1
|
Kunze J, Harvati K, Hotz G, Karakostis FA. Humanlike manual activities in Australopithecus. J Hum Evol 2024; 196:103591. [PMID: 39366305 DOI: 10.1016/j.jhevol.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 10/06/2024]
Abstract
The evolution of the human hand is a topic of great interest in paleoanthropology. As the hand can be involved in a vast array of activities, knowledge regarding how it was used by early hominins can yield crucial information on the factors driving biocultural evolution. Previous research on early hominin hands focused on the overall bone shape. However, while such approaches can inform on mechanical abilities and the evolved efficiency of manipulation, they cannot be used as a definite proxy for individual habitual activity. Accordingly, it is crucial to examine bone structures more responsive to lifetime biomechanical loading, such as muscle attachment sites or internal bone architecture. In this study, we investigate the manual entheseal patterns of Australopithecus afarensis, Australopithecus africanus, and Australopithecus sediba through the application of the validated entheses-based reconstruction of activity method. Using a comparative sample of later Homo and three great ape genera, we analyze the muscle attachment site proportions on the thumb, fifth ray, and third intermediate phalanx to gain insight into the habitual hand use of Australopithecus. We use a novel statistical procedure to account for the effects of interspecies variation in overall size and ray proportions. Our results highlight the importance of certain muscles of the first and fifth digits for humanlike hand use. In humans, these muscles are required for variable in-hand manipulation and are activated during stone-tool production. The entheses of A. sediba suggest muscle activation patterns consistent with a similar suite of habitual manual activities as in later Homo. In contrast, A. africanus and A. afarensis display a mosaic entheseal pattern that combines indications of both humanlike and apelike manipulation. Overall, these findings provide new evidence that some australopith species were already habitually engaging in humanlike manipulation, even if their manual dexterity was likely not as high as in later Homo.
Collapse
Affiliation(s)
- Jana Kunze
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany.
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany
| | - Gerhard Hotz
- Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland
| | - Fotios Alexandros Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland.
| |
Collapse
|
2
|
Barroso-Medina C, Lin SC, Tocheri MW, Sreenivasa M. Design and development of a sensorized hammerstone for accurate force measurement in stone knapping experiments. PLoS One 2024; 19:e0310520. [PMID: 39288151 PMCID: PMC11407656 DOI: 10.1371/journal.pone.0310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
The process of making stone tools, specifically knapping, is a hominin behaviour that typically involves using the upper limb to manipulate a stone hammer and apply concentrated percussive force to another stone, causing fracture and detachment of stone chips with sharp edges. To understand the emergence and subsequent evolution of tool-related behaviours in hominins, the connections between the mechanics of stone knapping, including the delivery of percussive forces, and biomechanics and hominin anatomy, especially in the upper limb, are required. However, there is an absence of direct experimental means to measure the actual forces generated and applied to produce flakes during knapping. Our study introduces a novel solution to this problem in the form of an ergonomic hand-held synthetic hammerstone that can record the percussive forces that occur during knapping experiments. This hammerstone is composed of a deformable pneumatic 3D-printed chamber encased within a 3D-printed grip and a stone-milled striker. During knapping, hammer impact causes the pneumatic chamber to deform, which leads to a change in pressure that is measured by a sensor. Comparisons of recorded pressure data against corresponding force values measured using a force plate show that the synthetic hammer quantifies percussion forces with relatively high accuracy. The performance of this hammerstone was further validated by conducting anvil-supported knapping experiments on glass that resulted in a root mean square error of under 6%, while recording forces up to 730 N with successful flake detachments. These validation results indicate that accuracy was not sensitive to variations up to 15° from the vertical in the hammer striking angle. Our approach allows future studies to directly examine the role of percussive force during the stone knapping process and its relationship with both anatomical and technological changes during human evolution.
Collapse
Affiliation(s)
- Cecilia Barroso-Medina
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Sam C Lin
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
| | - Matthew W Tocheri
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Manish Sreenivasa
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Bird EE, Kivell TL, Dunmore CJ, Tocheri MW, Skinner MM. Trabecular bone structure of the proximal capitate in extant hominids and fossil hominins with implications for midcarpal joint loading and the dart-thrower's motion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24824. [PMID: 37493308 DOI: 10.1002/ajpa.24824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM). MATERIALS AND METHODS We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). RESULTS Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side. CONCLUSION The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for Human Evolution Research, Natural History Museum, London, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Australian Research Council, Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Li L, Reeves JS, Lin SC, Braun DR, McPherron SP. Did Early Pleistocene hominins control hammer strike angles when making stone tools? J Hum Evol 2023; 183:103427. [PMID: 37734121 DOI: 10.1016/j.jhevol.2023.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
In the study of Early Pleistocene stone artifacts, researchers have made considerable progress in reconstructing the technical decisions of hominins by examining various aspects of lithic technology, such as reduction sequences, hammer selection, platform preparation, core management, and raw material selection. By comparison, our understanding of the ways in which Early Pleistocene hominins controlled the delivery and application of percussive force during flaking remains limited. In this study, we focus on a key aspect of force delivery in stone knapping, namely the hammerstone striking angle (or the angle of blow), which has been shown to play a significant role in determining the knapping outcome. Using a dataset consists of 12 Early Pleistocene flake assemblages dated from 1.95 Ma to 1.4 Ma, we examined temporal patterns of the hammer striking angle by quantifying the bulb angle, a property of the flake's Hertzian cone that reflects the hammer striking angle used in flake production. We further included a Middle Paleolithic flake assemblage as a point of comparison from a later time period. In the Early Pleistocene dataset, we observed an increased association between the bulb angle and other flake variables related to flake size over time, a pattern similarly found in the Middle Paleolithic assemblage. These findings suggest that, towards the Oldowan-Acheulean transition, hominins began to systematically adjust the hammer striking angle in accordance with platform variables to detach flakes of different sizes more effectively, implying the development of a more comprehensive understanding of the role of the angle of blow in flake formation by ∼1.5 Ma.
Collapse
Affiliation(s)
- Li Li
- The Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour (ICArEHB), University of Algarve, Faro 8005-139, Portugal; Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany.
| | - Jonathan S Reeves
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany; Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA
| | - Sam C Lin
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David R Braun
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany; Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA
| | - Shannon P McPherron
- The Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour (ICArEHB), University of Algarve, Faro 8005-139, Portugal; Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
5
|
Yan Y, Sobinov AR, Bensmaia SJ. Prehension kinematics in humans and macaques. J Neurophysiol 2022; 127:1669-1678. [PMID: 35642848 DOI: 10.1152/jn.00522.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Non-human primates, especially rhesus macaques, have been a dominant model to study sensorimotor control of the upper limbs. Indeed, human and macaques have similar hands and homologous neural circuits to mediate manual behavior. However, few studies have systematically and quantitatively compared the manual behaviors of the two species. Such comparison is critical for assessing the validity of using the macaque sensorimotor system as a model of its human counterpart. In this study, we systematically compared the prehensile behaviors of humans and rhesus macaques using an identical experimental setup. We found human and macaque prehension kinematics to be generally similar with a few subtle differences. While the structure of the pre-shaping hand postures is similar in humans and macaques, human postures are more object-specific and human joints are less intercorrelated. Conversely, monkeys demonstrate more stereotypical pre-shaping behaviors that are common across all objects and more variability in their postures across repeated presentations of the same object. Despite these subtle differences in manual behavior between humans and monkeys, our results bolster the use of the macaque model to understand the neural mechanisms of manual dexterity in humans.
Collapse
Affiliation(s)
- Yuke Yan
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Coe D, Barham L, Gardiner J, Crompton R. A biomechanical investigation of the efficiency hypothesis of hafted tool technology. J R Soc Interface 2022; 19:20210660. [PMID: 35291833 PMCID: PMC8923818 DOI: 10.1098/rsif.2021.0660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition from hand-held to hafted tool technology marked a significant shift in conceptualizing the construction and function of tools. Among other benefits, hafting is thought to have given users a significant biomechanical and physiological advantage in undertaking basic subsistence tasks compared with hand-held tools. It is assumed that addition of a handle improved the (bio)mechanical properties of a tool and upper limb by offering greater amounts of leverage, force and precision. This controlled laboratory study compares upper limb kinematics, electromyography and physiological performance during two subsistence tasks (chopping, scraping) using hafted and hand-held tools. Results show that hafted tool use elicits greater ranges of motion, greater muscle activity and greater net energy expenditure (EE) compared with hand-held equivalents. Importantly, however, these strategies resulted in reduced relative EE compared with the hand-held condition in both tasks. More specifically, the hafted axe prompted use of two well-known biomechanical strategies that help produce larger velocities at the distal end of the limb without requiring heavy muscular effort, thus improving the tool's functional efficiency and relative energy use. The energetic and biomechanical benefits of hafting arguably contributed to both the invention and spread of this technology.
Collapse
Affiliation(s)
- Dominic Coe
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, L69 7WZ, UK
| | - Larry Barham
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, L69 7WZ, UK
| | - James Gardiner
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Robin Crompton
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
7
|
Durand S, Dufour J, Rosas A, Becce F, Orr C. Three-Dimensional Comparative Study of Human Bipartite Scaphoids and the Os Centrale of the Wrist in Neandertals and Non-Human Anthropoid Primates. Diagnostics (Basel) 2021; 11:2295. [PMID: 34943532 PMCID: PMC8700597 DOI: 10.3390/diagnostics11122295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
In humans, bipartite scaphoid still does not differentiate clearly from traumatic non-union of the scaphoid. To aid diagnosis, we sought to analyze the main geometrical similarities among bipartite scaphoids from primate species with fused and unfused scaphoid centrales. Four human embryos, four cases of adult humans with bipartite scaphoid, twelve adult specimens of other extant anthropoid primates, and two Neandertal scaphoid specimens were included in this study. Three-dimensional polygon models of the scaphoid and os centrale were generated from CT scan, micro-CT scan, or histological sections. A 3D comparative study of the morphological and morphometrical parameters was performed using the MSC Patran software. The os centrale was smaller than the scaphoid in all specimens and its shape was elongated in the anteroposterior scaphoid direction. The position of the os centrale centroid compared to the scaphoid using direction vectors had a strong orientation along the proximodistal axis in all species. The main morphological feature of bipartite scaphoid was the continuity of the scaphoid from its proximal pole to its tubercule along the anteroposterior axis. In all specimens, if the os centrale was removed, the scaphoid still appeared normal and whole. The bipartite scaphoid in adult humans shares geometrical analogies with monkeys and orangutans, human embryos, and Neandertals. Morphological and morphometrical features identified in this study are useful to differentiate bipartite scaphoid from scaphoid pseudarthrosis. All other criteria suggested in the past lead to misdiagnosis.
Collapse
Affiliation(s)
- Sebastien Durand
- Department of Plastic and Hand Surgery, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Justine Dufour
- Department of Plastic and Hand Surgery, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Antonio Rosas
- Department of Paleobiology, National Museum of Natural Sciences, CSIC, Calle Jose Gutierrez Abascal 2, 28006 Madrid, Spain;
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Caley Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Department of Anthropology, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
8
|
Filtering Biomechanical Signals in Movement Analysis. SENSORS 2021; 21:s21134580. [PMID: 34283131 PMCID: PMC8271607 DOI: 10.3390/s21134580] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Biomechanical analysis of human movement is based on dynamic measurements of reference points on the subject’s body and orientation measurements of body segments. Collected data include positions’ measurement, in a three-dimensional space. Signal enhancement by proper filtering is often recommended. Velocity and acceleration signal must be obtained from position/angular measurement records, needing numerical processing effort. In this paper, we propose a comparative filtering method study procedure, based on measurement uncertainty related parameters’ set, based upon simulated and experimental signals. The final aim is to propose guidelines to optimize dynamic biomechanical measurement, considering the measurement uncertainty contribution due to the processing method. Performance of the considered methods are examined and compared with an analytical signal, considering both stationary and transient conditions. Finally, four experimental test cases are evaluated at best filtering conditions for measurement uncertainty contributions.
Collapse
|
9
|
Get a Grip: Variation in Human Hand Grip Strength and Implications for Human Evolution. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although hand grip strength is critical to the daily lives of humans and our arboreal great ape relatives, the human hand has changed in form and function throughout our evolution due to terrestrial bipedalism, tool use, and directional asymmetry (DA) such as handedness. Here we investigate how hand form and function interact in modern humans to gain an insight into our evolutionary past. We measured grip strength in a heterogeneous, cross-sectional sample of human participants (n = 662, 17 to 83 years old) to test the potential effects of age, sex, asymmetry (hand dominance and handedness), hand shape, occupation, and practice of sports and musical instruments that involve the hand(s). We found a significant effect of sex and hand dominance on grip strength, but not of handedness, while hand shape and age had a greater influence on female grip strength. Females were significantly weaker with age, but grip strength in females with large hands was less affected than those with long hands. Frequent engagement in hand sports significantly increased grip strength in the non-dominant hand in both sexes, while only males showed a significant effect of occupation, indicating different patterns of hand dominance asymmetries and hand function. These results improve our understanding of the link between form and function in both hands and offer an insight into the evolution of human laterality and dexterity.
Collapse
|
10
|
Macchi R, Daver G, Brenet M, Prat S, Hugheville L, Harmand S, Lewis J, Domalain M. Biomechanical demands of percussive techniques in the context of early stone toolmaking. J R Soc Interface 2021; 18:20201044. [PMID: 34034530 DOI: 10.1098/rsif.2020.1044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries in archaeology and palaeoanthropology highlight that stone tool knapping could have emerged first within the genera Australopithecus or Kenyanthropus rather than Homo. To explore the implications of this hypothesis determining the physical demands and motor control needed for performing the percussive movements during the oldest stone toolmaking technology (i.e. Lomekwian) would help. We analysed the joint angle patterns and muscle activity of a knapping expert using three stone tool replication techniques: unipolar flaking on the passive hammer (PH), bipolar (BP) flaking on the anvil, and multidirectional and multifacial flaking with free hand (FH). PH presents high levels of activity for Biceps brachii and wrist extensors and flexors. By contrast, BP and FH are characterized by high solicitation of forearm pronation. The synergy analyses depict a high muscular and kinematic coordination. Whereas the muscle pattern is very close between the techniques, the kinematic pattern is more variable, especially for PH. FH displays better muscle coordination and conversely lesser joint angle coordination. These observations suggest that the transition from anvil and hammer to freehand knapping techniques in early hominins would have been made possible by the acquisition of a behavioural repertoire producing an evolutionary advantage that gradually would have been beneficial for stone tool production.
Collapse
Affiliation(s)
- R Macchi
- Institut PPrime, CNRS - Université de Poitiers - ENSMA, UPR 3346, Poitiers, France.,PALEVOPRIM, CNRS - Université de Poitiers, UMR 7262, Poitiers, France
| | - G Daver
- PALEVOPRIM, CNRS - Université de Poitiers, UMR 7262, Poitiers, France
| | - M Brenet
- CNRS, UMR5199 PACEA et INRAP GSO, Université de Bordeaux, 33615 Pessac, France
| | - S Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Paris, France
| | - L Hugheville
- Institut du Cerveau et de la Moëlle épinière, Paris, France
| | - S Harmand
- Turkana Basin Institute, Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - J Lewis
- Turkana Basin Institute, Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - M Domalain
- Institut PPrime, CNRS - Université de Poitiers - ENSMA, UPR 3346, Poitiers, France
| |
Collapse
|
11
|
Vanhoof MJM, van Leeuwen T, Galletta L, Vereecke EE. The forearm and hand musculature of semi-terrestrial rhesus macaques (Macaca mulatta) and arboreal gibbons (fam.Hylobatidae). Part II. Quantitative analysis. J Anat 2021; 238:321-337. [PMID: 33011967 PMCID: PMC7812139 DOI: 10.1111/joa.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023] Open
Abstract
Nonhuman primates have a highly diverse locomotor repertoire defined by an equally diverse hand use. Based on how primates use their hands during locomotion, we can distinguish between terrestrial and arboreal taxa. The 'arboreal' hand is likely adapted towards high wrist mobility and grasping, whereas the 'terrestrial' hand will show adaptations to loading. While the morphology of the forearm and hand bones have been studied extensively, functional adaptations in the forearm and hand musculature to locomotor behaviour have been documented only scarcely. In this paper, we investigate the forelimb musculature of the highly arboreal gibbons (including Hylobates lar,Hylobates pileatus,Nomascus leucogenys,Nomascus concolor and Symphalangus syndactylus) and compare this with the musculature of the semi-terrestrial rhesus macaques (Macaca mulatta). Anatomical data from previous dissections on knuckle-walking bonobos (Pan paniscus) and bipedal humans (Homo sapiens) are also included to further integrate the analyses in the scope of catarrhine hand adaptation. This study indicates that the overall configuration of the arm and hand musculature of these primates is very similar but there are some apparent differences in relative size which can be linked to differences in forelimb function and which might be related to their specific locomotor behaviour. In macaques, there is a large development of wrist deviators, wrist and digital flexors, and m. triceps brachii, as these muscles are important during the different phases of palmi- and digitigrade quadrupedal walking to stabilize the wrist and elbow. In addition, their m. flexor carpi ulnaris is the most important contributor to the total force-generating capacity of the wrist flexors and deviators, and is needed to counteract the adducting torque at the elbow joint during quadrupedal walking. Gibbons show a relatively high force-generating capacity in their forearm rotators, wrist and digital flexors, which are important muscles in brachiation to actively regulate forward movement of the body. The results also stress the importance of the digital flexors in bonobos, during climbing and clambering, and in humans, which is likely linked to our advanced manipulation skills.
Collapse
Affiliation(s)
- Marie J. M. Vanhoof
- Muscles & MovementBiomedical Sciences GroupKU Leuven Campus KulakKortrijkBelgium
| | - Timo van Leeuwen
- Muscles & MovementBiomedical Sciences GroupKU Leuven Campus KulakKortrijkBelgium
| | - Lorenzo Galletta
- School of Life and Environmental SciencesDeakin UniversityWaurn PoundsVictoriaAustralia
| | - Evie E. Vereecke
- Muscles & MovementBiomedical Sciences GroupKU Leuven Campus KulakKortrijkBelgium
| |
Collapse
|
12
|
Key AJM, Dunmore CJ, Marzke MW. The unexpected importance of the fifth digit during stone tool production. Sci Rep 2019; 9:16724. [PMID: 31723201 PMCID: PMC6853985 DOI: 10.1038/s41598-019-53332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
Abstract
Unique anatomical features of the human hand facilitate our ability to proficiently and forcefully perform precision grips and in-hand manipulation of objects. Extensive research has been conducted into the role of digits one to three during these manual behaviours, and the origin of the highly derived first digit anatomy that facilitates these capabilities. Stone tool production has long been thought a key influence in this regard. Despite previous research stressing the unique derived morphology of the human fifth digit little work has investigated why humans alone display these features. Here we examine the recruitment frequency, loading magnitude, and loading distribution of all digits on the non-dominant hand of skilled flintknappers during four technologically distinct types of Lower Palaeolithic stone tool production. Our data reveal the fifth digit to be heavily and frequently recruited during all studied behaviours. It occasionally incurred pressures, and was used in frequencies, greater or equal to those of the thumb, and frequently the same or greater than those of the index finger. The fifth digit therefore appears key to >2 million years of stone tool production activities, a behaviour that likely contributed to the derived anatomy observed in the modern human fifth ray.
Collapse
Affiliation(s)
- Alastair J M Key
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.
| | | | - Mary W Marzke
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Lague MR, Chirchir H, Green DJ, Mbua E, Harris JWK, Braun DR, Griffin NL, Richmond BG. Cross-sectional properties of the humeral diaphysis of Paranthropus boisei: Implications for upper limb function. J Hum Evol 2018; 126:51-70. [PMID: 30583844 DOI: 10.1016/j.jhevol.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
A ∼1.52 Ma adult upper limb skeleton of Paranthropus boisei (KNM-ER 47000) recovered from the Koobi Fora Formation, Kenya (FwJj14E, Area 1A) includes most of the distal half of a right humerus (designated KNM-ER 47000B). Natural transverse fractures through the diaphysis of KNM-ER 470000B provide unobstructed views of cortical bone at two sections typically used for analyzing cross-sectional properties of hominids (i.e., 35% and 50% of humerus length from the distal end). Here we assess cross-sectional properties of KNM-ER 47000B and two other P. boisei humeri (OH 80-10, KNM-ER 739). Cross-sectional properties for P. boisei associated with bending/torsional strength (section moduli) and relative cortical thickness (%CA; percent cortical area) are compared to those reported for nonhuman hominids, AL 288-1 (Australopithecus afarensis), and multiple species of fossil and modern Homo. Polar section moduli (Zp) are assessed relative to a mechanically relevant measure of body size (i.e., the product of mass [M] and humerus length [HL]). At both diaphyseal sections, P. boisei exhibits %CA that is high among extant hominids (both human and nonhuman) and similar to that observed among specimens of Pleistocene Homo. High values for Zp relative to size (M × HL) indicate that P. boisei had humeral bending strength greater than that of modern humans and Neanderthals and similar to that of great apes, A. afarensis, and Homo habilis. Such high humeral strength is consistent with other skeletal features of P. boisei (reviewed here) that suggest routine use of powerful upper limbs for arboreal climbing.
Collapse
Affiliation(s)
- Michael R Lague
- School of Natural Sciences and Mathematics, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA.
| | - Habiba Chirchir
- Department of Biological Sciences, Marshall University, USA; Human Origins Program, National Museum of Natural History, Smithsonian Institution, USA
| | - David J Green
- Department of Anatomy, Campbell University School of Osteopathic Medicine, USA; Department of Anatomy, Midwestern University, USA
| | - Emma Mbua
- Department of Biological Sciences, Mount Kenya University, Kenya
| | | | - David R Braun
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, USA; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany
| | - Nicole L Griffin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, USA
| | - Brian G Richmond
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany; Division of Anthropology, American Museum of Natural History, USA
| |
Collapse
|
14
|
Key A, Merritt SR, Kivell TL. Hand grip diversity and frequency during the use of Lower Palaeolithic stone cutting-tools. J Hum Evol 2018; 125:137-158. [DOI: 10.1016/j.jhevol.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/15/2022]
|
15
|
Bardo A, Vigouroux L, Kivell TL, Pouydebat E. The impact of hand proportions on tool grip abilities in humans, great apes and fossil hominins: A biomechanical analysis using musculoskeletal simulation. J Hum Evol 2018; 125:106-121. [PMID: 30502891 DOI: 10.1016/j.jhevol.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
Differences in grip techniques used across primates are usually attributed to variation in thumb-finger proportions and muscular anatomy of the hand. However, this cause-effect relationship is not fully understood because little is known about the biomechanical functioning and mechanical loads (e.g., muscle or joint forces) of the non-human primate hand compared to that of humans during object manipulation. This study aims to understand the importance of hand proportions on the use of different grip strategies used by humans, extant great apes (bonobos, gorillas and orangutans) and, potentially, fossil hominins (Homo naledi and Australopithecus sediba) using a musculoskeletal model of the hand. Results show that certain grips are more challenging for some species, particularly orangutans, than others, such that they require stronger muscle forces for a given range of motion. Assuming a human-like range of motion at each hand joint, simulation results show that H. naledi and A. sediba had the biomechanical potential to use the grip techniques considered important for stone tool-related behaviors in humans. These musculoskeletal simulation results shed light on the functional consequences of the different hand proportions among extant and extinct hominids and the different manipulative abilities found in humans and great apes.
Collapse
Affiliation(s)
- Ameline Bardo
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France; Department of Adaptations du Vivant, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France; Animal Postcranial Evolution Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom.
| | - Laurent Vigouroux
- Institute of Movement Sciences, UMR 7287-CNRS, Aix-Marseille University, Marseille, 13288, France
| | - Tracy L Kivell
- Animal Postcranial Evolution Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Emmanuelle Pouydebat
- Department of Adaptations du Vivant, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France
| |
Collapse
|
16
|
Key AJM, Dunmore CJ. Manual restrictions on Palaeolithic technological behaviours. PeerJ 2018; 6:e5399. [PMID: 30128191 PMCID: PMC6098946 DOI: 10.7717/peerj.5399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
The causes of technological innovation in the Palaeolithic archaeological record are central to understanding Plio-Pleistocene hominin behaviour and temporal trends in artefact variation. Palaeolithic archaeologists frequently investigate the Oldowan-Acheulean transition and technological developments during the subsequent million years of the Acheulean technocomplex. Here, we approach the question of why innovative stone tool production techniques occur in the Lower Palaeolithic archaeological record from an experimental biomechanical and evolutionary perspective. Nine experienced flintknappers reproduced Oldowan flake tools, ‘early Acheulean’ handaxes, and ‘late Acheulean’ handaxes while pressure data were collected from their non-dominant (core-holding) hands. For each flake removal or platform preparation event performed, the percussor used, the stage of reduction, the core securing technique utilised, and the relative success of flake removals were recorded. Results indicate that more heavily reduced, intensively shaped handaxes with greater volumetric controls do not necessarily require significantly greater manual pressure than Oldowan flake tools or earlier ‘rougher’ handaxe forms. Platform preparation events do, however, require significantly greater pressure relative to either soft or hard hammer flake detachments. No significant relationships were identified between flaking success and pressure variation. Our results suggest that the preparation of flake platforms, a technological behaviour associated with the production of late Acheulean handaxes, could plausibly have been restricted prior to the emergence of more forceful precision-manipulative capabilities than those required for earlier lithic technologies.
Collapse
Affiliation(s)
- Alastair J M Key
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, United Kingdom
| | - Christopher J Dunmore
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
17
|
Stephens NB, Kivell TL, Pahr DH, Hublin JJ, Skinner MM. Trabecular bone patterning across the human hand. J Hum Evol 2018; 123:1-23. [PMID: 30072187 DOI: 10.1016/j.jhevol.2018.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Hand bone morphology is regularly used to link particular hominin species with behaviors relevant to cognitive/technological progress. Debates about the functional significance of differing hominin hand bone morphologies tend to rely on establishing phylogenetic relationships and/or inferring behavior from epigenetic variation arising from mechanical loading and adaptive bone modeling. Most research focuses on variation in cortical bone structure, but additional information about hand function may be provided through the analysis of internal trabecular structure. While primate hand bone trabecular structure is known to vary in ways that are consistent with expected joint loading differences during manipulation and locomotion, no study exists that has documented this variation across the numerous bones of the hand. We quantify the trabecular structure in 22 bones of the human hand (early/extant modern Homo sapiens) and compare structural variation between two groups associated with post-agricultural/industrial (post-Neolithic) and foraging/hunter-gatherer (forager) subsistence strategies. We (1) establish trabecular bone volume fraction (BV/TV), modulus (E), degree of anisotropy (DA), mean trabecular thickness (Tb.Th) and spacing (Tb.Sp); (2) visualize the average distribution of site-specific BV/TV for each bone; and (3) examine if the variation in trabecular structure is consistent with expected joint loading differences among the regions of the hand and between the groups. Results indicate similar distributions of trabecular bone in both groups, with those of the forager sample presenting higher BV/TV, E, and lower DA, suggesting greater and more variable loading during manipulation. We find indications of higher loading along the ulnar side of the forager sample hand, with high site-specific BV/TV distributions among the carpals that are suggestive of high loading while the wrist moves through the 'dart-thrower's' motion. These results support the use of trabecular structure to infer behavior and have direct implications for refining our understanding of human hand evolution and fossil hominin hand use.
Collapse
Affiliation(s)
- Nicholas B Stephens
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Dieter H Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
18
|
van Leeuwen T, Vanhoof MJM, Kerkhof FD, Stevens JMG, Vereecke EE. Insights into the musculature of the bonobo hand. J Anat 2018; 233:328-340. [PMID: 29938781 PMCID: PMC6081514 DOI: 10.1111/joa.12841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 02/01/2023] Open
Abstract
The human hand is well known for its unique dexterity which is largely facilitated by a highly mobile, long and powerful thumb that enables both tool manufacturing and use, a key component of human evolution. The bonobo (Pan paniscus), the closest extant relative to modern humans together with the chimpanzee (Pan troglodytes), also possesses good manipulative capabilities but with a lower level of dexterity compared with modern humans. Despite the close phylogenetic relationship between bonobos and humans, detailed quantitative data of the bonobo forelimb musculature remains largely lacking. To understand how morphology may influence dexterity, we investigated the functional anatomy of the bonobo hand using a unique sample of eight bonobo cadavers, along with one chimpanzee and one human (Homo sapiens) cadaver. We performed detailed dissections of unembalmed specimens to collect quantitative datasets of the extrinsic and intrinsic hand musculature, in addition to qualitative descriptions of the forelimb muscle configurations, allowing estimation of force-generating capacities for each functional group. Furthermore, we used medical imaging to quantify the articular surface of the trapeziometacarpal joint to estimate the intra-articular pressure. Our results show that the force-generating capacity for most functional groups of the extrinsic and intrinsic hand muscles in bonobos is largely similar to that of humans, with differences in relative importance of the extensors and rotators. The bonobo thumb musculature has a lower force-generating capacity than observed in the human specimen, but the estimated maximal intra-articular pressure is higher in bonobos. Most importantly, bonobos show a higher degree of functional coupling between the muscles of the thumb, index and lateral fingers than observed in humans. It is conceivable that differentiation and individualization of the hand muscles rather than relative muscle development explain the higher level of dexterity of humans compared with that of bonobos.
Collapse
Affiliation(s)
- Timo van Leeuwen
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Marie J. M. Vanhoof
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Faes D. Kerkhof
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Jeroen M. G. Stevens
- Centre for Research and ConservationRoyal Zoological Society AntwerpAntwerpBelgium
- Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpAntwerpBelgium
| | - Evie E. Vereecke
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| |
Collapse
|
19
|
Hominin hand bone fossils from Sterkfontein Caves, South Africa (1998–2003 excavations). J Hum Evol 2018; 118:89-102. [DOI: 10.1016/j.jhevol.2018.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/23/2022]
|
20
|
Orr CM. Kinematics of the anthropoid os centrale and the functional consequences of scaphoid-centrale fusion in African apes and hominins. J Hum Evol 2017; 114:102-117. [PMID: 29447753 DOI: 10.1016/j.jhevol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
In most primates, the os centrale is interposed between the scaphoid, trapezoid, trapezium, and head of the capitate, thus constituting a component of the wrist's midcarpal complex. Scaphoid-centrale fusion is among the clearest morphological synapomorphies of African apes and hominins. Although it might facilitate knuckle-walking by increasing the rigidity and stability of the radial side of the wrist, the exact functional significance of scaphoid-centrale fusion is unclear. If fusion acts to produce a more rigid radial wrist that stabilizes the hand and limits shearing stresses, then in taxa with a free centrale, it should anchor ligaments that check extension and radial deviation, but exhibit motion independent of the scaphoid. Moreover, because the centrale sits between the scaphoid and capitate (a major stabilizing articulation), scaphoid-centrale mobility should correlate with scaphocapitate mobility in extension and radial deviation. To test these hypotheses, the centrale's ligamentous binding was investigated via dissection in Pongo and Papio, and the kinematics of the centrale were quantified in a cadaveric sample of anthropoids (Pongo sp., Ateles geoffroyi, Colobus guereza, Macaca mulatta, and Papio anubis) using a computed-tomography-based method to track wrist-bone motion. Results indicate that the centrale rotates freely relative to the scaphoid in all taxa. However, centrale mobility is only correlated with scaphocapitate mobility during extension in Pongo-possibly due to differences in overall wrist configuration between apes and monkeys. If an extant ape-like wrist characterized early ancestors of African apes and hominins, then scaphoid-centrale fusion would have increased midcarpal rigidity in extension relative to the primitive condition. Although biomechanically consistent with a knuckle-walking hominin ancestor, this assumes that the trait evolved specifically for that biological role, which must be squared with contradictory interpretations of extant and fossil hominoid morphology. Regardless of its original adaptive significance, scaphoid-centrale fusion likely presented a constraint on early hominin midcarpal mobility.
Collapse
Affiliation(s)
- Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, USA.
| |
Collapse
|
21
|
The proximal-to-distal sequence in upper-limb motions on multiple levels and time scales. Hum Mov Sci 2017; 55:156-171. [DOI: 10.1016/j.humov.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/06/2017] [Accepted: 08/14/2017] [Indexed: 01/12/2023]
|
22
|
Orr CM. Locomotor Hand Postures, Carpal Kinematics During Wrist Extension, and Associated Morphology in Anthropoid Primates. Anat Rec (Hoboken) 2016; 300:382-401. [DOI: 10.1002/ar.23507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/13/2016] [Accepted: 07/20/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Caley M. Orr
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineMail Stop F435, 13001 East 17th PlaceAurora Colorado
| |
Collapse
|
23
|
Key AJM. Manual Loading Distribution During Carrying Behaviors: Implications for the Evolution of the Hominin Hand. PLoS One 2016; 11:e0163801. [PMID: 27695044 PMCID: PMC5047513 DOI: 10.1371/journal.pone.0163801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
The human hand is unparalleled amongst primates in its ability to manipulate objects forcefully and dexterously. Previous research has predominantly sought to explain the evolution of these capabilities through an adaptive relationship between more modern human-like anatomical features in the upper limb and increased stone tool production and use proficiency. To date, however, we know little about the influence that other manipulatively demanding behaviors may have had upon the evolution of the human hand. The present study addresses one aspect of this deficiency by examining the recruitment of the distal phalanges during a range of manual transportation (i.e., carrying) events related to hominin behavioral repertoires during the Plio-Pleistocene. Specifically, forces on the volar pad of each digit are recorded during the transportation of stones and wooden branches that vary in weight and size. Results indicate that in most instances, the index and middle fingers are recruited to a significantly greater extent than the other three digits during carrying events. Relative force differences between digits were, however, dependent upon the size and weight of the object transported. Carrying behaviors therefore appear unlikely to have contributed to the evolution of the robust thumb anatomy observed in the human hand. Rather, results suggest that the manual transportation of objects may plausibly have influenced the evolution of the human gripping capabilities and the 3rd metacarpal styloid process.
Collapse
Affiliation(s)
- Alastair J. M. Key
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Functional Morphology of the Primate Hand: Recent Approaches Using Biomedical Imaging, Computer Modeling, and Engineering Methods. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3646-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Richmond BG, Roach NT, Ostrofsky KR. Evolution of the Early Hominin Hand. DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS 2016. [DOI: 10.1007/978-1-4939-3646-5_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Experimental Research on Hand Use and Function in Primates. DEVELOPMENTS IN PRIMATOLOGY: PROGRESS AND PROSPECTS 2016. [DOI: 10.1007/978-1-4939-3646-5_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Rein R, Nonaka T, Bril B. Movement pattern variability in stone knapping: implications for the development of percussive traditions. PLoS One 2014; 9:e113567. [PMID: 25426630 PMCID: PMC4245206 DOI: 10.1371/journal.pone.0113567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/11/2014] [Indexed: 11/30/2022] Open
Abstract
The earliest direct evidence for tool-use by our ancestors are 2.6 million year old stone tools from Africa. These earliest artifacts show that, already, early hominins had developed the required advanced movement skills and cognitive capacities to manufacture stone tools. Currently, it is not well understood, however, which specific movement skills are required for successful stone knapping and accordingly it is unknown how these skills emerged during early hominin evolution. In particular, it is not clear which striking movements are indicative of skilled performance, how striking movement patterns vary with task and environmental constraints, and how movement patterns are passed on within social groups. The present study addresses these questions by investigating striking movement patterns and striking variability in 18 modern stone knappers (nine experienced and nine novices). The results suggest that no single movement pattern characterizes successful stone knapping. Participants showed large inter-individual movement variability of the elementary knapping action irrespective of knapping experience and knapping performance. Changes in task- and environmental constraints led knappers to adapt their elementary striking actions using a combination of individual and common strategies. Investigation of striking pattern similarities within social groups showed only partial overlap of striking patterns across related individuals. The results therefore suggest that striking movement patterns in modern stone knappers are largely specific to the individual and movement variability is not indicative of knapping performance. The implications of these results for the development of percussive traditions are discussed.
Collapse
Affiliation(s)
- Robert Rein
- Institute of Health Promotion and Clinical Movement Science, German Sport University Cologne, Cologne, Germany
- * E-mail:
| | - Tetsushi Nonaka
- Graduate School of Human Development and Environment, Kobe University, Hyogo, Japan
| | - Blandine Bril
- Groupe de Recherche Apprentissage et Contexte, École des Hautes Études en Sciences Sociales, Paris, France
| |
Collapse
|
28
|
Kjosness KM, Hines JE, Lovejoy CO, Reno PL. The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation. J Anat 2014; 225:527-38. [PMID: 25279687 PMCID: PMC4292754 DOI: 10.1111/joa.12235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus.
Collapse
Affiliation(s)
- Kelsey M Kjosness
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
29
|
Slizewski A, Burger-Heinrich E, Francken M, Wahl J, Harvati K. Pilot study for reconstruction of soft tissues: muscle cross-sectional area of the forearm estimated from cortical bone for a Neolithic sample. Anat Rec (Hoboken) 2014; 297:1103-14. [PMID: 24782319 DOI: 10.1002/ar.22917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/11/2014] [Accepted: 02/19/2014] [Indexed: 11/11/2022]
Abstract
On a basis of a method for muscle cross-sectional area estimation from cortical bone area that was previously developed (Slizewski et al. Anat Rec 2013; 296:1695-1707), we reconstructed muscle cross-sectional area at 65% of radius length for a sample of Neolithic human remains from the Linear Pottery Culture (ca. 5,700-4,900 years BC). Muscle cross-sectional area estimations for the Neolithic sample were compared to in vivo measurements from a recent human sample. Results demonstrate that the Neolithic individuals had larger muscle cross-sectional area relative to radius length than the contemporary humans and that their forearms were more muscular and robust. We also found significant differences in relative muscle cross-sectional area between Neolithic and recent children that indicate different levels of physical stress and isometric activities. Our results fit into the framework of studies previously published about the sample and the Linear Pottery Culture. Therefore, the new approach was successfully applied to an archaeological sample for the first time here. Results of our pilot study indicate that muscle cross-sectional area estimation could in the future supplement other anthropological methods currently in use for the analysis of postcranial remains.
Collapse
Affiliation(s)
- Astrid Slizewski
- Paleoanthropology, Department of Early Prehistory and Quaternary Ecology/Senckenberg Center for Human Evolution and Paleoenvironment, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Parry R, Dietrich G, Bril B. Tool use ability depends on understanding of functional dynamics and not specific joint contribution profiles. Front Psychol 2014; 5:306. [PMID: 24795669 PMCID: PMC4006045 DOI: 10.3389/fpsyg.2014.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/25/2014] [Indexed: 11/13/2022] Open
Abstract
Researchers in cognitive neuroscience have become increasingly interested in how different aspects of tool use are integrated and represented by the brain. Comparatively less attention has been directed toward tool use actions themselves and how effective tool use behaviors are coordinated. In response, we take this opportunity to consider the mechanical principles of tool use actions and their relationship to motor learning. Using kinematic analysis, we examine both functional dynamics and joint contribution profiles of subjects with different levels of experience in a primordial percussive task. Our results show that the ability to successfully produce stone flakes using the Oldowan method did not correspond with any particular joint contribution profile. Rather, expertise in this tool use action was principally associated with the subject's ability to regulate the functional parameters that define the task itself.
Collapse
Affiliation(s)
- Ross Parry
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 975, CRICMParis, France
- Inserm, U 1127, CRICMParis, France
| | | | - Blandine Bril
- Groupe de Recherche Apprentissage et Contexte, Ecole des Hautes Etudes en Sciences SocialesParis, France
| |
Collapse
|
31
|
Williams EM, Gordon AD, Richmond BG. Biomechanical strategies for accuracy and force generation during stone tool production. J Hum Evol 2014; 72:52-63. [PMID: 24746547 DOI: 10.1016/j.jhevol.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 12/01/2022]
Abstract
Multiple hominin species used and produced stone tools, and the archaeological record provides evidence that stone tool behaviors intensified among later members of the genus Homo. This intensification is widely thought to be the product of cognitive and anatomical adaptations that enabled later Homo taxa to produce stone tools more efficiently relative to earlier hominin species. This study builds upon recent investigations of the knapping motions of modern humans to test whether aspects of our upper limb anatomy contribute to accuracy and/or efficiency. Knapping kinematics were captured from eight experienced knappers using a Vicon motion capture system. Each subject produced a series of Oldowan bifacial choppers under two conditions: with normal wrist mobility and while wearing a brace that reduced wrist extension (∼30°-35°), simulating one aspect of the likely primitive hominin condition. Under normal conditions, subjects employed a variant of the proximal-to-distal joint sequence common to throwing activities: subjects initiated down-swing upper limb motion at the shoulder and proceeded distally, increasing peak linear and angular velocities from the shoulder to the elbow to the wrist. At the wrist, subjects utilized the 'dart-thrower's arc,' the most stable plane of radiocarpal motion, during which wrist extension is coupled with radial deviation and flexion with ulnar deviation. With an unrestrained wrist, subjects achieved significantly greater target accuracy, wrist angular velocities, and hand linear velocities compared with the braced condition. Additionally, the modern wrist's ability to reach high degrees of extension (≥28.5°) following strike may decrease risk of carpal and ligamentous damage caused by hyperextension. These results suggest that wrist extension in humans contributes significantly to stone tool-making performance.
Collapse
Affiliation(s)
- E M Williams
- Department of Biology, Buhl Hall, Chatham University, Woodland Road, Pittsburgh, PA 15232, USA.
| | - A D Gordon
- Department of Anthropology, University at Albany - SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | - B G Richmond
- Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 2110 G St. NW, Washington, DC 20052, USA; Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| |
Collapse
|
32
|
Abstract
Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features.
Collapse
Affiliation(s)
- Mary W. Marzke
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402, USA
| |
Collapse
|
33
|
Kahrs BA, Jung WP, Lockman JJ. When does tool use become distinctively human? Hammering in young children. Child Dev 2013; 85:1050-1061. [PMID: 24128178 DOI: 10.1111/cdev.12179] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study examines the development of hammering within an ontogenetic and evolutionary framework using motion-capture technology. Twenty-four right-handed toddlers (19-35 months) wore reflective markers while hammering a peg into a peg-board. The study focuses on the motor characteristics that make tool use uniquely human: wrist involvement, lateralization, and handle use. Older children showed more distally controlled movements, characterized by relatively more reliance on the wrist, but only when hammering with their right hand. Greater age, use of the right hand, and more wrist involvement were associated with higher accuracy; handle use did not systematically change with age. Collectively, the results provide new insights about the emergence of hammering in young children and when hammering begins to manifest distinctively human characteristics.
Collapse
|
34
|
Rein R, Bril B, Nonaka T. Coordination strategies used in stone knapping. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:539-50. [PMID: 23359287 DOI: 10.1002/ajpa.22224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/11/2012] [Indexed: 11/07/2022]
Abstract
Stone tool-use and manufacture is seen as an important skill during the evolution of our species and recently there has been increased interest in the understanding of perceptual-motor abilities underlying this skill. This study provides further information with respect to the motor strategies used during stone knapping. Kinematics of the striking arm were recorded in expert and novice knappers while producing flakes of two different sizes. Using Uncontrolled Manifold Analysis, the results showed that knappers structure joint angle movements such that the hammer trajectory variability is minimized across trials, with experts displaying significantly smaller variability compared with novices. Principal component analysis further revealed that a single component captures the complexity of the strike and that the strike is governed by movements of the elbow and the wrist. Analysis of movement velocities indicated that both groups adjusted movement velocities according to flake size although experts used smaller hammer, wrist, and elbow velocities in both flake conditions compared with novices. The results suggest that while the gross striking movement is easy to replicate for a novice knapper, it requires prolonged training before a knapper becomes attuned to the finer details necessary for controlled flaking.
Collapse
Affiliation(s)
- Robert Rein
- Department of Neurology, German Sport University Cologne, Cologne, Germany.
| | | | | |
Collapse
|
35
|
Kivell TL, Guimont I, Wall CE. Sex-Related Shape Dimorphism in the Human Radiocarpal and Midcarpal Joints. Anat Rec (Hoboken) 2012; 296:19-30. [DOI: 10.1002/ar.22609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/23/2012] [Indexed: 11/12/2022]
|
36
|
Shaw CN, Hofmann CL, Petraglia MD, Stock JT, Gottschall JS. Neandertal humeri may reflect adaptation to scraping tasks, but not spear thrusting. PLoS One 2012; 7:e40349. [PMID: 22815742 PMCID: PMC3399840 DOI: 10.1371/journal.pone.0040349] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 11/23/2022] Open
Abstract
Unique compared with recent and prehistoric Homo sapiens, Neandertal humeri are characterised by a pronounced right-dominant bilateral strength asymmetry and an anteroposteriorly strengthened diaphyseal shape. Remodeling in response to asymmetric forces imposed during regular underhanded spear thrusting is the most influential explanatory hypothesis. The core tenet of the “Spear Thrusting Hypothesis”, that underhand thrusting requires greater muscle activity on the right side of the body compared to the left, remains untested. It is unclear whether alternative subsistence behaviours, such as hide processing, might better explain this morphology. To test this, electromyography was used to measure muscle activity at the primary movers of the humerus (pectoralis major (PM), anterior (AD) and posterior deltoid (PD)) during three distinct spear-thrusting tasks and four separate scraping tasks. Contrary to predictions, maximum muscle activity (MAX) and total muscle activity (TOT) were significantly higher (all values, p<.05) at the left (non-dominant) AD, PD and PM compared to the right side of the body during spear thrusting tasks. Thus, the muscle activity required during underhanded spearing tasks does not lend itself to explaining the pronounced right dominant strength asymmetry found in Neandertal humeri. In contrast, during the performance of all three unimanual scraping tasks, right side MAX and TOT were significantly greater at the AD (all values, p<.01) and PM (all values, p<.02) compared to the left. The consistency of the results provides evidence that scraping activities, such as hide preparation, may be a key behaviour in determining the unusual pattern of Neandertal arm morphology. Overall, these results yield important insight into the Neandertal behavioural repertoire that aided survival throughout Pleistocene Eurasia.
Collapse
Affiliation(s)
- Colin N Shaw
- PAVE Research Group, Department of Archaeology & Anthropology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Hand pressure distribution during Oldowan stone tool production. J Hum Evol 2012; 62:520-32. [PMID: 22446065 DOI: 10.1016/j.jhevol.2012.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/06/2012] [Accepted: 02/13/2012] [Indexed: 11/23/2022]
Abstract
Modern humans possess a highly derived thumb that is robust and long relative to the other digits, with enhanced pollical musculature compared with extant apes. Researchers have hypothesized that this anatomy was initially selected for in early Homo in part to withstand high forces acting on the thumb during hard hammer percussion when producing stone tools. However, data are lacking on loads experienced during stone tool production and the distribution of these loads across the hand. Here we report the first quantitative data on manual normal forces (N) and pressures (kPa) acting on the hand during Oldowan stone tool production, captured at 200 Hz. Data were collected from six experienced subjects replicating Oldowan bifacial choppers. Our data do not support hypotheses asserting that the thumb experiences relatively high loads when making Oldowan stone tools. Peak normal force, pressure, impulse, and the pressure/time integral are significantly lower on the thumb than on digits 2 and/or digit 3 in every subject. Our findings call into question hypotheses linking modern human thumb robusticity specifically to load resistance during stone tool production.
Collapse
|
38
|
Vernooij CA, Mouton LJ, Bongers RM. Learning to Control Orientation and Force in a Hammering Task. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2012. [DOI: 10.1027/2151-2604/a000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to create stone tools is considered an important step in the emergence of human cognition. To further our understanding of these evolutionary processes we focused on the initial learning processes with which this percussive skill may be acquired. We studied a hammering task in which participants had to create a ground force vector by hitting a target on a force plate with a hammerstone. The produced ground force vector was presented as an arrow on a computer screen and had to end in a displayed target. The target could vary in its angle of azimuth and inclination. Over 5 days, three of the five participants adapted a wrist joint angle and two of these three participants adapted a shoulder joint angle that affected only angle of inclination of the ground force vector. Length and angle of azimuth of the ground force vector were not affected. In learning to control a hammering task, the first parameter to be manipulated seems to be the angle of inclination by adjusting the wrist and shoulder joint angles. This suggests that in the initial stages of learning a hammering task only one parameter is adapted.
Collapse
Affiliation(s)
- Carlijn A. Vernooij
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, The Netherlands
- School of Sport and Exercise Sciences, University of Birmingham, UK
| | - Leonora J. Mouton
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Raoul M. Bongers
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
39
|
Rolian C, Lieberman DE, Zermeno JP. Hand biomechanics during simulated stone tool use. J Hum Evol 2011; 61:26-41. [DOI: 10.1016/j.jhevol.2011.01.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
|