1
|
Vilà-Valls L, Abdeli A, Lucas-Sánchez M, Bekada A, Calafell F, Benhassine T, Comas D. Understanding the genomic heterogeneity of North African Imazighen: from broad to microgeographical perspectives. Sci Rep 2024; 14:9979. [PMID: 38693301 PMCID: PMC11063056 DOI: 10.1038/s41598-024-60568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The strategic location of North Africa has led to cultural and demographic shifts, shaping its genetic structure. Historical migrations brought different genetic components that are evident in present-day North African genomes, along with autochthonous components. The Imazighen (plural of Amazigh) are believed to be the descendants of autochthonous North Africans and speak various Amazigh languages, which belong to the Afro-Asiatic language family. However, the arrival of different human groups, especially during the Arab conquest, caused cultural and linguistic changes in local populations, increasing their heterogeneity. We aim to characterize the genetic structure of the region, using the largest Amazigh dataset to date and other reference samples. Our findings indicate microgeographical genetic heterogeneity among Amazigh populations, modeled by various admixture waves and different effective population sizes. A first admixture wave is detected group-wide around the twelfth century, whereas a second wave appears in some Amazigh groups around the nineteenth century. These events involved populations with higher genetic ancestry from south of the Sahara compared to the current North Africans. A plausible explanation would be the historical trans-Saharan slave trade, which lasted from the Roman times to the nineteenth century. Furthermore, our investigation shows that assortative mating in North Africa has been rare.
Collapse
Affiliation(s)
- Laura Vilà-Valls
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
2
|
Lucas-Sánchez M, Abdeli A, Bekada A, Calafell F, Benhassine T, Comas D. The Impact of Recent Demography on Functional Genetic Variation in North African Human Groups. Mol Biol Evol 2024; 41:msad283. [PMID: 38152862 PMCID: PMC10783648 DOI: 10.1093/molbev/msad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The strategic location of North Africa has made the region the core of a wide range of human demographic events, including migrations, bottlenecks, and admixture processes. This has led to a complex and heterogeneous genetic and cultural landscape, which remains poorly studied compared to other world regions. Whole-exome sequencing is particularly relevant to determine the effects of these demographic events on current-day North Africans' genomes, since it allows to focus on those parts of the genome that are more likely to have direct biomedical consequences. Whole-exome sequencing can also be used to assess the effect of recent demography in functional genetic variation and the efficacy of natural selection, a long-lasting debate. In the present work, we use newly generated whole-exome sequencing and genome-wide array genotypes to investigate the effect of demography in functional variation in 7 North African populations, considering both cultural and demographic differences and with a special focus on Amazigh (plur. Imazighen) groups. We detect genetic differences among populations related to their degree of isolation and the presence of bottlenecks in their recent history. We find differences in the functional part of the genome that suggest a relaxation of purifying selection in the more isolated groups, allowing for an increase of putatively damaging variation. Our results also show a shift in mutational load coinciding with major demographic events in the region and reveal differences within and between cultural and geographic groups.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Havaš Auguštin D, Šarac J, Reidla M, Tamm E, Grahovac B, Kapović M, Novokmet N, Rudan P, Missoni S, Marjanović D, Korolija M. Refining the Global Phylogeny of Mitochondrial N1a, X, and HV2 Haplogroups Based on Rare Mitogenomes from Croatian Isolates. Genes (Basel) 2023; 14:1614. [PMID: 37628665 PMCID: PMC10454736 DOI: 10.3390/genes14081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been used for decades as a predominant tool in population genetics and as a valuable addition to forensic genetic research, owing to its unique maternal inheritance pattern that enables the tracing of individuals along the maternal lineage across numerous generations. The dynamic interplay between evolutionary forces, primarily genetic drift, bottlenecks, and the founder effect, can exert significant influence on genetic profiles. Consequently, the Adriatic islands have accumulated a subset of lineages that exhibits remarkable absence or rarity within other European populations. This distinctive genetic composition underscores the islands' potential as a significant resource in phylogenetic research, with implications reaching beyond regional boundaries to contribute to a global understanding. In the initial attempt to expand the mitochondrial forensic database of the Croatian population with haplotypes from small isolated communities, we sequenced mitogenomes of rare haplogroups from different Croatian island and mainland populations using next-generation sequencing (NGS). In the next step and based on the obtained results, we refined the global phylogeny of haplogroup N1a, HV2, and X by analyzing rare haplotypes, which are absent from the current phylogenetic tree. The trees were based on 16 novel and 52 previously published samples, revealing completely novel branches in the X and HV2 haplogroups and a new European cluster in the ancestral N1a variant, previously believed to be an exclusively African-Asian haplogroup. The research emphasizes the importance of investigating geographically isolated populations and their unique characteristics within a global context.
Collapse
Affiliation(s)
- Dubravka Havaš Auguštin
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Jelena Šarac
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Maere Reidla
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | - Erika Tamm
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | | | | | | | - Pavao Rudan
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Saša Missoni
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Damir Marjanović
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Genetics and Bioengineering Department, International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
| | - Marina Korolija
- Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
Lucas-Sánchez M, Fadhlaoui-Zid K, Comas D. The genomic analysis of current-day North African populations reveals the existence of trans-Saharan migrations with different origins and dates. Hum Genet 2023; 142:305-320. [PMID: 36441222 PMCID: PMC9918576 DOI: 10.1007/s00439-022-02503-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022]
Abstract
The Sahara Desert has acted as a barrier to human gene-flow between the northern and central parts of Africa since its aridification. Nonetheless, some contacts between both sides of the desert have occurred throughout history, mainly driven by commercial activity. Part of this was the infamous trans-Saharan slave trade, which forcedly brought peoples from south of the Sahara to North Africa from Roman times until the nineteenth century. Although historical records exist, the genetic aspects of these trans-Saharan migrations have not been deeply studied. In the present study, we assess the genetic influence of trans-Saharan migrations in current-day North Africa and characterize its amount, geographical origin, and dates. We confirm the heterogeneous and generally low-frequency presence of genomic segments of sub-Saharan origin in present-day North Africans acquired in recent historical times, and we show evidence of at least two admixture events: one dated around the thirteenth-fourteenth centuries CE between North Africans and a Western-sub-Saharan-like source similar to current-day Senegambian populations, and another one dated around the seventeenth century CE involving Tunisians and an Eastern-sub-Saharan-like source related to current-day south-Sudan and Kenyan populations. Time and location coincide with the peak of trans-Saharan slave-trade activity between Western African empires and North African powers, and are also concordant with the possibility of continuous recent south-to-north gene-flow. These findings confirm the trans-Saharan human genetic contacts, providing new and precise evidence about its possible dates and geographical origins, which are pivotal to understanding the genomic composition of an underrepresented region such as North Africa.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Karima Fadhlaoui-Zid
- Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia ,College of Science, Department of Biology, Taibah University, Al Madinah Al Monawarah, Saudi Arabia
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
6
|
Mestiri S, Boussetta S, Pakstis AJ, El Kamel S, Ben Ammar El Gaaied A, Kidd KK, Cherni L. New Insight into the human genetic diversity in North African populations by genotyping of SNPs in DRD3, CSMD1 and NRG1 genes. Mol Genet Genomic Med 2022; 10:e1871. [PMID: 35128830 PMCID: PMC8922960 DOI: 10.1002/mgg3.1871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The single nucleotide polymorphisms (SNPs) of the dopamine D3 receptor (DRD3), the CUB and sushi multiple domains 1 (CSMD1) and the neuregulin 1 (NRG1) genes were used to study the genetic diversity and affinity among North African populations and to examine their genetic relationships in worldwide populations. METHODS The rs3773678, rs3732783 and rs6280 SNPs of the DRD3 gene located on chromosome 3, the rs10108270 SNP of the CSMD1 gene and the rs383632, rs385396 and rs1462906 SNPs of the NRG1 gene located on chromosome 8 were analysed in 366 individuals from seven North African populations (Libya, Kairouan, Mehdia, Sousse, Kesra, Smar and Kerkennah). RESULTS The low values of FST indicated that only 0.27%-1.65% of the genetic variability was due to the differences between the populations. The Kairouan population has the lowest average heterozygosity among the North African populations. Haplotypes composed of the ancestral alleles ACC and ACAT were more frequent in the Kairouan population than in other North African populations. The PCA and the haplotypic analysis showed that the genetic structure of populations in North Africa was closer to that of Europeans, Admixed Americans, South Asians and East Asians. However, analysis of the rs3732783 and rs6280 SNPs revealed that the CT microhaplotype was specific to the North African population. CONCLUSIONS The Kairouan population exhibited a relatively low rate of genetic variability. The North African population has undergone significant gene flow but also evolutionary forces that have made it genetically distinct from other populations.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41)University of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirMonastir UniversityMonastirTunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Andrew J. Pakstis
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | - Sarra El Kamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Kenneth K. Kidd
- Department of GeneticsYale University School of MedicineNew HavenConnecticutUSA
| | - Lotfi Cherni
- Higher Institute of Biotechnology of MonastirMonastir UniversityMonastirTunisia
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| |
Collapse
|
7
|
Mestiri S, Boussetta S, Pakstis AJ, Elkamel S, Elgaaied ABA, Kidd KK, Cherni L. Genetic diversity of the North African population revealed by the typing of SNPs in the DRD2/ANKK1 genomic region. Gene 2021; 777:145466. [PMID: 33524518 DOI: 10.1016/j.gene.2021.145466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The dopamine - related genes, like dopamine D2 receptor (DRD2) gene and ankyrin repeat and kinase domain containing 1 (ANKK1) gene are implicated in neurological functions. Some polymorphisms of the DRD2/ANKK1 locus (TaqIA, TaqIB, TaqID) have been used to study genetic diversity and the evolution of human populations. The present investigation aims to assess the genetic diversity in seven North African populations in order to explore their genetic structure and to compare them to others worldwide populations studied for the same locus. Nine single nucleotide polymorphisms (SNPs) from the DRD2/ANKK1 locus (rs1800497 TaqIA, rs2242592, rs1124492, rs6277, rs6275, rs1079727, rs2002453, rs2234690 and rs1079597 TaqIB) were typed in 366 individuals from seven North African populations: six from Tunisia (Sousse, Smar, Kesra, Kairouan, Mehdia and Kerkennah) and one from Libya. The allelic frequencies of rs2002453 and rs2234690 were higher in the Smar population than in the other North African populations. More, the Smar population showed the lowest average heterozygosity (0.313). The principal component analysis (PCA) showed that the Smar population was clearly separated from others. Furthermore, linkage disequilibrium analysis shown a high linkage disequilibrium in the North African population and essentially in Smar population. Comparison with other world populations has shown that the heterozygosity of North African population was very close to that of the African and European populations. The PCA and the haplotypic analysis suggested the presence of an important Eurasian genetic component for the North African population. These results suggested that the Smar population was isolated from the others North Africans ones by its peculiar genetic structure because of isolation, endogamy and genetic drift. On the other hand, the North African population is characterized by a multi ancestral gene pool from Eurasia and sub-Saharan Africa due to human migration since prehistoric times.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41), University of Monastir, Monastir 5000, Tunisia; Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia.
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lotfi Cherni
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia; Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
8
|
Badache H, Boussetta S, Elgaaeid AB, Cherni L, El-khil HK. Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers. Ann Hum Biol 2019; 46:150-159. [DOI: 10.1080/03014460.2019.1588994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hocine Badache
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Amel Benammar Elgaaeid
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Houssein Khodjet El-khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
- Department of Biomedical Sciences, College of Health Sciences Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Jin S, Chase M, Henry M, Alderson G, Morrow JM, Malik S, Ballard D, McGrory J, Fernandopulle N, Millman J, Laird J. Implementing a biogeographic ancestry inference service for forensic casework. Electrophoresis 2018; 39:2757-2765. [PMID: 30125362 DOI: 10.1002/elps.201800171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023]
Abstract
The Centre of Forensic Sciences has validated the Precision ID Ancestry Panel on the Ion S5™ Massively Parallel Sequencing instrument for use in forensic casework. The focus of this paper is the development of reporting guidelines for implementation of the biogeographic ancestry inference service based on the Admixture Prediction results produced using the Torrent Suite™ Software (Thermo Fisher Scientific). The Admixture Prediction algorithm estimates the genetic ancestry of a sample using seven root populations (Europe, East Asia, Oceania, America, Africa, South Asia, and Southwest Asia). For individuals that declared a single ancestry, there was a high correlation between the declared ancestry and the ancestry predicted by the algorithm. However, some individuals with declared ancestries of Southern Europe, Southwest Asia, South Asia and Horn of Africa had Admixture Predictions that were composed of two or more root populations at 20% or greater. For individuals with known admixed ancestry, the major component of their declaration was included in their results in all but one case. Based on these results, reporting guidelines were developed and subsequently evaluated using the Admixture Predictions of additional samples. This paper discusses the development and evaluation of these reporting guidelines, along with an implementation plan for forensic casework.
Collapse
Affiliation(s)
- Soulbee Jin
- Centre of Forensic Sciences, Toronto, Canada
| | | | | | | | | | - Sobia Malik
- Centre of Forensic Sciences, Toronto, Canada
| | | | | | | | | | - Jack Laird
- Centre of Forensic Sciences, Toronto, Canada
| |
Collapse
|
10
|
Font-Porterias N, Solé-Morata N, Serra-Vidal G, Bekada A, Fadhlaoui-Zid K, Zalloua P, Calafell F, Comas D. The genetic landscape of Mediterranean North African populations through complete mtDNA sequences. Ann Hum Biol 2018; 45:98-104. [DOI: 10.1080/03014460.2017.1413133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Serra-Vidal
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Karima Fadhlaoui-Zid
- Laboratoire de Génetique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Univesritaire El Manar II, Université El Manar, Tunis, Tunisia
| | - Pierre Zalloua
- School of Medicine, The Lebanese American University, Chouran, Beirut, Lebanon
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
Ben Halim N, Hsouna S, Lasram K, Chargui M, Khemira L, Saidane R, Abdelhak S, Kefi R. Mitochondrial DNA structure of an isolated Tunisian Berber population and its relationship with Mediterranean populations. Ann Hum Biol 2018; 45:86-97. [DOI: 10.1080/03014460.2017.1414875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nizar Ben Halim
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Sana Hsouna
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Khaled Lasram
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Laaroussi Khemira
- Association de Sauvegarde de la Nature et de Protection de l’Environnement à Douiret (ASNAPED), Tunis, Tunisia
| | - Rachid Saidane
- Association de Sauvegarde de la Nature et de Protection de l’Environnement à Douiret (ASNAPED), Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
12
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
13
|
Arauna LR, Mendoza-Revilla J, Mas-Sandoval A, Izaabel H, Bekada A, Benhamamouch S, Fadhlaoui-Zid K, Zalloua P, Hellenthal G, Comas D. Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa. Mol Biol Evol 2017; 34:318-329. [PMID: 27744413 PMCID: PMC5644363 DOI: 10.1093/molbev/msw218] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies.
Collapse
Affiliation(s)
- Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Mendoza-Revilla
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.,Genetics Institute, University College London, London, United Kingdom
| | - Alex Mas-Sandoval
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.,Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hassan Izaabel
- Laboratoire de Biologie Cellulaire et Génétique Moléculaire (LBCGM), Université IBNZOHR, Agadir, Morocco
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Soraya Benhamamouch
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Karima Fadhlaoui-Zid
- Laboratoire de Génetique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Université El Manar, Tunis, Tunisia
| | - Pierre Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
| | | | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Hernández CL, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean. BMC Genet 2017; 18:46. [PMID: 28525980 PMCID: PMC5437654 DOI: 10.1186/s12863-017-0514-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature. RESULTS Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean. CONCLUSIONS Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
15
|
Messina F, Scano G, Contini I, Martínez-Labarga C, De Stefano GF, Rickards O. Linking between genetic structure and geographical distance: Study of the maternal gene pool in the Ethiopian population. Ann Hum Biol 2016; 44:53-69. [PMID: 26883569 DOI: 10.3109/03014460.2016.1155646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The correlation between genetics and geographical distance has already been examined through the study of the dispersion of human populations, especially in terms of uniparental genetic markers. Aim The present work characterises, at the level of the mitochondrial DNA (mtDNA), two new samples of Amhara and Oromo populations from Ethiopia to evaluate the possible pattern of distribution for mtDNA variation and to test the hypothesis of the Isolation-by-Distance (IBD) model among African, European and Middle-Eastern populations. Subjects and methods This study analysed 173 individuals belonging to two ethnic groups of Ethiopia, Amhara and Oromo, by assaying HVS-I and HVS-II of mtDNA D-loop and informative coding region SNPs of mtDNA. Results The analysis suggests a relationship between genetic and geographic distances, affirming that the mtDNA pool of Africa, Europe and the Middle East might be coherent with the IBD model. Moreover, the mtDNA gene pools of the Sub-Saharan African and Mediterranean populations were very different. Conclusion In this study the pattern of mtDNA distribution, beginning with the Ethiopian plateau, was tested in the IBD model. It could be affirmed that, on a continent scale, the mtDNA pool of Africa, Europe and the Middle East might fall under the IBD model.
Collapse
Affiliation(s)
- Francesco Messina
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Giuseppina Scano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Irene Contini
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Cristina Martínez-Labarga
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Gian Franco De Stefano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Olga Rickards
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| |
Collapse
|
16
|
Hernández CL, Soares P, Dugoujon JM, Novelletto A, Rodríguez JN, Rito T, Oliveira M, Melhaoui M, Baali A, Pereira L, Calderón R. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm. PLoS One 2015; 10:e0139784. [PMID: 26509580 PMCID: PMC4624789 DOI: 10.1371/journal.pone.0139784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, 31073 Toulouse, France
| | - Andrea Novelletto
- Dipartimento di Biologia, Università Tor Vergata di Rome, Rome, Italy
| | | | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Marisa Oliveira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | | | - Abdellatif Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - Luisa Pereira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Bekada A, Arauna LR, Deba T, Calafell F, Benhamamouch S, Comas D. Genetic Heterogeneity in Algerian Human Populations. PLoS One 2015; 10:e0138453. [PMID: 26402429 PMCID: PMC4581715 DOI: 10.1371/journal.pone.0138453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region.
Collapse
Affiliation(s)
- Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Lara R. Arauna
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Tahria Deba
- Centre de Transfusion Sanguine- Centre Hospitalo-Universitaire d’Oran (CTS-CHUO), Oran, Algeria
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Soraya Benhamamouch
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Hsouna S, Ben Halim N, Lasram K, Meiloud G, Arfa I, Kerkeni E, Romdhane L, Jamoussi H, Bahri S, Ben Ammar S, Abid A, Barakat A, Houmeida A, Abdelhak S, Kefi R. Study of the T16189C variant and mitochondrial lineages in Tunisian and overall Mediterranean region. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:1558-63. [PMID: 25208176 DOI: 10.3109/19401736.2014.953136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitochondrial DNA (mtDNA) variant T16189C has been investigated in several metabolic diseases. In this study, we aimed to estimate the frequency of the T16189C variant in Tunisian and other Mediterranean populations and to evaluate the impact of this variant on the phylogeny of Mediterranean populations. Blood sample of 240 unrelated Tunisian subjects were recruited from several Tunisian localities. The hypervariable region 1 of the mtDNA were amplified and sequenced. Additional sequences (N = 4921) from Mediterranean populations were compiled from previous studies. The average frequency of T16189C variant in Tunisia (29%) is similar to that observed in North African and Near Eastern populations. Our findings showed positive correlation of the T16189C variant with Sub-Saharan and North African lineages, while a negative correlation was found with the Eurasian haplogroups, reaching its maximum with the Eurasian haplogroup H. The principal component analyses showed a high internal heterogeneity between Tunisian localities. At the Mediterranean scale, Tunisians are closer to North African (Algerian and Moroccan) and Near Eastern populations (Syrians and Palestinians) than to Europeans.
Collapse
Affiliation(s)
- Sana Hsouna
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Nizar Ben Halim
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Khaled Lasram
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Ghlana Meiloud
- b Laboratoire de Biochimie et Biologie Moléculaire , Faculté des Sciences et Techniques , Nouakchott , Mauritania
| | - Imen Arfa
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Emna Kerkeni
- c Genetics Laboratory, Faculté de Médecine de Monastir , Monastir , Tunisia
| | - Lilia Romdhane
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Henda Jamoussi
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Sonia Bahri
- e Department of Biochemistry , Institut Pasteur de Tunis , Tunis , Tunisia , and
| | - Slim Ben Ammar
- e Department of Biochemistry , Institut Pasteur de Tunis , Tunis , Tunisia , and
| | - Abdelmajid Abid
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia .,d Service de Consultation Externe et Exploration Fonctionnelle, Institut National de Nutrition , Tunis , Tunisia
| | - Abdelhamid Barakat
- f Laboratoire de Génétique Moléculaire Humaine, Département de Recherche Scientifique , Institut Pasteur du Maroc , Casablanca , Morocco
| | - Ahmed Houmeida
- b Laboratoire de Biochimie et Biologie Moléculaire , Faculté des Sciences et Techniques , Nouakchott , Mauritania
| | - Sonia Abdelhak
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Rym Kefi
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| |
Collapse
|
19
|
Scorrano G, Lelli R, Martínez-Labarga C, Scano G, Contini I, Hafez HS, Rudan P, Rickards O. Variability and distribution of COL1A2 (type I collagen) polymorphisms in the central-eastern Mediterranean Basin. Ann Hum Biol 2015; 43:73-7. [PMID: 26065693 DOI: 10.3109/03014460.2015.1006679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The most abundant of the collagen protein family, type I collagen is encoded by the COL1A2 gene. The COL1A2 restriction fragment length polymorphisms (RFLPs) EcoRI, RsaI and MspI in samples from several different central-eastern Mediterranean populations were analysed and found to be potentially informative anthropogenetic markers. AIM The objective was to define the genetic variability of COL1A2 in the central-eastern Mediterranean and to shed light on its genetic distribution in human groups over a wide geographic area. SUBJECTS AND METHODS PCR-RFLP analysis of EcoRI, RsaI and MspI polymorphisms of the COL1A2 gene was performed on oral swab and blood samples from 308 individuals from the central-eastern Mediterranean Basin. The genetic similarities among these groups and other populations described in the literature were investigated through correspondence analysis. RESULTS Single-marker data and haplotype frequencies seemed to suggest a genetic homogeneity within the European populations, whereas a certain degree of differentiation was noted for the Egyptians and the Turks. CONCLUSIONS The genetic variability in the central-eastern Mediterranean area is probably a result of the geographical barrier of the Mediterranean Sea, which separated European and African populations over time.
Collapse
Affiliation(s)
- Gabriele Scorrano
- a Centro di Antropologia molecolare per lo studio del DNA antico, Dipartimento di Biologia, Universitá degli Studi di Roma Tor Vergata , Rome , Italy
| | - Roberta Lelli
- a Centro di Antropologia molecolare per lo studio del DNA antico, Dipartimento di Biologia, Universitá degli Studi di Roma Tor Vergata , Rome , Italy
| | - Cristina Martínez-Labarga
- a Centro di Antropologia molecolare per lo studio del DNA antico, Dipartimento di Biologia, Universitá degli Studi di Roma Tor Vergata , Rome , Italy
| | - Giuseppina Scano
- a Centro di Antropologia molecolare per lo studio del DNA antico, Dipartimento di Biologia, Universitá degli Studi di Roma Tor Vergata , Rome , Italy
| | - Irene Contini
- a Centro di Antropologia molecolare per lo studio del DNA antico, Dipartimento di Biologia, Universitá degli Studi di Roma Tor Vergata , Rome , Italy
| | - Hani S Hafez
- b Zoology Department, Faculty of Science , Suez University , Suez , Egypt
| | - Pavao Rudan
- c Institute for Anthropological Research , Zagreb , Croatia , and.,d Anthropological Center of the Croatian Academy of Sciences and Arts , Zagreb , Croatia
| | - Olga Rickards
- a Centro di Antropologia molecolare per lo studio del DNA antico, Dipartimento di Biologia, Universitá degli Studi di Roma Tor Vergata , Rome , Italy
| |
Collapse
|
20
|
Dobon B, Hassan HY, Laayouni H, Luisi P, Ricaño-Ponce I, Zhernakova A, Wijmenga C, Tahir H, Comas D, Netea MG, Bertranpetit J. The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape. Sci Rep 2015; 5:9996. [PMID: 26017457 PMCID: PMC4446898 DOI: 10.1038/srep09996] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/24/2015] [Indexed: 01/20/2023] Open
Abstract
East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic groups belonging to three African linguistic families: Niger-Kordofanian, Nilo-Saharan and Afro-Asiatic. A total of 500 individuals were genotyped for 200,000 single-nucleotide polymorphisms. Principal component analysis, clustering analysis using ADMIXTURE, FST statistics, and the three-population test were used to investigate the underlying genetic structure and ancestry of the different ethno-linguistic groups. Our analyses revealed a genetic component for Sudanese Nilo-Saharan speaking groups (Darfurians and part of Nuba populations) related to Nilotes of South Sudan, but not to other Sudanese populations or other sub-Saharan populations. Populations inhabiting the North of the region showed close genetic affinities with North Africa, with a component that could be remnant of North Africans before the migrations of Arabs from Arabia. In addition, we found very low genetic distances between populations in genes important for anti-malarial and anti-bacterial host defence, suggesting similar selective pressures on these genes and stressing the importance of considering functional pathways to understand the evolutionary history of populations.
Collapse
Affiliation(s)
- Begoña Dobon
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hisham Y Hassan
- 1] College of Medical Laboratory Sciences, University of Science and Technology, Omdurman, Sudan [2] Banoon ART and Cytogenetics Centre, Bahrain Defence Force Hospital, Manama, Kingdom of Bahrain
| | - Hafid Laayouni
- 1] Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [2] Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autonòma de Barcelona, Bellaterra (Barcelona), Spain
| | - Pierre Luisi
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Isis Ricaño-Ponce
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hanan Tahir
- Sudan Medical and Scientific Research Institute, University of Medical Sciences and Technology, Khartoum, Sudan
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Mihai G Netea
- 1] Department of Internal Medicine and [2] Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Triki-Fendri S, Sánchez-Diz P, Rey-González D, Ayadi I, Carracedo Á, Rebai A. Paternal lineages in Libya inferred from Y-chromosome haplogroups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:242-51. [DOI: 10.1002/ajpa.22705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Soumaya Triki-Fendri
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Paula Sánchez-Diz
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Danel Rey-González
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Imen Ayadi
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University; Jeddah Saudi Arabia
| | - Ahmed Rebai
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| |
Collapse
|
22
|
Pardiñas AF, Martínez JL, Roca A, García-Vazquez E, López B. Over the sands and far away: interpreting an Iberian mitochondrial lineage with ancient Western African origins. Am J Hum Biol 2014; 26:777-83. [PMID: 25130626 DOI: 10.1002/ajhb.22601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES There is an ongoing effort to characterize the genetic links between Africa and Europe, mostly using lineages and haplotypes that are specific to one continent but had an ancient origin in the other. Mitochondrial DNA has been proven to be a very useful tool for this purpose since a high number of putatively European-specific variants of the African L* lineages have been defined over the years. Due to their geographic locations, Spain and Portugal seem to be ideal places for searching for these lineages. METHODS Five members of a minor branch of haplogroup L3f were found in recent DNA samplings in the region of Asturias (Northern Spain), which is known for its historical isolation. The frequency of L3f in this population (≈1%) is unexpectedly high in comparison with other related lineages in Europe. Complete mitochondrial DNA sequencing of these L3f lineages, as well phylogenetic and phylogeographic comparative analyses have been performed. RESULTS The L3f variant found in Asturias seems to constitute an Iberian-specific haplogroup, distantly related to lineages in Northern Africa and with a deep ancestry in Western Africa. Coalescent algorithms estimate the minimum arrival time as 8,000 years ago, and a possible route through the Gibraltar Strait. CONCLUSIONS Results are concordant with a previously proposed Neolithic connection between Southern Europe and Western Africa, which might be key to the proper understanding of the ancient links between these two continents.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, 33071, Spain
| | | | | | | | | |
Collapse
|
23
|
Hodgson JA, Mulligan CJ, Al-Meeri A, Raaum RL. Early back-to-Africa migration into the Horn of Africa. PLoS Genet 2014; 10:e1004393. [PMID: 24921250 PMCID: PMC4055572 DOI: 10.1371/journal.pgen.1004393] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Genetic studies have identified substantial non-African admixture in the Horn of Africa (HOA). In the most recent genomic studies, this non-African ancestry has been attributed to admixture with Middle Eastern populations during the last few thousand years. However, mitochondrial and Y chromosome data are suggestive of earlier episodes of admixture. To investigate this further, we generated new genome-wide SNP data for a Yemeni population sample and merged these new data with published genome-wide genetic data from the HOA and a broad selection of surrounding populations. We used multidimensional scaling and ADMIXTURE methods in an exploratory data analysis to develop hypotheses on admixture and population structure in HOA populations. These analyses suggested that there might be distinct, differentiated African and non-African ancestries in the HOA. After partitioning the SNP data into African and non-African origin chromosome segments, we found support for a distinct African (Ethiopic) ancestry and a distinct non-African (Ethio-Somali) ancestry in HOA populations. The African Ethiopic ancestry is tightly restricted to HOA populations and likely represents an autochthonous HOA population. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at least 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural.
Collapse
Affiliation(s)
- Jason A. Hodgson
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, United Kingdom
| | - Connie J. Mulligan
- Department of Anthropology and the Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Ali Al-Meeri
- Department of Biochemistry and Molecular Biology, Sana'a University, Sana'a, Yemen
| | - Ryan L. Raaum
- Department of Anthropology, Lehman College and The Graduate Center, The City University of New York, Bronx, New York, New York, United States of America
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, United States of America
| |
Collapse
|
24
|
Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A, Anagnostou P, Kotze MJ, Ibrahim M, Nyambo T, Omar SA, Tishkoff SA. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet 2014; 94:496-510. [PMID: 24630847 PMCID: PMC3980415 DOI: 10.1016/j.ajhg.2014.02.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022] Open
Abstract
In humans, the ability to digest lactose, the sugar in milk, declines after weaning because of decreasing levels of the enzyme lactase-phlorizin hydrolase, encoded by LCT. However, some individuals maintain high enzyme amounts and are able to digest lactose into adulthood (i.e., they have the lactase-persistence [LP] trait). It is thought that selection has played a major role in maintaining this genetically determined phenotypic trait in different human populations that practice pastoralism. To identify variants associated with the LP trait and to study its evolutionary history in Africa, we sequenced MCM6 introns 9 and 13 and ~2 kb of the LCT promoter region in 819 individuals from 63 African populations and in 154 non-Africans from nine populations. We also genotyped four microsatellites in an ~198 kb region in a subset of 252 individuals to reconstruct the origin and spread of LP-associated variants in Africa. Additionally, we examined the association between LP and genetic variability at candidate regulatory regions in 513 individuals from eastern Africa. Our analyses confirmed the association between the LP trait and three common variants in intron 13 (C-14010, G-13907, and G-13915). Furthermore, we identified two additional LP-associated SNPs in intron 13 and the promoter region (G-12962 and T-956, respectively). Using neutrality tests based on the allele frequency spectrum and long-range linkage disequilibrium, we detected strong signatures of recent positive selection in eastern African populations and the Fulani from central Africa. In addition, haplotype analysis supported an eastern African origin of the C-14010 LP-associated mutation in southern Africa.
Collapse
Affiliation(s)
- Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael C Campbell
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jibril B Hirbo
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen-Ya Ko
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alain Froment
- UMR 208, Musée de l'Homme, Muséum National d'Histoire Naturelle and Institut de Recherche pour le Développement, 75116 Paris, France
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università La Sapienza, 00185 Rome, Italy; Istituto Italiano di Antropologia, 00100 Rome, Italy
| | - Maritha J Kotze
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Muntaser Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, 15-13 Khartoum, Sudan
| | - Thomas Nyambo
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sabah A Omar
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, 54840-00200 Nairobi, Kenya
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Gebremeskel EI, Ibrahim ME. Y-chromosome E haplogroups: their distribution and implication to the origin of Afro-Asiatic languages and pastoralism. Eur J Hum Genet 2014; 22:1387-92. [PMID: 24667790 PMCID: PMC4231410 DOI: 10.1038/ejhg.2014.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/09/2022] Open
Abstract
Archeological and paleontological evidences point to East Africa as the likely area of early evolution of modern humans. Genetic studies also indicate that populations from the region often contain, but not exclusively, representatives of the more basal clades of mitochondrial and Y-chromosome phylogenies. Most Y-chromosome haplogroup diversity in Africa, however, is present within macrohaplogroup E that seem to have appeared 21 000-32 000 YBP somewhere between the Red Sea and Lake Chad. The combined analysis of 17 bi-allelic markers in 1214 Y chromosomes together with cultural background of 49 populations displayed in various metrics: network, multidimensional scaling, principal component analysis and neighbor-joining plots, indicate a major contribution of East African populations to the foundation of the macrohaplogroup, suggesting a diversification that predates the appearance of some cultural traits and the subsequent expansion that is more associated with the cultural and linguistic diversity witnessed today. The proto-Afro-Asiatic group carrying the E-P2 mutation may have appeared at this point in time and subsequently gave rise to the different major population groups including current speakers of the Afro-Asiatic languages and pastoralist populations.
Collapse
Affiliation(s)
- Eyoab I Gebremeskel
- 1] Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan [2] Department of Biology, Eritrea Institute of Technology, Mai-Nefhi, Eritrea
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
26
|
Kefi R, Hsouna S, Ben Halim N, Lasram K, Romdhane L, Messai H, Abdelhak S. Phylogeny and genetic structure of Tunisians and their position within Mediterranean populations. ACTA ACUST UNITED AC 2014; 26:593-604. [PMID: 24491098 DOI: 10.3109/19401736.2013.879649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tunisia is located at the crossroads of Europe, the Middle East and Sub-Saharan Africa. This position might lead to numerous waves of migrations, contributing to the current genetic landscape of Tunisians. In this study, we analyzed 815 mitochondrial DNA (mtDNA) sequences from Tunisia in order to characterize the mitochondrial DNA genetic structure of this region, to construct the processes for its composition and to compare it to other Mediterranean populations. To that end, additional 4206 mtDNA sequences were compiled from previous studies performed in African (1237), Near Eastern (231) and European (2738) populations. Both phylogenetic and statistical analyses were performed. This study confirmed the mosaic genetic structure of the Tunisian population with the predominance of the Eurasian lineages, followed by the Sub-Saharan and North African lineages. Among Tunisians, the highest haplogroup and haplotype diversity were observed in particular in the Capital Tunis. No significant differentiation was observed between both geographical (Northern versus Southern Tunisia) and different ethnic groups in Tunisia. Our results highlight the presence of outliers and most frequent unique sequences in Tunisia (10.2%) compared to 45 Mediterranean populations. Phylogenetic analysis showed that the majority of Tunisian localities were closer to North Africans and Near Eastern populations than to Europeans. The exception was found for Berbers from Jerba which are clustered with Sardinians and Valencians.
Collapse
Affiliation(s)
- Rym Kefi
- Biomedical Genomics and Oncogenetics Laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia and
| | | | | | | | | | | | | |
Collapse
|
27
|
BAHRI RAOUDHA, ESTEBAN ESTHER, BEN HALIMA ABIR, MORAL PEDRO, CHAABANI HASSEN. Distinctive genetic signatures of Alu/STR compound systems revealed by analyses of Mediterranean and Middle East populations. ANTHROPOL SCI 2014. [DOI: 10.1537/ase.140602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- RAOUDHA BAHRI
- Laboratory of Human Genetics and Anthropology, Faculty of Pharmacy, University of Monastir
| | - ESTHER ESTEBAN
- Secció d’Antropologia, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona
| | - ABIR BEN HALIMA
- Laboratory of Human Genetics and Anthropology, Faculty of Pharmacy, University of Monastir
| | - PEDRO MORAL
- Secció d’Antropologia, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona
| | - HASSEN CHAABANI
- Laboratory of Human Genetics and Anthropology, Faculty of Pharmacy, University of Monastir
| |
Collapse
|
28
|
Fadhlaoui-Zid K, Haber M, Martínez-Cruz B, Zalloua P, Benammar Elgaaied A, Comas D. Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa. PLoS One 2013; 8:e80293. [PMID: 24312208 PMCID: PMC3842387 DOI: 10.1371/journal.pone.0080293] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period.
Collapse
Affiliation(s)
- Karima Fadhlaoui-Zid
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Université el Manar, Tunis, Tunisia
| | - Marc Haber
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Begoña Martínez-Cruz
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pierre Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Amel Benammar Elgaaied
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Université el Manar, Tunis, Tunisia
| | - David Comas
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Halima AB, Bahri R, Esteban E, Aribia MHB, Moral P, Chaabani H. Ethnic composition and genetic differentiation of the Libyan population: insights onAlupolymorphisms. Ann Hum Biol 2013; 41:229-37. [DOI: 10.3109/03014460.2013.850112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Gene flow from North Africa contributes to differential human genetic diversity in southern Europe. Proc Natl Acad Sci U S A 2013; 110:11791-6. [PMID: 23733930 DOI: 10.1073/pnas.1306223110] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis.
Collapse
|
31
|
Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J, Benhamamouch S, González AM. Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape. PLoS One 2013; 8:e56775. [PMID: 23431392 PMCID: PMC3576335 DOI: 10.1371/journal.pone.0056775] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.
Collapse
Affiliation(s)
- Asmahan Bekada
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Rosa Fregel
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Vicente M. Cabrera
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José M. Larruga
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José Pestano
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Soraya Benhamamouch
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Ana M. González
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
32
|
Pennarun E, Kivisild T, Metspalu E, Metspalu M, Reisberg T, Moisan JP, Behar DM, Jones SC, Villems R. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol Biol 2012. [PMID: 23206491 PMCID: PMC3582464 DOI: 10.1186/1471-2148-12-234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.
Collapse
Affiliation(s)
- Erwan Pennarun
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Henn BM, Botigué LR, Gravel S, Wang W, Brisbin A, Byrnes JK, Fadhlaoui-Zid K, Zalloua PA, Moreno-Estrada A, Bertranpetit J, Bustamante CD, Comas D. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet 2012; 8:e1002397. [PMID: 22253600 PMCID: PMC3257290 DOI: 10.1371/journal.pgen.1002397] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 10/11/2011] [Indexed: 01/20/2023] Open
Abstract
North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from “back-to-Africa” gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa. Proposed migrations between North Africa and neighboring regions have included Paleolithic gene flow from the Near East, an Arabic migration across the whole of North Africa 1,400 years ago (ya), and trans-Saharan transport of slaves from sub-Saharan Africa. Historical records, archaeology, and mitochondrial and Y-chromosome DNA have been marshaled in support of one theory or another, but there is little consensus regarding the overall genetic background of North African populations or their origin and expansion. We characterize the patterns of genetic variation in North Africa using ∼730,000 single nucleotide polymorphisms from across the genome for seven populations. We observe two distinct, opposite gradients of ancestry: an east-to-west increase in likely autochthonous North African ancestry and an east-to-west decrease in likely Near Eastern Arabic ancestry. The indigenous North African ancestry may have been more common in Berber populations and appears most closely related to populations outside of Africa, but divergence between Maghrebi peoples and Near Eastern/Europeans likely precedes the Holocene (>12,000 ya). We also find significant signatures of sub-Saharan African ancestry that vary substantially among populations. These sub-Saharan ancestries appear to be a recent introduction into North African populations, dating to about 1,200 years ago in southern Morocco and about 750 years ago into Egypt, possibly reflecting the patterns of the trans-Saharan slave trade that occurred during this period.
Collapse
Affiliation(s)
- Brenna M Henn
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Khodjet-el-Khil H, Fadhlaoui-Zid K, Gusmão L, Alves C, Benammar-Elgaaied A, Amorim A. Allele frequencies for 15 autosomal STR markers in the Libyan population. Ann Hum Biol 2011; 39:80-3. [PMID: 22039975 DOI: 10.3109/03014460.2011.630678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Until recently Libya remained the only state of the Maghreb without genetic evolution investigations of the genetic landscape of its population. Apart from some studies of Libyan Jews and Libyan Tuareg, only two recent investigations, based on autosomal ancestry informative SNP and mitochondrial DNA markers, have concerned the general Libyan population. AIM The present work is the first to describe STR markers polymorphism in the general Libyan population in order to contribute to the analysis of its genetic diversity for forensic purposes. SUBJECTS AND METHODS Allele frequencies for 15 STR loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, TPOX, VWA, D2S1338, D19S433) included in the AmpFlSTR Identifiler kit were determined in a sample of 99 unrelated individuals originating from the general Libyan population. RESULTS No deviations from Hardy-Weinberg equilibrium were observed, with the exception of CSF1PO. Genetic parameters of forensic interest such as combined power of discrimination (PD) and combined probability of exclusion (PE) showed values higher than 0.999. Comparisons with data from other North African populations showed significant differences between Libyans and Tunisians, Moroccans and Egyptians. CONCLUSIONS The high informativity observed for these 15 STRs in a Libyan population demonstrates their usefulness for forensic and parental purposes.
Collapse
Affiliation(s)
- Houssein Khodjet-el-Khil
- Laboratory of Molecular Genetics, Immunology and Human Pathologies, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia.
| | | | | | | | | | | |
Collapse
|
35
|
Fadhlaoui-Zid K, Martinez-Cruz B, Khodjet-el-khil H, Mendizabal I, Benammar-Elgaaied A, Comas D. Genetic structure of Tunisian ethnic groups revealed by paternal lineages. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:271-80. [DOI: 10.1002/ajpa.21581] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/24/2011] [Indexed: 11/12/2022]
|