), Gorilla Health, Kigali, Rwanda
| | - Fred Nizeyimana
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jean Bosco Noheli
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Ricky Okello
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | - Michael R Cranfield
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jonna A K Mazet
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Christine K Johnson
- Epicenter for Disease Dynamics, One Health Institute, University of California Davis, Davis, California, USA
| | - Kirsten V Gilardi
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Stoffolano JG. Synanthropic Flies-A Review Including How They Obtain Nutrients, along with Pathogens, Store Them in the Crop and Mechanisms of Transmission. INSECTS 2022; 13:776. [PMID: 36135477 PMCID: PMC9500719 DOI: 10.3390/insects13090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
An attempt has been made to provide a broad review of synanthropic flies and, not just a survey of their involvement in human pathogen transmission. It also emphasizes that the crop organ of calliphorids, sarcophagids, and muscids was an evolutionary development and has served and assisted non-blood feeding flies in obtaining food, as well as pathogens, prior to the origin of humans. Insects are believed to be present on earth about 400 million years ago (MYA). Thus, prior to the origin of primates, there was adequate time for these flies to become associated with various animals and to serve as important transmitters of pathogens associated with them prior to the advent of early hominids and modern humans. Through the process of fly crop regurgitation, numerous pathogens are still readily being made available to primates and other animals. Several studies using invertebrate-derived DNA = iDNA meta-techniques have been able to identify, not only the source the fly had fed on, but also if it had fed on their feces or the animal's body fluids. Since these flies are known to feed on both vertebrate fluids (i.e., from wounds, saliva, mucus, or tears), as well as those of other animals, and their feces, identification of the reservoir host, amplification hosts, and associated pathogens is essential in identifying emerging infectious diseases. New molecular tools, along with a focus on the crop, and what is in it, should provide a better understanding and development of whether these flies are involved in emerging infectious diseases. If so, epidemiological models in the future might be better at predicting future epidemics or pandemics.
Collapse
Affiliation(s)
- John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals (Basel) 2022; 12:1719. [PMID: 35804619 PMCID: PMC9265025 DOI: 10.3390/ani12131719] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decades, wildlife diseases and the health status of animal populations have gained increasing attention from the scientific community as part of a One Health framework. Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has become paramount in complying with modern ethical standards and regulations, and to collect high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in wildlife health and disease research and offer a comprehensive review on the different samples that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases, 58% on other health-related topics, and 3% on both. Stress and other physiological parameters were the most addressed research topics, followed by viruses, helminths, and bacterial infections. Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used sample. Our review of the sampling materials and collection methods highlights that, although the use of some types of samples for specific applications is now consolidated, others are perhaps still underutilised and new technologies may offer future opportunities for an even wider use of non-invasively collected samples.
Collapse
Affiliation(s)
- Anna-Katarina Schilling
- Previously Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, USA;
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
6
|
Muhangi D, Gardiner CH, Ojok L, Cranfield MR, Gilardi KVK, Mudakikwa AB, Lowenstine LJ. Pathological lesions of the digestive tract in free-ranging mountain gorillas (Gorilla beringei beringei). Am J Primatol 2021; 83:e23290. [PMID: 34096629 DOI: 10.1002/ajp.23290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 11/10/2022]
Abstract
The finding of parasites and bacterial pathogens in mountain gorilla feces and oral lesions in gorilla skeletal remains has not been linked to pathological evidence of morbidity or mortality. In the current study, we conducted a retrospective study of digestive tracts including oral cavity, salivary glands, esophagus, stomach, intestines (gastrointestinal tract [GI]), liver, and pancreas of 60 free-ranging mountain gorillas from Uganda, Rwanda, and the Democratic Republic of Congo that died between 1985 and 2007. We reviewed clinical histories and gross pathology reports and examined histological sections. On histology, enteritis (58.6%), gastritis (37.3%), and colitis (29.3%) were the commonest lesions in the tracts. Enteritis and colitis were generally mild, and judged likely to have been subclinical. Gastritis was often chronic and proliferative or ulcerative, and associated with nematodiasis. A gastro-duodenal malignancy (carcinoid) was present in one animal. A number of incidental lesions were identified throughout the tract and cestodes and nematodes were frequently observed grossly and/or histologically. Pigmentation of teeth and tongue were a common finding, but periodontitis and dental attrition were less common than reported from past studies of skeletal remains. Despite observing numerous GI lesions and parasites in this study of deceased free-living mountain gorillas, we confirmed mortality attributable to gastroenteritis in just 8% (5/60) cases, which is less than that described in captive gorillas. Other deaths attributed to digestive tract lesions included cleft palate in an infant, periodontal disease causing systemic infection in an older adult and gastric cancer. Of all the parasitic infections observed, only hepatic capillariasis and gastric nematodiasis were significantly associated with lesions (hepatitis and gastritis, respectively). Understanding GI lesions in this endangered species is key in the management of morbidity associated with GI ailments.
Collapse
Affiliation(s)
- Denis Muhangi
- Department of Wildlife and Aquatic Resources Management, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Chris H Gardiner
- Veterinary Pathology Service, Joint Pathology Center, Silver Spring, Maryland, USA
| | - Lonzy Ojok
- School of Biolaboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,Department of Pathology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Michael R Cranfield
- Gorilla Doctors, MGVP, Inc. and Karen C. Drayer Wildlife Health Center, University of California-Davis, Davis, California, USA
| | - Kirsten V K Gilardi
- Gorilla Doctors, MGVP, Inc. and Karen C. Drayer Wildlife Health Center, University of California-Davis, Davis, California, USA
| | | | - Linda J Lowenstine
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
7
|
NONINVASIVE SAMPLING FOR DETECTION OF ELEPHANT ENDOTHELIOTROPIC HERPESVIRUS AND GENOMIC DNA IN ASIAN ( ELEPHAS MAXIMUS) AND AFRICAN ( LOXODONTA AFRICANA) ELEPHANTS. J Zoo Wildl Med 2020; 51:433-437. [PMID: 32549575 DOI: 10.1638/2019-0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) hemorrhagic disease (EEHV-HD) threatens Asian elephant (Elephas maximus) population sustainability in North America. Clusters of cases have also been reported in African elephants (Loxodonta africana). Risk to range country elephant populations is unknown. Currently, EEHV detection depends upon sampling elephants trained for invasive blood and trunk wash collection. To evaluate noninvasive sample collection options, paired invasively collected (blood, trunk wash and oral swabs), and noninvasively collected (chewed plant and fecal) samples were compared over 6 wk from 9 Asian elephants and 12 African elephants. EEHV shedding was detected simultaneously in a paired trunk wash and fecal sample from one African elephant. Elephant γ herpesvirus-1 shedding was identified in six chewed plant samples collected from four Asian elephants. Noninvasively collected samples can be used to detect elephant herpesvirus shedding. Longer sampling periods are needed to evaluate the clinical usefulness of noninvasive sampling for EEHV detection.
Collapse
|
8
|
Cagliani R, Forni D, Mozzi A, Sironi M. Evolution and Genetic Diversity of Primate Cytomegaloviruses. Microorganisms 2020; 8:E624. [PMID: 32344906 PMCID: PMC7285053 DOI: 10.3390/microorganisms8050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs) infect many mammals, including humans and non-human primates (NHPs). Human cytomegalovirus (HCMV) is an important opportunistic pathogen among immunocompromised patients and represents the most common infectious cause of birth defects. HCMV possesses a large genome and very high genetic diversity. NHP-infecting CMVs share with HCMV a similar genomic organization and coding content, as well as the course of viral infection. Recent technological advances have allowed the sequencing of several HCMV strains from clinical samples and provided insight into the diversity of NHP-infecting CMVs. The emerging picture indicates that, with the exclusion of core genes (genes that have orthologs in all herpesviruses), CMV genomes are relatively plastic and diverse in terms of gene content, both at the inter- and at the intra-species level. Such variability most likely underlies the strict species-specificity of these viruses, as well as their ability to persist lifelong and with relatively little damage to their hosts. However, core genes, despite their strong conservation, also represented a target of adaptive evolution and subtle changes in their coding sequence contributed to CMV adaptation to different hosts. Indubitably, important knowledge gaps remain, the most relevant of which concerns the role of viral genetics in HCMV-associated human disease.
Collapse
Affiliation(s)
| | | | | | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
9
|
Simian Foamy Viruses in Central and South America: A New World of Discovery. Viruses 2019; 11:v11100967. [PMID: 31635161 PMCID: PMC6832937 DOI: 10.3390/v11100967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are the only exogenous retrovirus to date known to infect neotropical primates (NPs). In the last decade, an increasing number of strains have been completely or partially sequenced, and molecular evolution analyses have identified an ancient co-speciation with their hosts. In this review, the improvement of diagnostic techniques that allowed the determination of a more accurate prevalence of simian FVs (SFVs) in captive and free-living NPs is discussed. Determination of DNA viral load in American primates indicates that oral tissues are the viral replicative site and that buccal swab collection can be an alternative to diagnose SFV infection in NPs. Finally, the transmission potential of NP SFVs to primate workers in zoos and primate centers of the Americas is examined.
Collapse
|
10
|
Murthy S, O'Brien K, Agbor A, Angedakin S, Arandjelovic M, Ayimisin EA, Bailey E, Bergl RA, Brazzola G, Dieguez P, Eno-Nku M, Eshuis H, Fruth B, Gillespie TR, Ginath Y, Gray M, Herbinger I, Jones S, Kehoe L, Kühl H, Kujirakwinja D, Lee K, Madinda NF, Mitamba G, Muhindo E, Nishuli R, Ormsby LJ, Petrzelkova KJ, Plumptre AJ, Robbins MM, Sommer V, Ter Heegde M, Todd A, Tokunda R, Wessling E, Jarvis MA, Leendertz FH, Ehlers B, Calvignac-Spencer S. Cytomegalovirus distribution and evolution in hominines. Virus Evol 2019; 5:vez015. [PMID: 31384482 PMCID: PMC6671425 DOI: 10.1093/ve/vez015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses are thought to have evolved in very close association with their hosts. This is notably the case for cytomegaloviruses (CMVs; genus Cytomegalovirus) infecting primates, which exhibit a strong signal of co-divergence with their hosts. Some herpesviruses are however known to have crossed species barriers. Based on a limited sampling of CMV diversity in the hominine (African great ape and human) lineage, we hypothesized that chimpanzees and gorillas might have mutually exchanged CMVs in the past. Here, we performed a comprehensive molecular screening of all 9 African great ape species/subspecies, using 675 fecal samples collected from wild animals. We identified CMVs in eight species/subspecies, notably generating the first CMV sequences from bonobos. We used this extended dataset to test competing hypotheses with various degrees of co-divergence/number of host switches while simultaneously estimating the dates of these events in a Bayesian framework. The model best supported by the data involved the transmission of a gorilla CMV to the panine (chimpanzee and bonobo) lineage and the transmission of a panine CMV to the gorilla lineage prior to the divergence of chimpanzees and bonobos, more than 800,000 years ago. Panine CMVs then co-diverged with their hosts. These results add to a growing body of evidence suggesting that viruses with a double-stranded DNA genome (including other herpesviruses, adenoviruses, and papillomaviruses) often jumped between hominine lineages over the last few million years.
Collapse
Affiliation(s)
- Sripriya Murthy
- Division 12 "Measles, Mumps, Rubella and Viruses Affecting Immune-Compromised Patients" Robert Koch Institute, Berlin, Germany
| | - Kathryn O'Brien
- School of Biomedical and Healthcare Sciences, University of Plymouth, Devon, UK
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,African Parks Network, Lonehill, Republic of South Africa
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | | | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | | | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | | | - Henk Eshuis
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Barbara Fruth
- Faculty of Science, School of Natural Sciences and hPsychology, Liverpool John Moores University, Liverpool, UK.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology, and Evolutionary Biology, Emory University, Atlanta, USA
| | - Yisa Ginath
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Maryke Gray
- International Gorilla Conservation Programme, Kigali, Rwanda.,Batavia Coast Maritime Institute, Geraldton, WA, Australia
| | | | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,Royal Holloway, University of London, Egham, UK
| | - Laura Kehoe
- Wild Chimpanzee Foundation (WCF), Leipzig, Germany.,Department of Biology, University of Victoria, Victoria, Canada.,Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| | - Hjalmar Kühl
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | | | - Kevin Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,School of Human Evolution and Social Change, Arizona State University, Tempe, USA
| | - Nadège F Madinda
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | | | | | - Radar Nishuli
- Réserve de Faune à Okapis, Institut Congolais pour la Conservation de la Nature, Kinshasa, Democratic Republic of the Congo
| | - Lucy J Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic.,Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic.,Liberec Zoo, Liberec, Czech Republic
| | - Andrew J Plumptre
- Wildlife Conservation Society, NY, USA.,KBA Secretariat, c/o BirdLife International, Cambridge, UK.,Zoology Department, Conservation Science Group, University of Cambridge, Cambridge, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany
| | - Volker Sommer
- Gashaka Primate Project, Nigeria c/o Department of Anthropology, University College London, London, UK
| | - Martijn Ter Heegde
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Angelique Todd
- Dzanga Sangha Protected Areas, WWF Central African Republic, Bangui, Central African Republic
| | - Raymond Tokunda
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic
| | - Erin Wessling
- Max Planck Institute for Evolutionary Anthropology (MPI EVA), Leipzig, Germany.,Dzanga Sangha Protected Areas, WWF Central African Republic, Bangui, Central African Republic
| | - Michael A Jarvis
- School of Biomedical and Healthcare Sciences, University of Plymouth, Devon, UK
| | - Fabian H Leendertz
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 "Measles, Mumps, Rubella and Viruses Affecting Immune-Compromised Patients" Robert Koch Institute, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany.,Viral Evolution, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
11
|
Gilbertson MLJ, Fountain-Jones NM, Craft ME. Incorporating genomic methods into contact networks to reveal new insights into animal behavior and infectious disease dynamics. BEHAVIOUR 2019; 155:759-791. [PMID: 31680698 DOI: 10.1163/1568539x-00003471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilization of contact networks has provided opportunities for assessing the dynamic interplay between pathogen transmission and host behavior. Genomic techniques have, in their own right, provided new insight into complex questions in disease ecology, and the increasing accessibility of genomic approaches means more researchers may seek out these tools. The integration of network and genomic approaches provides opportunities to examine the interaction between behavior and pathogen transmission in new ways and with greater resolution. While a number of studies have begun to incorporate both contact network and genomic approaches, a great deal of work has yet to be done to better integrate these techniques. In this review, we give a broad overview of how network and genomic approaches have each been used to address questions regarding the interaction of social behavior and infectious disease, and then discuss current work and future horizons for the merging of these techniques.
Collapse
Affiliation(s)
- Marie L J Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
12
|
Affiliation(s)
- Stephanie L Canington
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Lowenstine LJ, McManamon R, Terio KA. Apes. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7173580 DOI: 10.1016/b978-0-12-805306-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Narat V, Alcayna-Stevens L, Rupp S, Giles-Vernick T. Rethinking Human-Nonhuman Primate Contact and Pathogenic Disease Spillover. ECOHEALTH 2017; 14:840-850. [PMID: 29150826 DOI: 10.1007/s10393-017-1283-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Zoonotic transmissions are a major global health risk, and human-animal contact is frequently raised as an important driver of transmission. A literature examining zooanthroponosis largely agrees that more human-animal contact leads to more risk. Yet the basis of this proposition, the term contact, has not been rigorously analyzed. To understand how contact is used to explain cross-species spillovers, we conducted a multi-disciplinary review of studies addressing human-nonhuman primate (NHP) engagements and pathogenic transmissions and employing the term contact. We find that although contact is frequently invoked, it is employed inconsistently and imprecisely across these studies, overlooking the range of pathogens and their transmission routes and directions. We also examine a related but more expansive approach focusing on human and NHP habitats and their spatial overlap, which can potentially facilitate pathogenic transmission. Contact and spatial overlap investigations cannot, however, explain the processes that bring together people, animals and pathogens. We therefore examine another approach that enhances our understanding of zoonotic spillovers: anthropological studies identifying such historical, social, environmental processes. Comparable to a One Health approach, our ongoing research in Cameroon draws contact, spatial overlap and anthropological-historical approaches into dialog to suggest where, when and how pathogenic transmissions between people and NHPs may occur. In conclusion, we call for zoonotic disease researchers to specify more precisely the human-animal contacts they investigate and to attend to how broader ecologies, societies and histories shape pathogen-human-animal interactions.
Collapse
Affiliation(s)
- Victor Narat
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France
| | - Lys Alcayna-Stevens
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France
| | - Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, Bronx, NY, USA
| | - Tamara Giles-Vernick
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France.
- Canadian Institute for Advanced Studies, Toronto, Canada.
| |
Collapse
|
15
|
Muniz CP, Zheng H, Jia H, Cavalcante LTF, Augusto AM, Fedullo LP, Pissinatti A, Soares MA, Switzer WM, Santos AF. A non-invasive specimen collection method and a novel simian foamy virus (SFV) DNA quantification assay in New World primates reveal aspects of tissue tropism and improved SFV detection. PLoS One 2017; 12:e0184251. [PMID: 28863180 PMCID: PMC5581185 DOI: 10.1371/journal.pone.0184251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022] Open
Abstract
Simian foamy viruses (SFVs) co-evolved with a wide range of Old World and New World primates (OWPs and NWPs, respectively) and occasionally transmit to humans. Previous studies of OWPs showed that the predominant site of SFV replication is the oral mucosa. However, very little is known about SFV viral loads (VLs) in the oral mucosa or blood of NWPs. NWPs have smaller body sizes, limiting collection of sufficient whole blood volumes to molecularly detect and quantify SFV. Our study evaluated the use of noninvasively collected buccal swabs to detect NWP SFV compared with detection in blood using a new NWP SFV quantitative PCR (qPCR) assay. Buccal and blood samples were collected from 107 captive NWPs in Brazil comprising eleven distinct genera at the Primate Center of Rio de Janeiro (n = 58) and at Fundação Jardim Zoológico da Cidade do Rio Janeiro (n = 49). NWP SFV western blot (WB) testing was performed on a subset of animals for comparison with PCR results. The qPCR assay was validated using distinct SFV polymerase sequences from seven NWP genera (Callithrix, Sapajus, Saimiri, Ateles, Alouatta, Cacajao and Pithecia). Assay sensitivity was 20 copies/106 cells, detectable in 90% of replicates. SFV DNA VLs were higher in buccal swabs (5 log copies/106 cells) compared to peripheral blood mononuclear cells (PBMCs) (3 log copies/106 cells). The qPCR assay was also more sensitive than nested PCR for detection of NWP SFV infection and identified an additional 27 SFV-infected monkeys of which 18 (90%) were WB-positive and three that were WB-negative. We show the utility of using both blood and buccal swabs and our new qPCR assay for detection and quantification of diverse NWP SFV, which will assist a better understanding of the epidemiology of SFV in NWPs and any potential zoonotic infection risk for humans exposed to NWPs.
Collapse
Affiliation(s)
- Cláudia P. Muniz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hongwei Jia
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Anderson M. Augusto
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz P. Fedullo
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual de Ambiente, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - William M. Switzer
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
16
|
Smiley Evans T, Lowenstine LJ, Gilardi KV, Barry PA, Ssebide BJ, Kinani JF, Nizeyimana F, Noheri JB, Cranfield MR, Mudakikwa A, Goldstein T, Mazet JAK, Johnson CK. Mountain gorilla lymphocryptovirus has Epstein-Barr virus-like epidemiology and pathology in infants. Sci Rep 2017; 7:5352. [PMID: 28706209 PMCID: PMC5509654 DOI: 10.1038/s41598-017-04877-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
Epstein-Barr virus (EBV) infects greater than 90% of humans, is recognized as a significant comorbidity with HIV/AIDS, and is an etiologic agent for some human cancers. The critically endangered mountain gorilla population was suspected of infection with an EBV-like virus based on serology and infant histopathology similar to pulmonary reactive lymphoid hyperplasia (PRLH), a condition associated with EBV in HIV-infected children. To further examine the presence of EBV or an EBV-like virus in mountain gorillas, we conducted the first population-wide survey of oral samples for an EBV-like virus in a nonhuman great ape. We discovered that mountain gorillas are widely infected (n = 143/332) with a specific strain of lymphocryptovirus 1 (GbbLCV-1). Fifty-two percent of infant mountain gorillas were orally shedding GbbLCV-1, suggesting primary infection during this stage of life, similar to what is seen in humans in less developed countries. We then identified GbbLCV-1 in post-mortem infant lung tissues demonstrating histopathological lesions consistent with PRLH, suggesting primary infection with GbbLCV-1 is associated with PRLH in infants. Together, our findings demonstrate that mountain gorilla's infection with GbbLCV-1 could provide valuable information for human disease in a natural great ape setting and have potential conservation implications in this critically endangered species.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - Linda J Lowenstine
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kirsten V Gilardi
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Peter A Barry
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Benard J Ssebide
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Kampala, Uganda
| | - Jean Felix Kinani
- One Health Approach for Conservation, Gorilla Health, Kigali, Rwanda
| | - Fred Nizeyimana
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Kampala, Uganda
| | - Jean Bosco Noheri
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Musanze, Rwanda
| | - Michael R Cranfield
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | - Tracey Goldstein
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jonna A K Mazet
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Christine Kreuder Johnson
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|