1
|
Salazar L, Burger R, Forst J, Barquera R, Nesbitt J, Calero J, Washburn E, Verano J, Zhu K, Sop K, Kassadjikova K, Ibarra Asencios B, Davidson R, Bradley B, Krause J, Fehren-Schmitz L. Insights into the genetic histories and lifeways of Machu Picchu's occupants. SCIENCE ADVANCES 2023; 9:eadg3377. [PMID: 37494435 PMCID: PMC11318671 DOI: 10.1126/sciadv.adg3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Machu Picchu originally functioned as a palace within the estate of the Inca emperor Pachacuti between ~1420 and 1532 CE. Before this study, little was known about the people who lived and died there, where they came from or how they were related to the inhabitants of the Inca capital of Cusco. We generated genome-wide data for 34 individuals buried at Machu Picchu who are believed to have been retainers or attendants assigned to serve the Inca royal family, as well as 34 individuals from Cusco for comparative purposes. When the ancient DNA results are contextualized using historical and archaeological data, we conclude that the retainer population at Machu Picchu was highly heterogeneous with individuals exhibiting genetic ancestries associated with groups from throughout the Inca Empire and Amazonia. The results suggest a diverse retainer community at Machu Picchu in which people of different genetic backgrounds lived, reproduced, and were interred together.
Collapse
Affiliation(s)
- Lucy Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Richard Burger
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
| | - Janine Forst
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Jason Nesbitt
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Jorge Calero
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Eden Washburn
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Verano
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Kimberly Zhu
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Korey Sop
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kalina Kassadjikova
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bebel Ibarra Asencios
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
- Department of Archaeology, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz 02002, Peru
| | - Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Brenda Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
2
|
Nores R, Tavella MP, Fabra M, Demarchi DA. Ancient DNA analysis reveals temporal and geographical patterns of mitochondrial diversity in pre-Hispanic populations from Central Argentina. Am J Hum Biol 2022; 34:e23733. [PMID: 35238427 DOI: 10.1002/ajhb.23733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES The study of the ancient populations of Central Argentina has a crucial importance for our understanding of the evolutionary processes in the Southern Cone of South America, given its geographic position as a crossroads. Therefore, the aim of this study is to evaluate the temporal and geographical patterns of genetic variation among the groups that inhabited the current territory of Córdoba Province during the Middle and Late Holocene. METHODS We analyzed the mitochondrial haplogroups of 74 individuals and 46 Hypervariable Region I (HVR-I) sequences, both novel and previously reported, from archeological populations of the eastern Plains and western Sierras regions of the province of Córdoba. The HVR-I sequences were also compared with other ancient groups from Argentina and with present-day populations from Central Argentina by pairwise distance analysis and identification of shared haplotypes. RESULTS Significant differences in haplogroup and haplotype distributions between the two geographical regions were found. Sierras showed genetic affinities with certain ancient populations of Northwestern Argentina, while Plains resembled its neighbors from Santiago del Estero Province and the Pampas region. We did not observe genetic differences among the pre 1200 and post 1200 yBP temporal subsets of individuals defined by the emergence of horticulture, considering both geographical samples jointly. CONCLUSIONS The observed patterns of geographical heterogeneity could indicate the existence of biologically distinct populations inhabiting the mountainous region and the eastern plains of Córdoba Province in pre-Hispanic times. Maternal lineages analyses support a scenario of local evolution with great temporal depth in Central Argentina, with continuity until the present.
Collapse
Affiliation(s)
- Rodrigo Nores
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| | - María Pía Tavella
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| | - Mariana Fabra
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| | - Darío A Demarchi
- Universidad Nacional de Córdoba, Facultad de Filosofía y Humanidades, Departamento de Antropología, Córdoba, Argentina.,CONICET, Instituto de Antropología de Córdoba (IDACOR), Córdoba, Argentina
| |
Collapse
|
3
|
Roca-Rada X, Politis G, Messineo PG, Scheifler N, Scabuzzo C, González M, Harkins KM, Reich D, Souilmi Y, Teixeira JC, Llamas B, Fehren-Schmitz L. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. iScience 2021; 24:102553. [PMID: 34142055 PMCID: PMC8188552 DOI: 10.1016/j.isci.2021.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo G. Messineo
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Nahuel Scheifler
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Clara Scabuzzo
- CICYTTP-CONICET, Provincia de Entre Ríos-UADER-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Dr. Materi y España (3105), Diamante, Entre Ríos Argentina
| | - Mariela González
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Kelly M. Harkins
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Genetic structure of Mataco-Guaycurú speakers from Argentina and the extent of their genetic admixture with neighbouring urban populations. Sci Rep 2019; 9:17559. [PMID: 31772268 PMCID: PMC6879578 DOI: 10.1038/s41598-019-54146-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Argentina hosts more than 30 Native American groups, who are widely distributed throughout the country. Mataco-Guaycurú speakers settled in the ecoregion of Gran Chaco and represent 26.7% of the extant aboriginal population of the country. To further investigate the genetic attributes of these speakers, we focused our attention on four aboriginal groups, namely, Wichí, Toba, Pilagá and Mocoví, belonging to the Mataco-Guaycurú linguistic group. Our main goal was to evaluate the interrelationships among the groups and the relationships of these groups with admixed urban populations and to assess correspondences between molecular analysis and historical information. A total of 890 samples (282 Native Americans and 608 inhabitants of admixed urban areas) were analysed. Genetic information was gathered from 15 autosomal STRs, 17 Y-STRs, entire mtDNA control region sequences, 24 AIM-SNPs and 46 AIM-DIPs. Native American signatures were detected in 97.9% of mtDNA lineages, 89.1% of Y-haplotypes and 90.3% to 96.9% of autosomal markers. Wichí exhibited the genetic composition with the largest Native American contribution among the groups and a weak signal of gene flow. This work provides extended genetic information of potential interest in the fields of molecular anthropology and forensic genetics.
Collapse
|
5
|
Russo MG, Dejean CB, Avena SA, Seldes V, Ramundo P. Mitochondrial lineage A2ah found in a pre-Hispanic individual from the Andean region. Am J Hum Biol 2018; 30:e23134. [PMID: 29744957 DOI: 10.1002/ajhb.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The aim of this study was to contribute to the knowledge of pre-Hispanic Andean mitochondrial diversity by analyzing an individual from the archaeological site Pukara de La Cueva (North-western Argentina). The date of the discovery context (540 ± 60 BP) corresponds to the Regional Developments II period. METHODS Two separate DNA extractions were performed from dentin powder of one tooth. HVR I was amplified by PCR from each extract in three overlapping fragments and the haplotype was determined by consensus among all obtained sequences. The procedures were carried out under strict protocols developed for working with ancient DNA. RESULTS The individual belonged to the A2ah lineage due to the presence of the 16097C and 16098G transitions, which constitute its distinctive motif. This lineage is very rare in Native American populations and was described in four individuals from current groups inhabiting the Bolivian Llanos, two from South-eastern Brazil, and one from the Gran Chaco region. In addition, two other mutations (16260T and 16286T) were shared with one of the individuals from the Bolivian Llanos region. CONCLUSIONS Considering that the origin of this lineage was postulated for the South American lowlands, the present pre-Hispanic discovery in the Andean area could be taken as a new evidence of gene flow between these regions. Also, it allows the questioning of the geographical origin of this mitochondrial lineage.
Collapse
Affiliation(s)
- M G Russo
- Universidad Maimónides, CONICET, CEBBAD, Equipo de Antropología Biológica, Buenos Aires, C1405BCK, Argentina
| | - C B Dejean
- UBA, Sección de Antropología Biológica, FFyL, Universidad Maimónides, CEBBAD, Equipo de Antropología Biológica, Buenos Aires C1406CQJ, Argentina
| | - S A Avena
- Universidad Maimónides, CONICET, CEBBAD, Equipo de Antropología Biológica, Buenos Aires, C1405BCK, Argentina.,UBA, Sección de Antropología Biológica, FFyL, Universidad Maimónides, CEBBAD, Equipo de Antropología Biológica, Buenos Aires C1406CQJ, Argentina
| | - V Seldes
- UBA, CONICET, Instituto Interdisciplinario de Tilcara, Tilcara, Jujuy, Y4624AFI, Argentina
| | - P Ramundo
- UCA, CONICET, Departamento de Historia, Facultad de Ciencias Sociales, Buenos Aires C1107AFD, Argentina
| |
Collapse
|
6
|
Gómez-Carballa A, Pardo-Seco J, Brandini S, Achilli A, Perego UA, Coble MD, Diegoli TM, Álvarez-Iglesias V, Martinón-Torres F, Olivieri A, Torroni A, Salas A. The peopling of South America and the trans-Andean gene flow of the first settlers. Genome Res 2018; 28:767-779. [PMID: 29735605 PMCID: PMC5991523 DOI: 10.1101/gr.234674.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/27/2018] [Indexed: 11/25/2022]
Abstract
Genetic and archaeological data indicate that the initial Paleoindian settlers of South America followed two entry routes separated by the Andes and the Amazon rainforest. The interactions between these paths and their impact on the peopling of South America remain unclear. Analysis of genetic variation in the Peruvian Andes and regions located south of the Amazon River might provide clues on this issue. We analyzed mitochondrial DNA variation at different Andean locations and >360,000 autosomal SNPs from 28 Native American ethnic groups to evaluate different trans-Andean demographic scenarios. Our data reveal that the Peruvian Altiplano was an important enclave for early Paleoindian expansions and point to a genetic continuity in the Andes until recent times, which was only marginally affected by gene flow from the Amazonian lowlands. Genomic variation shows a good fit with the archaeological evidence, indicating that the genetic interactions between the descendants of the settlers that followed the Pacific and Atlantic routes were extremely limited.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Ugo A Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Michael D Coble
- Applied Genetics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Toni M Diegoli
- Office of the Chief Scientist, Defense Forensic Science Center, Ft. Gillem, Georgia 30297, USA.,Analytical Services, Incorporated, Arlington, Virginia 22201, USA
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| |
Collapse
|
7
|
Rothhammer F, Fehren-Schmitz L, Puddu G, Capriles J. Mitochondrial DNA haplogroup variation of contemporary mixed South Americans reveals prehistoric displacements linked to archaeologically-derived culture history. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.23029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/12/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Lars Fehren-Schmitz
- Department of Anthropology; University of California Santa Cruz; Santa Cruz California
| | - Giannina Puddu
- Instituto de Alta Investigación; Universidad de Tarapacá; Arica Chile
| | - José Capriles
- Department of Anthropology; Pennsylvania State University; Pennsylvania
| |
Collapse
|
8
|
Benn Torres J, Vilar MG, Torres GA, Gaieski JB, Bharath Hernandez R, Browne ZE, Stevenson M, Walters W, Schurr TG. Genetic Diversity in the Lesser Antilles and Its Implications for the Settlement of the Caribbean Basin. PLoS One 2015; 10:e0139192. [PMID: 26447794 PMCID: PMC4598113 DOI: 10.1371/journal.pone.0139192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/10/2015] [Indexed: 11/18/2022] Open
Abstract
Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people's contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region's first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.
Collapse
Affiliation(s)
- Jada Benn Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Miguel G. Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Missions Programs, National Geographic Society, Washington, D.C., United States of America
| | - Gabriel A. Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jill B. Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Zoila E. Browne
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
| | - Marlon Stevenson
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
| | - Wendell Walters
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
- Sandy Bay Village, St. Vincent and the Grenadines
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
9
|
Cabana GS, Lewis CM, Tito RY, Covey RA, Cáceres AM, Cruz AFDL, Durand D, Housman G, Hulsey BI, Iannacone GC, López PW, Martínez R, Medina Á, Dávila OO, Pinto KPO, Santillán SIP, Domínguez PR, Rubel M, Smith HF, Smith SE, Massa VRDC, Lizárraga B, Stone AC. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history. Hum Biol 2015; 86:147-65. [PMID: 25836744 DOI: 10.13110/humanbiology.86.3.0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Collapse
Affiliation(s)
- Graciela S Cabana
- 1 Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sans M, Mones P, Figueiro G, Barreto I, Motti JM, Coble MD, Bravi CM, Hidalgo PC. The mitochondrial DNA history of a former native American village in northern Uruguay. Am J Hum Biol 2014; 27:407-16. [DOI: 10.1002/ajhb.22667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mónica Sans
- Departamento de Antropología Biológica; Facultad de Humanidades y Ciencias de la Educación, Universidad de la República; Montevideo Uruguay
| | - Pablo Mones
- Departamento de Antropología Biológica; Facultad de Humanidades y Ciencias de la Educación, Universidad de la República; Montevideo Uruguay
| | - Gonzalo Figueiro
- Departamento de Antropología Biológica; Facultad de Humanidades y Ciencias de la Educación, Universidad de la República; Montevideo Uruguay
| | - Isabel Barreto
- Departamento de Antropología Biológica; Facultad de Humanidades y Ciencias de la Educación, Universidad de la República; Montevideo Uruguay
| | - Josefina M.B. Motti
- Laboratorio de Ecología Evolutiva Humana; Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires; Quequén Argentina
- Facultad de Ciencias Naturales y Museo; Universidad Nacional de La Plata; La Plata Argentina
| | - Michael D. Coble
- National Institute of Standards and Technology; Gaithersburg Maryland
| | - Claudio M. Bravi
- Facultad de Ciencias Naturales y Museo; Universidad Nacional de La Plata; La Plata Argentina
- Instituto Multidisciplinario de Biología Celular (IMBICE); CCT La Plata CONICET-CICPBA; La Plata Argentina
| | - Pedro C. Hidalgo
- Departamento de Antropología Biológica; Facultad de Humanidades y Ciencias de la Educación, Universidad de la República; Montevideo Uruguay
- Centro Universitario de Tacuarembó; Universidad de la República; Tacuarembó Uruguay
| |
Collapse
|
11
|
Mendisco F, Keyser C, Seldes V, Rivolta C, Mercolli P, Cruz P, Nielsen AE, Crubezy E, Ludes B. Genetic diversity of a late prehispanic group of the Quebrada de Humahuaca, northwestern Argentina. Ann Hum Genet 2014; 78:367-80. [PMID: 24962720 DOI: 10.1111/ahg.12075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/13/2014] [Indexed: 11/29/2022]
Abstract
This palaeogenetic study focused on the analysis of a late prehispanic Argentinean group from the Humahuaca valley, with the main aim of reconstructing its (micro)evolutionary history. The Humahuaca valley, a natural passageway from the eastern plains to the highlands, was the living environment of Andean societies whose cultural but especially biological diversity is still poorly understood. We analyzed the DNA extracted from 39 individuals who populated this upper valley during the Regional Development period (RDP) (between the 11th and 15th centuries CE), to determine their maternal and paternal genetic ancestry. Some mitochondrial and Y-chromosomal haplotypes specific to the Andean region are consistent with an origin in the highlands of Central Andes. On the other hand, a significant genetic affinity with contemporary admixed communities of the Chaco area was detected. Expectedly, recent demographic events, such as the expansion of the Inca Empire or the European colonization, have changed the original mitochondrial gene pool of the ancient Humahuaca Valley community. Finally, we identified a particular geographical organization of the prehispanic populations of Northwestern Argentina. Our results suggest that the communities of the region were divided between two different spheres of interaction, which is consistent with assumptions made by means of craniometric traits.
Collapse
Affiliation(s)
- Fanny Mendisco
- Institut de Médecine Légale, AMIS, CNRS UMR 5288, Université de Strasbourg, F-67085, Strasbourg, France; Université Paul Sabatier, AMIS, CNRS UMR 5288, F-31073, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iorio A, De Angelis F, Garzoli A, Battistini A, De Stefano GF. HLA-DQA1 and HLA-DQB1 genes in Tsachilas Indians from Ecuador: new insights in population analysis by Human Leukocyte Antigens. Int J Immunogenet 2014; 41:222-30. [DOI: 10.1111/iji.12116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/11/2014] [Accepted: 02/23/2014] [Indexed: 11/29/2022]
Affiliation(s)
- A. Iorio
- Department of Biology; University of Rome Tor Vergata; Rome Italy
- Clinical Pathophysiology Center; AFaR, “San Giovanni Calibita” Fatebenefratelli Hospital; Rome Italy
| | - F. De Angelis
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - A. Garzoli
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - A. Battistini
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - G. F. De Stefano
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| |
Collapse
|
13
|
The Andean adaptive toolkit to counteract high altitude maladaptation: genome-wide and phenotypic analysis of the Collas. PLoS One 2014; 9:e93314. [PMID: 24686296 PMCID: PMC3970967 DOI: 10.1371/journal.pone.0093314] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/03/2014] [Indexed: 12/03/2022] Open
Abstract
During their migrations out of Africa, humans successfully colonised and adapted to a wide range of habitats, including extreme high altitude environments, where reduced atmospheric oxygen (hypoxia) imposes a number of physiological challenges. This study evaluates genetic and phenotypic variation in the Colla population living in the Argentinean Andes above 3500 m and compares it to the nearby lowland Wichí group in an attempt to pinpoint evolutionary mechanisms underlying adaptation to high altitude hypoxia. We genotyped 730,525 SNPs in 25 individuals from each population. In genome-wide scans of extended haplotype homozygosity Collas showed the strongest signal around VEGFB, which plays an essential role in the ischemic heart, and ELTD1, another gene crucial for heart development and prevention of cardiac hypertrophy. Moreover, pathway enrichment analysis showed an overrepresentation of pathways associated with cardiac morphology. Taken together, these findings suggest that Colla highlanders may have evolved a toolkit of adaptative mechanisms resulting in cardiac reinforcement, most likely to counteract the adverse effects of the permanently increased haematocrit and associated shear forces that characterise the Andean response to hypoxia. Regulation of cerebral vascular flow also appears to be part of the adaptive response in Collas. These findings are not only relevant to understand the evolution of hypoxia protection in high altitude populations but may also suggest new avenues for medical research into conditions where hypoxia constitutes a detrimental factor.
Collapse
|
14
|
Batai K, Williams SR. Mitochondrial variation among the Aymara and the signatures of population expansion in the central Andes. Am J Hum Biol 2014; 26:321-30. [PMID: 24449040 DOI: 10.1002/ajhb.22507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. METHODS Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. RESULTS The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. CONCLUSION The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored.
Collapse
Affiliation(s)
- Ken Batai
- Cancer Education and Career Development Program, Institute for Health Research and Policy, University of Illinois at Chicago (M/C 275), Chicago, Illinois, 60608; Institute of Human Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60607
| | | |
Collapse
|
15
|
Pauro M, García A, Nores R, Demarchi DA. Analysis of Uniparental Lineages in Two Villages of Santiago del Estero, Argentina, Seat of Pueblos de Indios in Colonial Times. Hum Biol 2013; 85:699-720. [DOI: 10.3378/027.085.0504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/05/2022]
|
16
|
Schurr TG, Dulik MC, Cafaro TA, Suarez MF, Urrets-Zavalia JA, Serra HM. Genetic background and climatic droplet keratopathy incidence in a Mapuche population from Argentina. PLoS One 2013; 8:e74593. [PMID: 24040292 PMCID: PMC3764023 DOI: 10.1371/journal.pone.0074593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.
Collapse
Affiliation(s)
- Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew C. Dulik
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thamara A. Cafaro
- CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Faculty of Chemistry, National University of Córdoba, Córdoba, Argentina
| | - María F. Suarez
- CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Faculty of Chemistry, National University of Córdoba, Córdoba, Argentina
| | | | - Horacio M. Serra
- CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Faculty of Chemistry, National University of Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
17
|
Sevini F, Yao DY, Lomartire L, Barbieri A, Vianello D, Ferri G, Moretti E, Dasso MC, Garagnani P, Pettener D, Franceschi C, Luiselli D, Franceschi ZA. Analysis of population substructure in two sympatric populations of Gran Chaco, Argentina. PLoS One 2013; 8:e64054. [PMID: 23717528 PMCID: PMC3661677 DOI: 10.1371/journal.pone.0064054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/10/2013] [Indexed: 01/26/2023] Open
Abstract
Sub-population structure and intricate kinship dynamics might introduce biases in molecular anthropology studies and could invalidate the efforts to understand diseases in highly admixed populations. In order to clarify the previously observed distribution pattern and morbidity of Chagas disease in Gran Chaco, Argentina, we studied two populations (Wichí and Criollos) recruited following an innovative bio-cultural model considering their complex cultural interactions. By reconstructing the genetic background and the structure of these two culturally different populations, the pattern of admixture, the correspondence between genealogical and genetic relationships, this integrated perspective had the power to validate data and to link the gap usually relying on a singular discipline. Although Wichí and Criollos share the same area, these sympatric populations are differentiated from the genetic point of view as revealed by Non Recombinant Y Chromosome genotyping resulting in significantly high Fst values and in a lower genetic variability in the Wichí population. Surprisingly, the Amerindian and the European components emerged with comparable amounts (20%) among Criollos and Wichí respectively. The detailed analysis of mitochondrial DNA showed that the two populations have as much as 87% of private haplotypes. Moreover, from the maternal perspective, despite a common Amerindian origin, an Andean and an Amazonian component emerged in Criollos and in Wichí respectively. Our approach allowed us to highlight that quite frequently there is a discrepancy between self-reported and genetic kinship. Indeed, if self-reported identity and kinship are usually utilized in population genetics as a reliable proxy for genetic identity and parental relationship, in our model populations appear to be the result not only and not simply of the genetic background but also of complex cultural determinants. This integrated approach paves the way to a rigorous reconstruction of demographic and cultural history as well as of bioancestry and propensity to diseases of Wichí and Criollos.
Collapse
Affiliation(s)
- Federica Sevini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
- Centro Interdipartimentale “Luigi Galvani” (CIG), Università di Bologna, Bologna, Italy
| | - Daniele Yang Yao
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA) – Sezione di Biologia, University of Bologna, Bologna, Italy
| | - Laura Lomartire
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
- Centro Interdipartimentale “Luigi Galvani” (CIG), Università di Bologna, Bologna, Italy
| | - Annalaura Barbieri
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
- Centro Interdipartimentale “Luigi Galvani” (CIG), Università di Bologna, Bologna, Italy
| | - Dario Vianello
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
- Centro Interdipartimentale “Luigi Galvani” (CIG), Università di Bologna, Bologna, Italy
| | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale – U.O. Struttura Complessa di Medicina Legale, Azienda Ospedaliero – Universitaria di Modena, Modena, Italy
| | - Edgardo Moretti
- Coordinación Nacional de Control de Vectores, Córdoba, Argentina
| | - Maria Cristina Dasso
- Centro de Investigaciones en Antropologia Filosofica y Cultural (CIAFIC), Buenos Aires, Argentina
- Centro Universitario Interdisciplinario sobre la Enfermedad de Chagas (CUNIDEC), BuenosAires, Argentina
| | - Paolo Garagnani
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
- Centro Interdipartimentale “Luigi Galvani” (CIG), Università di Bologna, Bologna, Italy
| | - Davide Pettener
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA) – Sezione di Biologia, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, Bologna, Italy
- Centro Interdipartimentale “Luigi Galvani” (CIG), Università di Bologna, Bologna, Italy
| | - Donata Luiselli
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA) – Sezione di Biologia, University of Bologna, Bologna, Italy
- * E-mail:
| | | |
Collapse
|
18
|
Taboada-Echalar P, Álvarez-Iglesias V, Heinz T, Vidal-Bralo L, Gómez-Carballa A, Catelli L, Pardo-Seco J, Pastoriza A, Carracedo Á, Torres-Balanza A, Rocabado O, Vullo C, Salas A. The genetic legacy of the pre-colonial period in contemporary Bolivians. PLoS One 2013; 8:e58980. [PMID: 23527064 PMCID: PMC3604014 DOI: 10.1371/journal.pone.0058980] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/12/2013] [Indexed: 01/27/2023] Open
Abstract
Only a few genetic studies have been carried out to date in Bolivia. However, some of the most important (pre)historical enclaves of South America were located in these territories. Thus, the (sub)-Andean region of Bolivia was part of the Inca Empire, the largest state in Pre-Columbian America. We have genotyped the first hypervariable region (HVS-I) of 720 samples representing the main regions in Bolivia, and these data have been analyzed in the context of other pan-American samples (>19,000 HVS-I mtDNAs). Entire mtDNA genome sequencing was also undertaken on selected Native American lineages. Additionally, a panel of 46 Ancestry Informative Markers (AIMs) was genotyped in a sub-set of samples. The vast majority of the Bolivian mtDNAs (98.4%) were found to belong to the main Native American haplogroups (A: 14.3%, B: 52.6%, C: 21.9%, D: 9.6%), with little indication of sub-Saharan and/or European lineages; however, marked patterns of haplogroup frequencies between main regions exist (e.g. haplogroup B: Andean [71%], Sub-Andean [61%], Llanos [32%]). Analysis of entire genomes unraveled the phylogenetic characteristics of three Native haplogroups: the pan-American haplogroup B2b (originated ∼21.4 thousand years ago [kya]), A2ah (∼5.2 kya), and B2o (∼2.6 kya). The data suggest that B2b could have arisen in North California (an origin even in the north most region of the American continent cannot be disregarded), moved southward following the Pacific coastline and crossed Meso-America. Then, it most likely spread into South America following two routes: the Pacific path towards Peru and Bolivia (arriving here at about ∼15.2 kya), and the Amazonian route of Venezuela and Brazil southwards. In contrast to the mtDNA, Ancestry Informative Markers (AIMs) reveal a higher (although geographically variable) European introgression in Bolivians (25%). Bolivia shows a decreasing autosomal molecular diversity pattern along the longitudinal axis, from the Altiplano to the lowlands. Both autosomes and mtDNA revealed a low impact (1-2%) of a sub-Saharan component in Bolivians.
Collapse
Affiliation(s)
- Patricia Taboada-Echalar
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Tanja Heinz
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Laura Vidal-Bralo
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Laura Catelli
- Equipo Argentino de Antropología Forense, Córdoba, Argentina
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Pastoriza
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Antonio Torres-Balanza
- Instituto de Investigaciones Forenses, Fiscalía General del Estado Plurinacional de Bolivia, La Paz, Bolivia
| | - Omar Rocabado
- Instituto de Investigaciones Forenses, Fiscalía General del Estado Plurinacional de Bolivia, La Paz, Bolivia
| | - Carlos Vullo
- Equipo Argentino de Antropología Forense, Córdoba, Argentina
- Laboratorio de Inmunogenética y Diagnóstico Molecular, Córdoba, Argentina
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| |
Collapse
|
19
|
Usme-Romero S, Alonso M, Hernandez-Cuervo H, Yunis EJ, Yunis JJ. Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia. Genet Mol Biol 2013; 36:149-57. [PMID: 23885195 PMCID: PMC3715279 DOI: 10.1590/s1415-47572013005000011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 12/03/2012] [Indexed: 11/25/2022] Open
Abstract
We analyzed the frequency of four mitochondrial DNA haplogroups in 424 individuals from 21 Colombian Amerindian tribes. Our results showed a high degree of mtDNA diversity and genetic heterogeneity. Frequencies of mtDNA haplogroups A and C were high in the majority of populations studied. The distribution of these four mtDNA haplogroups from Amerindian populations was different in the northern region of the country compared to those in the south. Haplogroup A was more frequently found among Amerindian tribes in northern Colombia, while haplogroup D was more frequent among tribes in the south. Haplogroups A, C and D have clinal tendencies in Colombia and South America in general. Populations belonging to the Chibcha linguistic family of Colombia and other countries nearby showed a strong genetic differentiation from the other populations tested, thus corroborating previous findings. Genetically, the Ingano, Paez and Guambiano populations are more closely related to other groups of south eastern Colombia, as also inferred from other genetic markers and from archeological data. Strong evidence for a correspondence between geographical and linguistic classification was found, and this is consistent with evidence that gene flow and the exchange of customs and knowledge and language elements between groups is facilitated by close proximity.
Collapse
Affiliation(s)
- Solangy Usme-Romero
- Grupo de Identificación Humana e Inmunogenética, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | | | | | | | | |
Collapse
|
20
|
Monroe C, Kemp BM, Smith DG. Exploring prehistory in the North American southwest with mitochondrial DNA diversity exhibited by Yumans and Athapaskans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:618-31. [DOI: 10.1002/ajpa.22237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
|
21
|
Arrival of Paleo-Indians to the southern cone of South America: new clues from mitogenomes. PLoS One 2012; 7:e51311. [PMID: 23240014 PMCID: PMC3519775 DOI: 10.1371/journal.pone.0051311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (mtDNA) variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j) whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l) and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11–13,000 years) appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking groups.
Collapse
|
22
|
García A, Pauro M, Nores R, Bravi CM, Demarchi DA. Phylogeography of mitochondrial haplogroup D1: An early spread of subhaplogroup D1j from Central Argentina. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:583-90. [DOI: 10.1002/ajpa.22174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/13/2012] [Indexed: 12/16/2022]
|
23
|
de Saint Pierre M, Bravi CM, Motti JMB, Fuku N, Tanaka M, Llop E, Bonatto SL, Moraga M. An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups. PLoS One 2012; 7:e43486. [PMID: 22970129 PMCID: PMC3438176 DOI: 10.1371/journal.pone.0043486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ~15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.
Collapse
Affiliation(s)
- Michelle de Saint Pierre
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bisso-Machado R, Bortolini MC, Salzano FM. Uniparental genetic markers in South Amerindians. Genet Mol Biol 2012; 35:365-87. [PMID: 22888284 PMCID: PMC3389523 DOI: 10.1590/s1415-47572012005000027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/12/2012] [Indexed: 12/25/2022] Open
Abstract
A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.
Collapse
Affiliation(s)
- Rafael Bisso-Machado
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
25
|
Rapid coastal spread of First Americans: novel insights from South America's Southern Cone mitochondrial genomes. Genome Res 2012; 22:811-20. [PMID: 22333566 PMCID: PMC3337427 DOI: 10.1101/gr.131722.111] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is now widely agreed that the Native American founders originated from a Beringian source population ∼15–18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.
Collapse
|
26
|
Cardoso S, Alfonso-Sánchez MA, Valverde L, Sánchez D, Zarrabeitia MT, Odriozola A, Martínez-Jarreta B, de Pancorbo MM. Genetic uniqueness of the Waorani tribe from the Ecuadorian Amazon. Heredity (Edinb) 2012; 108:609-15. [PMID: 22234246 DOI: 10.1038/hdy.2011.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
South America and especially the Amazon basin is known to be home to some of the most isolated human groups in the world. Here, we report on a study of mitochondrial DNA (mtDNA) in the Waorani from Ecuador, probably the most warlike human population known to date. Seeking to look in more depth at the characterization of the genetic diversity of this Native American tribe, molecular markers from the X and Y chromosomes were also analyzed. Only three different mtDNA haplotypes were detected among the Waorani sample. One of them, assigned to Native American haplogroup A2, accounted for more than 94% of the total diversity of the maternal gene pool. Our results for sex chromosome molecular markers failed to find close genetic kinship between individuals, further emphasizing the low genetic diversity of the mtDNA. Bearing in mind the results obtained for both the analysis of the mtDNA control region and complete mitochondrial genomes, we suggest the existence of a 'Waorani-specific' mtDNA lineage. According to current knowledge on the phylogeny of haplogroup A2, we propose that this lineage could be designated as subhaplogroup A2s. Its wide predominance among the Waorani people might have been conditioned by severe genetic drift episodes resulting from founding events, long-term isolation and a traditionally small population size most likely associated with the striking ethnography of this Amazonian community. In all, the Waorani constitute a fine example of how genetic imprint may mirror ethnopsychology and sociocultural features in human populations.
Collapse
Affiliation(s)
- S Cardoso
- BIOMICs Research Group, Centro de Investigación y Estudios Avanzados Lucio Lascaray, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Catelli ML, Alvarez-Iglesias V, Gómez-Carballa A, Mosquera-Miguel A, Romanini C, Borosky A, Amigo J, Carracedo A, Vullo C, Salas A. The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome. BMC Genet 2011; 12:77. [PMID: 21878127 PMCID: PMC3176197 DOI: 10.1186/1471-2156-12-77] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/30/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. RESULTS Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. CONCLUSIONS Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence.
Collapse
Affiliation(s)
- María Laura Catelli
- Equipo Argentino de Antropología Forense, Independencia 644 - 5C, Edif.EME1, Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Callegari-Jacques SM, Tarazona-Santos EM, Gilman RH, Herrera P, Cabrera L, dos Santos SE, Morés L, Hutz MH, Salzano FM. Autosome STRs in native South America-Testing models of association with geography and language. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:371-81. [DOI: 10.1002/ajpa.21505] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/10/2011] [Indexed: 11/06/2022]
|
29
|
Gayà-Vidal M, Moral P, Saenz-Ruales N, Gerbault P, Tonasso L, Villena M, Vasquez R, Bravi CM, Dugoujon JM. mtDNA and Y-chromosome diversity in Aymaras and Quechuas from Bolivia: Different stories and special genetic traits of the Andean Altiplano populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:215-30. [DOI: 10.1002/ajpa.21487] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/09/2010] [Indexed: 11/11/2022]
|
30
|
Gonçalves VF, Parra FC, Gonçalves-Dornelas H, Rodrigues-Carvalho C, Silva HP, Pena SD. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations. INVESTIGATIVE GENETICS 2010; 1:13. [PMID: 21122100 PMCID: PMC3014906 DOI: 10.1186/2041-2223-1-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022]
Abstract
Background Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. Results We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. Conclusions These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct analysis of genetic material is not possible.
Collapse
Affiliation(s)
- Vanessa F Gonçalves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Brazil
| | - Flavia C Parra
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Brazil
| | - Higgor Gonçalves-Dornelas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Brazil
| | | | - Hilton P Silva
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sergio Dj Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-910 Belo Horizonte, Brazil
| |
Collapse
|
31
|
Fehren-Schmitz L, Warnberg O, Reindel M, Seidenberg V, Tomasto-Cagigao E, Isla-Cuadrado J, Hummel S, Herrmann B. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru. Ann Hum Genet 2010; 75:266-83. [PMID: 21091452 DOI: 10.1111/j.1469-1809.2010.00620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southern Peru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlands and the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650-1000 AD) to the Late Intermediate Period (LIP: 1000-1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the research area were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms were successfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Y-chromosomal single nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set of ancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history.
Collapse
Affiliation(s)
- Lars Fehren-Schmitz
- Historic Anthropology and Human Ecology, Johann-Friedrich-Blumenbach Department of Zoology and Anthropology, University Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Barbieri C, Heggarty P, Castrì L, Luiselli D, Pettener D. Mitochondrial DNA variability in the Titicaca basin: Matches and mismatches with linguistics and ethnohistory. Am J Hum Biol 2010; 23:89-99. [DOI: 10.1002/ajhb.21107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Bailliet G, Ramallo V, Muzzio M, García A, Santos MR, Alfaro EL, Dipierri JE, Salceda S, Carnese FR, Bravi CM, Bianchi NO, Demarchi DA. Brief communication: Restricted geographic distribution for Y-Q* paragroup in South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 140:578-82. [PMID: 19591214 DOI: 10.1002/ajpa.21133] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We analyzed 21 paragroup Q* Y chromosomes from South American aboriginal and urban populations. Our aims were to evaluate the phylogenetic status, geographic distribution, and genetic diversity in these groups of chromosomes and compare the degree of genetic variation in relation to Q1a3a haplotypes. All Q* chromosomes from our series and five samples from North American Q* presented the derivate state for M346, that is present upstream to M3, and determined Q1a3* paragroup. We found a restrictive geographic distribution and low frequency of Q1a3* in South America. We assumed that this low frequency could be reflecting extreme drift effects. However, several estimates of gene diversity do not support the existence of a severe bottleneck. The mean haplotype diversity expected was similar to that for South American Q1a3* and Q1a3a (0.478 and 0.501, respectively). The analysis of previous reports from other research groups and this study shows the highest frequencies of Q* for the West Corner and the Grand Chaco regions of South America. At present, there is no information on whether the phylogenetic status of Q* paragoup described in previous reports is similar to that of Q1a3* paragroup though our results support this possibility.
Collapse
Affiliation(s)
- Graciela Bailliet
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), CCT- CONICET-La Plata 1900, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sala A, Alechine E, Bobillo C, Merini LJ, Ayala CG, Ferreira JCA, Corach D. Mitochondrial DNA control region sequence analysis of Mataco–Guaicurú speaking tribes from Argentina. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2009. [DOI: 10.1016/j.fsigss.2009.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Carnese FR, Mendisco F, Keyser C, Dejean CB, Dugoujon JM, Bravi CM, Ludes B, Crubézy E. Paleogenetical study of pre-Columbian samples from Pampa Grande (Salta, Argentina). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 141:452-62. [DOI: 10.1002/ajpa.21165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Population stratification in Argentina strongly influences likelihood ratio estimates in paternity testing as revealed by a simulation-based approach. Int J Legal Med 2009; 124:63-9. [PMID: 19543905 DOI: 10.1007/s00414-009-0359-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
A simulation-based analysis was carried out to investigate the potential effects of population substructure in paternity testing in Argentina. The study was performed by evaluating paternity indexes (PI) calculated from different simulated pedigree scenarios and using 15 autosomal short tandem repeats (STRs) from eight Argentinean databases. The results show important statistically significant differences between PI values depending on the dataset employed. These differences are more dramatic when considering Native American versus urban populations. This study also indicates that the use of Fst to correct for the effect of population stratification on PI might be inappropriate because it cannot account for the particularities of single paternity cases.
Collapse
|
37
|
Crossetti SG, Demarchi DA, Raimann PE, Salzano FM, Hutz MH, Callegari-Jacques SM. Autosomal STR genetic variability in the Gran Chaco native population: Homogeneity or heterogeneity? Am J Hum Biol 2009; 20:704-11. [PMID: 18561147 DOI: 10.1002/ajhb.20798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To investigate the population structure and variation in Gran Chaco's Amerindian population, data from 15 short tandem repeats (STRs) were determined in 128 individuals from three tribes of the Argentinean part of this region. STR genotypic differences, structure analysis, and multidimensional plot for the D(A) distances indicated that (1) Wichí from the Chaco Province are genetically distinct from the other populations, but still preserve a fair amount of genetic similarity with Wichí from Formosa; (2) the Toba populations studied are genetically indistinguishable; and (3) Toba subjects from Formosa are similar to the Pilagá of the same linguistic group (Guaykurú) and to the Wichí from Formosa who speak a Mataco language. This similarity could be due to their past mobility and the custom of absorbing females taken as prisoners from groups raided by them. Language, geography, and genetics seem to play similar roles in determining the population structure of these groups. Analyses of molecular variance and G(ST)' values calculated considering three South American regions indicated that the Argentinean Chaco is genetically homogeneous; addition of the Ayoreo Amerindians of the Paraguayan Chaco, however, led to diversity values that are not much different from those of South Amerindians in general. The present data contribute to efforts that try to understand in what way groups with diverse sociocultural settings (tribal, agricultural, and industrial) differ in genetic structure.
Collapse
Affiliation(s)
- Shaiane Goulart Crossetti
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Hunley K, Dunn M, Lindström E, Reesink G, Terrill A, Healy ME, Koki G, Friedlaender FR, Friedlaender JS. Genetic and linguistic coevolution in Northern Island Melanesia. PLoS Genet 2008; 4:e1000239. [PMID: 18974871 PMCID: PMC2570610 DOI: 10.1371/journal.pgen.1000239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 09/25/2008] [Indexed: 11/25/2022] Open
Abstract
Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may emphasize more ancient demographic events, including population splits associated with the early colonization of major world regions.
Collapse
Affiliation(s)
- Keith Hunley
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gender bias in the multiethnic genetic composition of central Argentina. J Hum Genet 2008; 53:662-674. [DOI: 10.1007/s10038-008-0297-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/15/2008] [Indexed: 10/24/2022]
|
40
|
Fabra M, Laguens AG, Demarchi DA. Human colonization of the central territory of Argentina: Design matrix models and craniometric evidence. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 133:1060-6. [PMID: 17530699 DOI: 10.1002/ajpa.20634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study we test several hypotheses about the peopling of the central territory of Argentina, archaeologically known as Sierras Centrales, by testing the association between four alternative models of the peopling of the area and cranial morphological variation through distance and matrix correlation analyses. Our results show that the ancient inhabitants of Sierras Centrales demonstrated close morphological similarities with the Patagonian and Tierra del Fuego populations. Moreover, the correlation and partial correlation analyses suggest that the peopling of the Sierras Centrales most likely took place as a migratory wave proceeding from the present area of Northeastern Argentina, and continued southward to Patagonia and Tierra del Fuego.
Collapse
Affiliation(s)
- Mariana Fabra
- Museo de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | |
Collapse
|
41
|
Bailliet G, Santos MR, Alfaro EL, Dipierri JE, Demarchi DA, Carnese FR, Bianchi NO. Allele and genotype frequencies of metabolic genes in Native Americans from Argentina and Paraguay. Mutat Res 2006; 627:171-7. [PMID: 17194620 DOI: 10.1016/j.mrgentox.2006.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 12/11/2022]
Abstract
Interethnic differences in the allele frequencies of CYP2D6, NAT2, GSTM1 and GSTT1 deletions have been documented for Caucasians, Asians, and Africans population. On the other hand, data on Amerindians are scanty and limited to a few populations from southern areas of South America. In this report we analyze the frequencies of 11 allele variants of CYP2D6 and 4 allele variants of NAT2 genes, and the frequency of GSTM1 and GSTT1 homozygous deleted genotypes in a sample of 90 donors representing 8 Native American populations from Argentina and Paraguay, identified as Amerindians on the basis of their geographic location, genealogical data, mitochondrial- and Y-chromosome DNA markers. For CYP2D6, 88.6% of the total allele frequency corresponded to *1, *2, *4 and *10 variants. Average frequencies for NAT2 *4, *5, *6 and *7 alleles were 51.2%, 25%, 6.1%, and 20.1%, respectively. GSTM1 deletion ranged from 20% to 66%, while GSTT1 deletion was present in four populations in less than 50%. We assume that CYP2D6 *2, *4, *10, *14; NAT2 *5, *7 alleles and GSTM1 and GSTT1 *0/*0 genotypes are founder variants brought to America by the first Asian settlers.
Collapse
Affiliation(s)
- G Bailliet
- Instituto Multidisciplinario de Biología Celular (IMBICE), 526 e/10 y 11, CC403, 1900 La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|