1
|
Hickmott AJ, Cervantes L, Arroyo JP, Brasky K, Bene M, Salmon AB, Phillips KA, Ross CN. Age-related changes in hematological biomarkers in common marmosets. Am J Primatol 2024; 86:e23589. [PMID: 38143428 PMCID: PMC10959687 DOI: 10.1002/ajp.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
Abstract
Researchers and veterinarians often use hematology and clinical chemistry to evaluate animal health. These biomarkers are relatively easy to obtain, and understanding how they change across healthy aging is critical to clinical care and diagnostics for these animals. We aimed to evaluate how clinical biomarkers from a chemistry profile and complete blood count (CBC) change with age in common marmosets (Callithrix jacchus). We assessed blood samples collected during routine physical exams at the Southwest National Primate Research Center and the University of Texas Health San Antonio marmoset colonies from November 2020-November 2021. We found that chemistry and CBC profiles varied based on facility, sex, and age. Significant changes in albumin, phosphorus/creatinine ratio, albumin/globulin ratio, amylase, creatinine, lymphocyte percent, hematocrit, granulocytes percent, lymphocytes, hemoglobin, red cell distribution width, and platelet distribution width were all reported with advancing age. Aged individuals also demonstrated evidence for changes in liver, kidney, and immune system function compared with younger individuals. Our results suggest there may be regular changes associated with healthy aging in marmosets that are outside of the range typically considered as normal values for healthy young individuals, indicating the potential need for redefined healthy ranges for clinical biomarkers in aged animals. Identifying animals that exhibit values outside of this defined healthy aging reference will allow more accurate diagnostics and treatments for aging colonies.
Collapse
Affiliation(s)
- Alexana J. Hickmott
- Southwest National Primate Research Center, San Antonio, Texas
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Lidia Cervantes
- Southwest National Primate Research Center, San Antonio, Texas
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Juan Pablo Arroyo
- Southwest National Primate Research Center, San Antonio, Texas
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Kathy Brasky
- Southwest National Primate Research Center, San Antonio, Texas
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael Bene
- Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| | - Kimberley A. Phillips
- Southwest National Primate Research Center, San Antonio, Texas
- Texas Biomedical Research Institute, San Antonio, Texas
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Corinna N. Ross
- Southwest National Primate Research Center, San Antonio, Texas
- Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
2
|
Vanderlip CR, Asch PA, Reynolds JH, Glavis-Bloom C. Domain-Specific Cognitive Impairment Reflects Prefrontal Dysfunction in Aged Common Marmosets. eNeuro 2023; 10:ENEURO.0187-23.2023. [PMID: 37553239 PMCID: PMC10444537 DOI: 10.1523/eneuro.0187-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Age-related cognitive impairment is not expressed uniformly across cognitive domains. Cognitive functions that rely on brain areas that undergo substantial neuroanatomical changes with age often show age-related impairment, whereas those that rely on brain areas with minimal age-related change typically do not. The common marmoset has grown in popularity as a model for neuroscience research, but robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains, is lacking. This presents a major limitation for the development and evaluation of the marmoset as a model of cognitive aging and leaves open the question of whether they exhibit age-related cognitive impairment that is restricted to some cognitive domains, as in humans. In this study, we characterized stimulus-reward association learning and cognitive flexibility in young adults to geriatric marmosets using a Simple Discrimination task and a Serial Reversal task, respectively. We found that aged marmosets show transient impairment in learning-to-learn but have conserved ability to form stimulus-reward associations. Furthermore, aged marmosets have impaired cognitive flexibility driven by susceptibility to proactive interference. As these impairments are in domains critically dependent on the prefrontal cortex, our findings support prefrontal cortical dysfunction as a prominent feature of neurocognitive aging. This work positions the marmoset as a key model for understanding the neural underpinnings of cognitive aging.
Collapse
Affiliation(s)
- Casey R Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Payton A Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
3
|
Glavis-Bloom C, Vanderlip CR, Reynolds JH. Age-Related Learning and Working Memory Impairment in the Common Marmoset. J Neurosci 2022; 42:8870-8880. [PMID: 36257687 PMCID: PMC9698676 DOI: 10.1523/jneurosci.0985-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Aging is the greatest risk factor for the development of neurodegenerative diseases, yet we still do not understand how the aging process leads to pathologic vulnerability. The research community has relied heavily on mouse models, but the considerable anatomic, physiological, and cognitive differences between mice and humans limit their translational relevance. Ultimately, these barriers necessitate the development of novel aging models. As a nonhuman primate (NHP), the common marmoset (Callithrix jacchus) shares many features in common with humans and yet has a significantly shorter lifespan (10 years) than other primates, making it ideally suited to longitudinal studies of aging. Our objective was to evaluate the marmoset as a model of age-related cognitive impairment. To do this, we used the Delayed Recognition Span Task (DRST) to characterize age-related changes in working memory capacity in a cohort of sixteen marmosets, of both sexes, varying in age from young adult to geriatric. These monkeys performed thousands of trials over periods of time ranging up to 50% of their adult lifespan. To our knowledge, this represents the most thorough cognitive profiling of any marmoset aging study conducted to date. By analyzing individual learning curves, we found that aged animals exhibited delayed onset of learning, slowed learning rate after onset, and decreased asymptotic working memory performance. These findings are not accounted for by age-related impairments in motor speed and motivation. This work firmly establishes the marmoset as a model of age-related cognitive impairment.SIGNIFICANCE STATEMENT Understanding the normal aging process is fundamental to identifying therapeutics for neurodegenerative diseases for which aging is the biggest risk factor. Historically, the aging field has relied on animal models that differ markedly from humans, constraining translatability. Here, we firmly establish a short-lived nonhuman primate (NHP), the common marmoset, as a key model of age-related cognitive impairment. We demonstrate, through continuous testing over a substantial portion of the adult marmoset lifespan, that aging is associated with both impaired learning and working memory capacity, unaccounted for by age-related changes in motor speed and motivation. Characterizing individual cognitive aging trajectories reveals inherent heterogeneity, which could lead to earlier identification of the onset of impairment, and extended timelines during which therapeutics are effective.
Collapse
Affiliation(s)
- Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Casey R Vanderlip
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
4
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Muñoz Y, Cuevas-Pacheco F, Quesseveur G, Murai KK. Light microscopic and heterogeneity analysis of astrocytes in the common marmoset brain. J Neurosci Res 2021; 99:3121-3147. [PMID: 34716617 PMCID: PMC9541330 DOI: 10.1002/jnr.24967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes are abundant cells of the central nervous system (CNS) and are involved in processes including synapse formation/function, ion homeostasis, neurotransmitter uptake, and neurovascular coupling. Recent evidence indicates that astrocytes show diverse molecular, structural, and physiological properties within the CNS. This heterogeneity is reflected in differences in astrocyte structure, gene expression, functional properties, and responsiveness to injury/pathological conditions. Deeper investigation of astrocytic heterogeneity is needed to understand how astrocytes are configured to enable diverse roles in the CNS. While much has been learned about astrocytic heterogeneity in rodents, much less is known about astrocytic heterogeneity in the primate brain where astrocytes have greater size and complexity. The common marmoset (Callithrix jacchus) is a promising non‐human primate model because of similarities between marmosets and humans with respect to genetics, brain anatomy, and cognition/behavior. Here, we investigated the molecular and structural heterogeneity of marmoset astrocytes using an array of astrocytic markers, multi‐label confocal microscopy, and quantitative analysis. We used male and female marmosets and found that marmoset astrocytes show differences in expression of astrocytic markers in cortex, hippocampus, and cerebellum. These differences were accompanied by intra‐regional variation in expression of markers for glutamate/GABA transporters, and potassium and water channels. Differences in astrocyte structure were also found, along with complex interactions with blood vessels, microglia, and neurons. This study contributes to our knowledge of the cellular and molecular features of marmoset astrocytes and is useful for understanding the complex properties of astrocytes in the primate CNS.
Collapse
Affiliation(s)
- Yorka Muñoz
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Francisco Cuevas-Pacheco
- Department of Mathematics, Universidad Técnica Federico Santa Maria, Valparaiso, Chile.,Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa Maria, Valparaiso, Chile
| | - Gaël Quesseveur
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Dorigatti AO, Hussong SA, Hernandez SF, Sills AM, Salmon AB, Galvan V. Primary neuron and astrocyte cultures from postnatal Callithrix jacchus: a non-human primate in vitro model for research in neuroscience, nervous system aging, and neurological diseases of aging. GeroScience 2021; 43:115-124. [PMID: 33063253 PMCID: PMC8050148 DOI: 10.1007/s11357-020-00284-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to generate in vitro cultures of neuronal cells has been instrumental in advancing our understanding of the nervous system. Rodent models have been the principal source of brain cells used in primary cultures for over a century, providing insights that are widely applicable to human diseases. However, therapeutic agents that showed benefit in rodent models, particularly those pertaining to aging and age-associated dementias, have frequently failed in clinical trials. This discrepancy established a potential "translational gap" between human and rodent studies that may at least partially be explained by the phylogenetic distance between rodent and primate species. Several non-human primate (NHP) species, including the common marmoset (Callithrix jacchus), have been used extensively in neuroscience research, but in contrast to rodent models, practical approaches to the generation of primary cell culture systems amenable to molecular studies that can inform in vivo studies are lacking. Marmosets are a powerful model in biomedical research and particularly in studies of aging and age-associated diseases because they exhibit an aging phenotype similar to humans. Here, we report a practical method to culture primary marmoset neurons and astrocytes from brains of medically euthanized postnatal day 0 (P0) marmoset newborns that yield highly pure primary neuron and astrocyte cultures. Primary marmoset neuron and astrocyte cultures can be generated reliably to provide a powerful NHP in vitro model in neuroscience research that may enable mechanistic studies of nervous system aging and of age-related neurodegenerative disorders. Because neuron and astrocyte cultures can be used in combination with in vivo approaches in marmosets, primary marmoset neuron and astrocyte cultures may help bridge the current translational gap between basic and clinical studies in nervous system aging and age-associated neurological diseases.
Collapse
Affiliation(s)
- Angela O Dorigatti
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Stephen F Hernandez
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aubrey M Sills
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Mietsch M, Paqué K, Drummer C, Stahl-Hennig C, Roshani B. The aging common marmoset's immune system: From junior to senior. Am J Primatol 2020; 82:e23128. [PMID: 32246726 DOI: 10.1002/ajp.23128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
The social, health, and economic challenges of a steadily increasing aging population demand the use of appropriate translational animal models to address questions like healthy aging, vaccination strategies, or potential interventions during the aging process. Due to their genetic proximity to humans, especially nonhuman primates (NHPs) with a relatively short generation period compared to humans, qualify as excellent animal models for these purposes. The use of common marmosets (Callithrix jacchus) in gerontology research steadily increased over the last decades, yet important information about their aging parameters are still missing. We therefore aimed to characterize their aging immune system by comprehensive flow cytometric phenotyping of blood immune cells from juvenile, adult, aging, and geriatric animals. Aged and geriatric animals displayed clear signs of immunosenescence. A decline in CD4/CD8 ratio, increased expression of HLA-DR and PD-1, higher frequencies of CD95+ memory cells, alterations in cytokine secretion, and a decline in the proliferative capacity proved T cell senescence in aging marmosets. Also, the B cell compartment was affected by age-related changes: while overall B cell numbers remained stable with advancing age, expression of the activation marker CD80 increased and immunoglobulin M expression decreased. Interestingly, marmoset B cell memory subset distribution rather mirrored the human situation than that of other NHP. CD21+ CD27- naïve B cell frequencies decreased while those of CD21- CD27- tissue memory B cells increased with age. Furthermore, frequencies and numbers of NK cells as part of the innate immune system declined with advancing age. Thus, the observed immunological changes in common marmosets over their life span revealed several similarities to age-related changes in humans and encourages further studies to strengthen the common marmoset as a potential aging model.
Collapse
Affiliation(s)
- Matthias Mietsch
- Unit of Infection Models, German Primate Center, Goettingen, Germany.,Department of Laboratory Animal Science, German Primate Center, Goettingen, Germany
| | - Kristina Paqué
- Unit of Infection Models, German Primate Center, Goettingen, Germany
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Goettingen, Germany
| | | | - Berit Roshani
- Unit of Infection Models, German Primate Center, Goettingen, Germany
| |
Collapse
|