1
|
D'Amato ME, Ristow P, Livesey M, Heynes K, Huber N, Bravi C, Hansen AJ, Parson W. Persistence of Ancestral KhoeSan Mitochondrial Patterns in Contemporary South African Populations. Ann Hum Genet 2025:e12589. [PMID: 39775598 DOI: 10.1111/ahg.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Southern Africa has been inhabited by hunter-gatherers for at least 20,000 years and has received diverse immigration flows in the last 2000 years. The original inhabitants have interacted with the pastoralist migrants from Eastern Africa (∼2000 ybp), followed by the southern Bantu migration arriving some 1000 ybp, and more recently with the European and Asian settlers after the 17th century. Many of the original Khoekhoe and San inhabitants have either become extinct or have disappeared through admixture in South Africa (SA), in a sex-biased manner involving KhoeSan women. METHODS In this study, we generated mitochondrial DNA (mtDNA) control region (CR) sequences for 247 South African individuals. The sampling effort was concentrated in regions and populations with historical links to the KhoeSan population groups: admixed (Coloured, Griqua), Nama (Khoekhoe) and Bantu in three provinces. Here we evaluate the composition and extent of connectivity between population groups and regions, and to assess the distribution of haplotypes for the practical application of mtDNA CR data in forensic identifications. RESULTS The analysis of the newly generated sequences revealed 142 distinct haplotypes, of which 122 were unique. Haplogroup L0 was predominant (overall 71.7%). A high-frequency L0d2a haplotype dominated the pool of the admixed groups with 10%-12.5% incidence overall or per region. Comparative analysis with 545 extant mtDNA CR sequences from South African KhoeSan and admixed descendants revealed extensive population structure and high within-group haplotype sharing. CONCLUSION The observed population and regional variations, combined with the prevalence of high-frequency haplotypes, align with patterns of matrilocality. These findings highlight the limitations of using mtDNA control region analysis for forensic applications in South Africa.
Collapse
Affiliation(s)
- Maria Eugenia D'Amato
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Peter Ristow
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Michelle Livesey
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Kirsty Heynes
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Kobenhavn, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Gretzinger J, Gibbon VE, Penske SE, Sealy JC, Rohrlach AB, Salazar-García DC, Krause J, Schiffels S. 9,000 years of genetic continuity in southernmost Africa demonstrated at Oakhurst rockshelter. Nat Ecol Evol 2024; 8:2121-2134. [PMID: 39300260 PMCID: PMC11541196 DOI: 10.1038/s41559-024-02532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Southern Africa has one of the longest records of fossil hominins and harbours the largest human genetic diversity in the world. Yet, despite its relevance for human origins and spread around the globe, the formation and processes of its gene pool in the past are still largely unknown. Here, we present a time transect of genome-wide sequences from nine individuals recovered from a single site in South Africa, Oakhurst Rockshelter. Spanning the whole Holocene, the ancient DNA of these individuals allows us to reconstruct the demographic trajectories of the indigenous San population and their ancestors during the last 10,000 years. We show that, in contrast to most regions around the world, the population history of southernmost Africa was not characterized by several waves of migration, replacement and admixture but by long-lasting genetic continuity from the early Holocene to the end of the Later Stone Age. Although the advent of pastoralism and farming substantially transformed the gene pool in most parts of southern Africa after 1,300 BP, we demonstrate using allele-frequency and identity-by-descent segment-based methods that the ‡Khomani San and Karretjiemense from South Africa still show direct signs of relatedness to the Oakhurst hunter-gatherers, a pattern obscured by recent, extensive non-Southern African admixture. Yet, some southern San in South Africa still preserve this ancient, Pleistocene-derived genetic signature, extending the period of genetic continuity until today.
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Victoria E Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Sandra E Penske
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Judith C Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Domingo C Salazar-García
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany.
| |
Collapse
|
3
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
4
|
Arias L, Emlen NQ, Norder S, Julmi N, Lemus Serrano M, Chacon T, Wiegertjes J, Howard A, Azevedo MCBC, Caine A, Dunn S, Stoneking M, Van Gijn R. Interpreting mismatches between linguistic and genetic patterns among speakers of Tanimuka (Eastern Tukanoan) and Yukuna (Arawakan). Interface Focus 2023; 13:20220056. [PMID: 36655193 PMCID: PMC9732642 DOI: 10.1098/rsfs.2022.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Northwestern Amazonia is home to a great degree of linguistic diversity, and the human societies in that region are part of complex networks of interaction that predate the arrival of Europeans. This study investigates the population and language contact dynamics between two languages found within this region, Yukuna and Tanimuka, which belong to the Arawakan and Tukanoan language families, respectively. We use evidence from linguistics, ethnohistory, ethnography and population genetics to provide new insights into the contact dynamics between these and other human groups in NWA. Our results show that the interaction between these groups intensified in the last 500 years, to the point that it is difficult to differentiate between them genetically. However, this close interaction has led to more substantial contact-induced language changes in Tanimuka than in Yukuna, consistent with a scenario of language shift and asymmetrical power relations.
Collapse
Affiliation(s)
- Leonardo Arias
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nicholas Q. Emlen
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- University of Groningen (Campus Fryslân), Groningen, The Netherlands
| | - Sietze Norder
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Nora Julmi
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| | | | | | | | - Austin Howard
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| | | | - Allison Caine
- Leiden University Centre for Linguistics, Leiden, The Netherlands
- University of Wyoming, Laramie, WY, USA
| | - Saskia Dunn
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Rik Van Gijn
- Leiden University Centre for Linguistics, Leiden, The Netherlands
| |
Collapse
|
5
|
African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing. Sci Rep 2022; 12:10747. [PMID: 35750688 PMCID: PMC9232647 DOI: 10.1038/s41598-022-13856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeological and genomic evidence suggest that modern Homo sapiens have roamed the planet for some 300–500 thousand years. In contrast, global human mitochondrial (mtDNA) diversity coalesces to one African female ancestor (“Mitochondrial Eve”) some 145 thousand years ago, owing to the ¼ gene pool size of our matrilineally inherited haploid genome. Therefore, most of human prehistory was spent in Africa where early ancestors of Southern African Khoisan and Central African rainforest hunter-gatherers (RFHGs) segregated into smaller groups. Their subdivisions followed climatic oscillations, new modes of subsistence, local adaptations, and cultural-linguistic differences, all prior to their exodus out of Africa. Seven African mtDNA haplogroups (L0–L6) traditionally captured this ancient structure—these L haplogroups have formed the backbone of the mtDNA tree for nearly two decades. Here we describe L7, an eighth haplogroup that we estimate to be ~ 100 thousand years old and which has been previously misclassified in the literature. In addition, L7 has a phylogenetic sublineage L7a*, the oldest singleton branch in the human mtDNA tree (~ 80 thousand years). We found that L7 and its sister group L5 are both low-frequency relics centered around East Africa, but in different populations (L7: Sandawe; L5: Mbuti). Although three small subclades of African foragers hint at the population origins of L5'7, the majority of subclades are divided into Afro-Asiatic and eastern Bantu groups, indicative of more recent admixture. A regular re-estimation of the entire mtDNA haplotype tree is needed to ensure correct cladistic placement of new samples in the future.
Collapse
|
6
|
Vicente M, Lankheet I, Russell T, Hollfelder N, Coetzee V, Soodyall H, Jongh MD, Schlebusch CM. Male-biased migration from East Africa introduced pastoralism into southern Africa. BMC Biol 2021; 19:259. [PMID: 34872534 PMCID: PMC8650298 DOI: 10.1186/s12915-021-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hunter-gatherer lifestyles dominated the southern African landscape up to ~ 2000 years ago, when herding and farming groups started to arrive in the area. First, herding and livestock, likely of East African origin, appeared in southern Africa, preceding the arrival of the large-scale Bantu-speaking agro-pastoralist expansion that introduced West African-related genetic ancestry into the area. Present-day Khoekhoe-speaking Namaqua (or Nama in short) pastoralists show high proportions of East African admixture, linking the East African ancestry with Khoekhoe herders. Most other historical Khoekhoe populations have, however, disappeared over the last few centuries and their contribution to the genetic structure of present-day populations is not well understood. In our study, we analyzed genome-wide autosomal and full mitochondrial data from a population who trace their ancestry to the Khoekhoe-speaking Hessequa herders from the southern Cape region of what is now South Africa. RESULTS We generated genome-wide data from 162 individuals and mitochondrial DNA data of a subset of 87 individuals, sampled in the Western Cape Province, South Africa, where the Hessequa population once lived. Using available comparative data from Khoe-speaking and related groups, we aligned genetic date estimates and admixture proportions to the archaeological proposed dates and routes for the arrival of the East African pastoralists in southern Africa. We identified several Afro-Asiatic-speaking pastoralist groups from Ethiopia and Tanzania who share high affinities with the East African ancestry present in southern Africa. We also found that the East African pastoralist expansion was heavily male-biased, akin to a pastoralist migration previously observed on the genetic level in ancient Europe, by which Pontic-Caspian Steppe pastoralist groups represented by the Yamnaya culture spread across the Eurasian continent during the late Neolithic/Bronze Age. CONCLUSION We propose that pastoralism in southern Africa arrived through male-biased migration of an East African Afro-Asiatic-related group(s) who introduced new subsistence and livestock practices to local southern African hunter-gatherers. Our results add to the understanding of historical human migration and mobility in Africa, connected to the spread of food-producing and livestock practices.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Imke Lankheet
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thembi Russell
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Vinet Coetzee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.
- SciLife Lab, Uppsala, Sweden.
| |
Collapse
|
7
|
Choudhury A, Sengupta D, Ramsay M, Schlebusch C. Bantu-speaker migration and admixture in southern Africa. Hum Mol Genet 2021; 30:R56-R63. [PMID: 33367711 PMCID: PMC8117461 DOI: 10.1093/hmg/ddaa274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023] Open
Abstract
The presence of Early and Middle Stone Age human remains and associated archeological artifacts from various sites scattered across southern Africa, suggests this geographic region to be one of the first abodes of anatomically modern humans. Although the presence of hunter-gatherer cultures in this region dates back to deep times, the peopling of southern Africa has largely been reshaped by three major sets of migrations over the last 2000 years. These migrations have led to a confluence of four distinct ancestries (San hunter-gatherer, East-African pastoralist, Bantu-speaker farmer and Eurasian) in populations from this region. In this review, we have summarized the recent insights into the refinement of timelines and routes of the migration of Bantu-speaking populations to southern Africa and their admixture with resident southern African Khoe-San populations. We highlight two recent studies providing evidence for the emergence of fine-scale population structure within some South-Eastern Bantu-speaker groups. We also accentuate whole genome sequencing studies (current and ancient) that have both enhanced our understanding of the peopling of southern Africa and demonstrated a huge potential for novel variant discovery in populations from this region. Finally, we identify some of the major gaps and inconsistencies in our understanding and emphasize the importance of more systematic studies of southern African populations from diverse ethnolinguistic groups and geographic locations.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Carina Schlebusch
- Palaeo-Research Institute, University of Johannesburg, Auckland Park 2006, South Africa
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala 75326, Sweden
- SciLifeLab, Uppsala 75237, Sweden
| |
Collapse
|
8
|
Coutinho A, Malmström H, Edlund H, Henshilwood CS, van Niekerk KL, Lombard M, Schlebusch CM, Jakobsson M. Later Stone Age human hair from Vaalkrans Shelter, Cape Floristic Region of South Africa, reveals genetic affinity to Khoe groups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:701-713. [PMID: 33539553 DOI: 10.1002/ajpa.24236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 11/09/2022]
Abstract
Previous studies show that the indigenous people of the southern Cape of South Africa were dramatically impacted by the arrival of European colonists starting ~400 years ago and their descendants are today mixed with Europeans and Asians. To gain insight on the occupants of the Vaalkrans Shelter located at the southernmost tip of Africa, we investigated the genetic make-up of an individual who lived there about 200 years ago. We further contextualize the genetic ancestry of this individual among prehistoric and current groups. From a hair sample excavated at the shelter, which was indirectly dated to about 200 years old, we sequenced the genome (1.01 times coverage) of a Later Stone Age individual. We analyzed the Vaalkrans genome together with genetic data from 10 ancient (pre-colonial) individuals from southern Africa spanning the last 2000 years. We show that the individual from Vaalkrans was a man who traced ~80% of his ancestry to local southern San hunter-gatherers and ~20% to a mixed East African-Eurasian source. This genetic make-up is similar to modern-day Khoekhoe individuals from the Northern Cape Province (South Africa) and Namibia, but in the southern Cape, the Vaalkrans man's descendants have likely been assimilated into mixed-ancestry "Coloured" groups. The Vaalkrans man's genome reveals that Khoekhoe pastoralist groups/individuals lived in the southern Cape as late as 200 years ago, without mixing with non-African colonists or Bantu-speaking farmers. Our findings are also consistent with the model of a Holocene pastoralist migration, originating in Eastern Africa, shaping the genomic landscape of historic and current southern African populations.
Collapse
Affiliation(s)
- Alexandra Coutinho
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Hanna Edlund
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Christopher S Henshilwood
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Karen L van Niekerk
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| | - Marlize Lombard
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.,Science for Life Laboratory, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.,Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
9
|
Pakendorf B, Stoneking M. The genomic prehistory of peoples speaking Khoisan languages. Hum Mol Genet 2020; 30:R49-R55. [PMID: 33075813 PMCID: PMC8117426 DOI: 10.1093/hmg/ddaa221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/14/2022] Open
Abstract
Peoples speaking so-called Khoisan languages-that is, indigenous languages of southern Africa that do not belong to the Bantu family-are culturally and linguistically diverse. They comprise herders, hunter-gatherers as well as groups of mixed modes of subsistence, and their languages are classified into three distinct language families. This cultural and linguistic variation is mirrored by extensive genetic diversity. We here review the recent genomics literature and discuss the genetic evidence for a formerly wider geographic spread of peoples with Khoisan-related ancestry, for the deep divergence among populations speaking Khoisan languages overlaid by more recent gene flow among these groups and for the impact of admixture with immigrant food-producers in their prehistory.
Collapse
Affiliation(s)
- Brigitte Pakendorf
- Dynamique du Langage, UMR5596, CNRS & Université de Lyon, 14 avenue Berthelot, 69007 Lyon, France
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Vicente M, Jakobsson M, Ebbesen P, Schlebusch CM. Genetic Affinities among Southern Africa Hunter-Gatherers and the Impact of Admixing Farmer and Herder Populations. Mol Biol Evol 2020; 36:1849-1861. [PMID: 31288264 PMCID: PMC6735883 DOI: 10.1093/molbev/msz089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Southern African indigenous groups, traditionally hunter-gatherers (San) and herders (Khoekhoe), are commonly referred to as “Khoe-San” populations and have a long history in southern Africa. Their ancestors were largely isolated up until ∼2,000 years ago before the arrival of pastoralists and farmers in southern Africa. Assessing relationships among regional Khoe-San groups has been challenging due to admixture with immigrant populations that obscure past population affinities and gene flow among these autochthonous communities. We re-evaluate a combined genome-wide data set of previously published southern Africa Khoe-San populations in conjunction with novel data from Khoe-San individuals collected in Xade (Central Kalahari Game Reserve, Botswana) prior to their resettlement outside the reserve. After excluding regions in the genome that trace their ancestry to recent migrant groups, the genetic diversity of 20 Khoe-San groups fitted an isolation-by-distance model. Even though isolation-by-distance explained most genetic affinities between the different autochthonous groups, additional signals of contact between Khoe-San groups could be detected. For instance, we found stronger genetic affinities, than what would be explained by isolation-by-distance gene flow, between the two geographically separated Khoe-San groups, who speak branches of the Kx’a-language family (ǂHoan and Ju). We also scanned the genome-wide data for signals of adaptive gene flow from farmers/herders into Khoe-San groups and identified a number of genomic regions potentially introduced by the arrival of the new groups. This study provides a comprehensive picture of affinities among Khoe-San groups, prior to the arrival of recent migrants, and found that these affinities are primarily determined by the geographic landscape.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Uppsala, Sweden
| | - Peter Ebbesen
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.,SciLifeLab, Uppsala, Sweden
| |
Collapse
|
11
|
Chan EKF, Timmermann A, Baldi BF, Moore AE, Lyons RJ, Lee SS, Kalsbeek AMF, Petersen DC, Rautenbach H, Förtsch HEA, Bornman MSR, Hayes VM. Human origins in a southern African palaeo-wetland and first migrations. Nature 2019; 575:185-189. [PMID: 31659339 DOI: 10.1038/s41586-019-1714-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 01/17/2023]
Abstract
Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.
Collapse
Affiliation(s)
- Eva K F Chan
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea. .,Pusan National University, Busan, South Korea.
| | - Benedetta F Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andy E Moore
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.,Pusan National University, Busan, South Korea
| | - Anton M F Kalsbeek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Desiree C Petersen
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,The Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Hannes Rautenbach
- Climate Change and Variability, South African Weather Service, Pretoria, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Akademia, Johannesburg, South Africa
| | | | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. .,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. .,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, University of Limpopo, Sovenga, South Africa. .,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Lombard M, Malmström H, Schlebusch C, Svensson EM, Günther T, Munters AR, Coutinho A, Edlund H, Zipfel B, Jakobsson M. Genetic data and radiocarbon dating question Plovers Lake as a Middle Stone Age hominin-bearing site. J Hum Evol 2019. [DOI: 10.1016/j.jhevol.2019.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Bajić V, Barbieri C, Hübner A, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, Mpoloka SW, Roewer L, Purps J, Stoneking M, Pakendorf B. Genetic structure and sex-biased gene flow in the history of southern African populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:656-671. [PMID: 30192370 PMCID: PMC6667921 DOI: 10.1002/ajpa.23694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/31/2022]
Abstract
Objectives We investigated the genetic history of southern African populations with a special focus on their paternal history. We reexamined previous claims that the Y‐chromosome haplogroup E1b1b (E‐M293) was brought to southern Africa by pastoralists from eastern Africa, and investigated patterns of sex‐biased gene flow in southern Africa. Materials and methods We analyzed previously published complete mtDNA genome sequences and ∼900 kb of NRY sequences from 23 populations from Namibia, Botswana, and Zambia, as well as haplogroup frequencies from a large sample of southern African populations and 23 newly genotyped Y‐linked STR loci for samples assigned to haplogroup E1b1b. Results Our results support an eastern African origin for Y‐chromosome haplogroup E1b1b (E‐M293); however, its current distribution in southern Africa is not strongly associated with pastoralism, suggesting more complex demographic events and/or changes in subsistence practices in this region. The Bantu expansion in southern Africa had a notable genetic impact and was probably a rapid, male‐dominated expansion. Our finding of a significant increase in the intensity of the sex‐biased gene flow from north to south may reflect changes in the social dynamics between Khoisan and Bantu groups over time. Conclusions Our study shows that the population history of southern Africa has been complex, with different immigrating groups mixing to different degrees with the autochthonous populations. The Bantu expansion led to heavily sex‐biased admixture as a result of interactions between Khoisan females and Bantu males, with a geographic gradient which may reflect changes in the social dynamics between Khoisan and Bantu groups over time.
Collapse
Affiliation(s)
- Vladimir Bajić
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution, MPI for the Science of Human History, Jena, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alexander Hübner
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Tom Güldemann
- Department of Linguistic and Cultural Evolution, MPI for the Science of Human History, Jena, Germany.,Institute of Asian and African Studies, Humboldt University, Berlin, Germany
| | - Christfried Naumann
- Institute of Asian and African Studies, Humboldt University, Berlin, Germany
| | - Linda Gerlach
- Department of Human Behavior, Ecology and Culture, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Falko Berthold
- Max Planck Research Group on Comparative Population Linguistics, MPI for Evolutionary Anthropology, Leipzig, Germary
| | - Hirosi Nakagawa
- Institute of Global Studies, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lutz Roewer
- Charité - Universitätsmedizin Berlin, Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Berlin, Germany
| | - Josephine Purps
- Charité - Universitätsmedizin Berlin, Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Berlin, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Brigitte Pakendorf
- Laboratoire «Dynamique du Langage», CNRS & Université de Lyon, Lyon, France
| |
Collapse
|
14
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
15
|
Smyth N, Ramsay M, Raal FJ. Population specific genetic heterogeneity of familial hypercholesterolemia in South Africa. Curr Opin Lipidol 2018; 29:72-79. [PMID: 29369830 DOI: 10.1097/mol.0000000000000488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW To describe the prevalence and population-specific genetic heterogeneity of familial hypercholesterolemia in South Africa. RECENT FINDINGS This review highlights the paucity of data on familial hypercholesterolemia in South Africa, and the urgent need to uncover the mutation profiles in lipid-associated genes, causing an increase in LDL-cholesterol in the different ethnic groups. Case reports and small studies have shown that familial hypercholesterolemia, although apparently uncommon, is present in black Africans. SUMMARY Local founder effects have led to an increased prevalence of familial hypercholesterolemia in several South African populations: Afrikaner founder mutations (c.681 C>G, c.1285 G>A, c.523 G>A), Ashkenazi founder mutation (c.654_656del) and possible Indian founder mutation (c.2054 C>T). Preliminary data in black Africans with elevated LDL-cholesterol identified a possible common mutation, c.137_142del. The South African multiethnic society and well described founder effects emphasize the need for differential approaches to diagnosis and management of familial hypercholesterolemia. Studies involving larger cohorts and inclusive of different ethnicities are paramount to establishing an accurate prevalence of familial hypercholesterolemia in black Africans, not only in South Africa but in the Sub-Saharan African region. It is clear that the estimated world prevalence of one in 250 cannot be generally applied across African populations.
Collapse
Affiliation(s)
| | | | - Frederick J Raal
- Department of Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Oliveira S, Fehn AM, Aço T, Lages F, Gayà-Vidal M, Pakendorf B, Stoneking M, Rocha J. Matriclans shape populations: Insights from the Angolan Namib Desert into the maternal genetic history of southern Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:518-535. [PMID: 29313877 DOI: 10.1002/ajpa.23378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Southern Angola is a poorly studied region, inhabited by populations that have been associated with different migratory movements into southern Africa. Apart from Kx'a-speaking San foragers and Bantu-speaking pastoralists, ethnographic and linguistic studies have suggested the existence of an enigmatic array of pre-Bantu communities, like the Kwepe (formerly Khoe-Kwadi speakers), Twa and Kwisi. Here, we evaluate previous peopling hypotheses by assessing the relationships between different southern Angolan populations, based on newly collected linguistic data and complete mtDNA genomes. MATERIALS AND METHODS We analyzed 295 complete mtDNA genomes and linguistic data from seven groups from the Namib Desert (Himba, Kuvale, Tjimba, Twa, Kwisi, Kwepe) and Kunene Province (!Xun), placing special emphasis on the evaluation of the genealogical consistency of the matriclanic system that characterizes most of these groups. RESULTS We found that the maternal genetic structure of all groups from the Namib Desert was strongly shaped by the consistency of their matriclanic system. The tracking of the maternal heritage enhanced population differentiation by genetic drift and is likely to have caused the divergent mtDNA profiles of the Kwepe, Twa, and Kwisi, who probably formed a single population within the spectrum of Bantu genetic variation. Model-based analyses further suggest that the dominant pastoral groups Kuvale and Himba may be grouped into a Bantu proto-population which also included the ancestors of present-day Tjimba and Herero, as well as the Khoe-Kwadi speaking Damara foragers from Namibia. DISCUSSION The view from southwestern Angola offers a new perspective on the populating history of southern Africa and the Bantu expansions by showing that social stratification and different subsistence patterns are not always indicative of remnant groups, but may reflect Bantu-internal variation and ethnogenesis.
Collapse
Affiliation(s)
- Sandra Oliveira
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, Vairão 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Anne-Maria Fehn
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, Vairão 4485-661, Portugal.,Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany.,Institute for African Studies, Goethe University, Frankfurt 60323, Germany
| | - Teresa Aço
- Centro de Estudos do Deserto (CEDO), Namibe, Angola
| | - Fernanda Lages
- ISCED/Huíla-Instituto Superior de Ciências da Educação, Lubango, Angola
| | - Magdalena Gayà-Vidal
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, Vairão 4485-661, Portugal
| | - Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS & Université Lyon, Lyon 69007, France
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Jorge Rocha
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, Vairão 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal.,ISCED/Huíla-Instituto Superior de Ciências da Educação, Lubango, Angola
| |
Collapse
|
17
|
Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nat Commun 2017; 8:2062. [PMID: 29233967 PMCID: PMC5727231 DOI: 10.1038/s41467-017-00663-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/17/2017] [Indexed: 11/08/2022] Open
Abstract
The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant (p < 10−6) differentiation, and FST analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease. African populations show a high level of genetic diversity and extensive regional admixture. Here, the authors sequence the whole genomes of 24 South African individuals of different ethnolinguistic origin and find substantive genomic divergence between two southeastern Bantu-speaking groups.
Collapse
|
18
|
Queen RA, Steyn JS, Lord P, Elson JL. Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: A study across multiple lineages with diagnostic implications. PLoS One 2017; 12:e0187862. [PMID: 29161289 PMCID: PMC5697862 DOI: 10.1371/journal.pone.0187862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are well recognized as an important cause of inherited disease. Diseases caused by mtDNA mutations exhibit a high degree of clinical heterogeneity with a complex genotype-phenotype relationship, with many such mutations exhibiting incomplete penetrance. There is evidence that the spectrum of mutations causing mitochondrial disease might differ between different mitochondrial lineages (haplogroups) seen in different global populations. This would point to the importance of sequence context in the expression of mutations. To explore this possibility, we looked for mutations which are known to cause disease in humans, in animals of other species unaffected by mtDNA disease. The mt-tRNA genes are the location of many pathogenic mutations, with the m.3243A>G mutation on the mt-tRNA-Leu(UUR) being the most frequently seen mutation in humans. This study looked for the presence of m.3243A>G in 2784 sequences from 33 species, as well as any of the other mutations reported in association with disease located on mt-tRNA-Leu(UUR). We report a number of disease associated variations found on mt-tRNA-Leu(UUR) in other chordates, as the major population variant, with m.3243A>G being seen in 6 species. In these, we also found a number of mutations which appear compensatory and which could prevent the pathogenicity associated with this change in humans. This work has important implications for the discovery and diagnosis of mtDNA mutations in non-European populations. In addition, it might provide a partial explanation for the conflicting results in the literature that examines the role of mtDNA variants in complex traits.
Collapse
Affiliation(s)
- Rachel A. Queen
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jannetta S. Steyn
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Phillip Lord
- School of Computing Science, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Joanna L. Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
19
|
Arias L, Barbieri C, Barreto G, Stoneking M, Pakendorf B. High-resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:238-255. [DOI: 10.1002/ajpa.23345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/17/2017] [Accepted: 10/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leonardo Arias
- Department of Evolutionary Genetics; Max Planck Institute for Evolutionary Anthropology; Leipzig D-04103 Germany
- Laboratorio de Genética Molecular Humana; Universidad del Valle; Cali Colombia
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution; Max Planck Institute for the Science of Human History; Jena D-07745 Germany
| | - Guillermo Barreto
- Laboratorio de Genética Molecular Humana; Universidad del Valle; Cali Colombia
| | - Mark Stoneking
- Department of Evolutionary Genetics; Max Planck Institute for Evolutionary Anthropology; Leipzig D-04103 Germany
| | - Brigitte Pakendorf
- Dynamique du Langage; UMR5596, CNRS & Université de Lyon; Lyon Cedex 07 69363 France
| |
Collapse
|
20
|
Schlebusch CM, Malmström H, Günther T, Sjödin P, Coutinho A, Edlund H, Munters AR, Vicente M, Steyn M, Soodyall H, Lombard M, Jakobsson M. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 2017; 358:652-655. [PMID: 28971970 DOI: 10.1126/science.aao6266] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
Southern Africa is consistently placed as a potential region for the evolution of Homo sapiens We present genome sequences, up to 13x coverage, from seven ancient individuals from KwaZulu-Natal, South Africa. The remains of three Stone Age hunter-gatherers (about 2000 years old) were genetically similar to current-day southern San groups, and those of four Iron Age farmers (300 to 500 years old) were genetically similar to present-day Bantu-language speakers. We estimate that all modern-day Khoe-San groups have been influenced by 9 to 30% genetic admixture from East Africans/Eurasians. Using traditional and new approaches, we estimate the first modern human population divergence time to between 350,000 and 260,000 years ago. This estimate increases the deepest divergence among modern humans, coinciding with anatomical developments of archaic humans into modern humans, as represented in the local fossil record.
Collapse
Affiliation(s)
- Carina M Schlebusch
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden.,Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, Post Office Box 524, Auckland Park, 2006, South Africa
| | - Helena Malmström
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden.,Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, Post Office Box 524, Auckland Park, 2006, South Africa
| | - Torsten Günther
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | - Per Sjödin
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | - Alexandra Coutinho
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | - Hanna Edlund
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | - Arielle R Munters
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | - Mário Vicente
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | - Maryna Steyn
- Human Variation and Identification Research Unit, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Marlize Lombard
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, Post Office Box 524, Auckland Park, 2006, South Africa. .,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Marais Street, Stellenbosch, 7600, South Africa
| | - Mattias Jakobsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden. .,Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, Post Office Box 524, Auckland Park, 2006, South Africa.,Science for Life Laboratory (SciLife Lab), Uppsala, Sweden
| |
Collapse
|
21
|
Tau T, Wally A, Fanie TP, Ngono GL, Mpoloka SW, Davison S, D'Amato ME. Genetic variation and population structure of Botswana populations as identified with AmpFLSTR Identifiler short tandem repeat (STR) loci. Sci Rep 2017; 7:6768. [PMID: 28754995 PMCID: PMC5533702 DOI: 10.1038/s41598-017-06365-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/14/2017] [Indexed: 11/09/2022] Open
Abstract
Population structure was investigated in 990 Botswana individuals according to ethno-linguistics, Bantu and Khoisan, and geography (the nine administrative districts) using the Identifiler autosomal microsatellite markers. Genetic diversity and forensic parameters were calculated for the overall population, and according to ethno-linguistics and geography. The overall combined power of exclusion (CPE) was 0.9999965412 and the combined match probability 6,28 × 10-19. CPE was highest for the Khoisan Tuu ethnolinguistic group and the Northeast District at 0.9999582029 and 0.9999922652 respectively. CMP ranged from 6.28 × 10-19 (Khoisan Tuu) to 1,02 × 10-18 (Northwest district). Using pairwise genetic distances (FST), analysis of molecular variance (AMOVA), factorial correspondence analysis (FCA), and the unsupervised Bayesian clustering method found in STRUCTURE and TESS, ethno-linguistics were found to have a greater influence on population structure than geography. FCA showed clustering between Bantu and Khoisan, and within the Bantu. This Bantu sub-structuring was not seen with STRUCTURE and TESS, which detected clustering only between Bantu and Khoisan. The patterns of population structure revealed highlight the need for regional reference databases that include ethno-linguistic and geographic location information. These markers have important potential for bio-anthropological studies as well as for forensic applications.
Collapse
Affiliation(s)
- Tiroyamodimo Tau
- University of the Western Cape, Department of Biotechnology, Forensic DNA Laboratory, Private Bag X17, 7535, Bellville, Cape Town, South Africa
| | - Anthony Wally
- Botswana Police Service, Forensic Science Laboratory, Private Bag 0400, Gaborone, Botswana
| | | | - Goitseone Lorato Ngono
- Botswana Police Service, Forensic Science Laboratory, Private Bag 0400, Gaborone, Botswana
| | - Sununguko Wata Mpoloka
- University of Botswana, Biological Sciences Department, Private Bag 00704, Gaborone, Botswana
| | - Sean Davison
- University of the Western Cape, Department of Biotechnology, Forensic DNA Laboratory, Private Bag X17, 7535, Bellville, Cape Town, South Africa
| | - María Eugenia D'Amato
- University of the Western Cape, Department of Biotechnology, Forensic DNA Laboratory, Private Bag X17, 7535, Bellville, Cape Town, South Africa.
| |
Collapse
|
22
|
Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics 2017; 292:499-509. [PMID: 28229227 DOI: 10.1007/s00438-017-1296-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa.
| |
Collapse
|
23
|
Wilson NC, Choudhury A, Carstens N, Mavri-Damelin D. Organic Cation Transporter 2 (OCT2/SLC22A2) Gene Variation in the South African Bantu-Speaking Population and Functional Promoter Variants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:169-176. [PMID: 28253084 DOI: 10.1089/omi.2016.0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SLC22A2 facilitates the transport of endogenous and exogenous cationic compounds. Many pharmacologically significant compounds are transported by SLC22A2, including the antidiabetic drug metformin, anticancer agent cisplatin, and antiretroviral lamivudine. Genetic polymorphisms in SLC22A2 can modify the pharmacokinetic profiles of such important medicines and could therefore prove useful as precision medicine biomarkers. Since the frequency of SLC22A2 polymorphisms varies among different ethnic populations, we evaluated these in South African Bantu speakers, a majority group in the South African population, who exhibit unique genetic diversity, and we subsequently functionally characterized promoter polymorphisms. We identified 11 polymorphisms within the promoter and 9 single-nucleotide polymorphisms (SNPs) within the coding region of SLC22A2. While some polymorphisms appeared with minor allele frequencies similar to other African and non-African populations, some differed considerably; this was especially notable for three missense polymorphisms. In addition, we functionally characterized two promoter polymorphisms; rs138765638, a three base-pair deletion that bioinformatics analysis suggested could alter c-Ets-1/2, Elk1, and/or STAT4 binding, and rs59695691, an SNP that could abolish TFII-I binding. Significantly higher luciferase reporter gene expression was found for rs138765638 (increase of 37%; p = 0.001) and significantly lower expression for rs59695691 (decrease of 25%; p = 0.038), in comparison to the wild-type control. These observations highlight the importance of identifying and functionally characterizing genetic variation in genes of pharmacological significance. Finally, our data for SLC22A2 attest to the importance of considering genetic variation in different populations for drug safety, response, and global pharmacogenomics, through, for example, projects such as the Human Heredity and Health in Africa initiative.
Collapse
Affiliation(s)
- Nina C Wilson
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| | - Ananyo Choudhury
- 2 Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand , Johannesburg, South Africa
| | - Nadia Carstens
- 3 Division of Human Genetics, National Health Laboratory Service , Johannesburg, South Africa
| | - Demetra Mavri-Damelin
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
24
|
Rowold DJ, Perez-Benedico D, Stojkovic O, Alfonso-Sanchez MA, Garcia-Bertrand R, Herrera RJ. On the Bantu expansion. Gene 2016; 593:48-57. [PMID: 27451076 DOI: 10.1016/j.gene.2016.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid). In this investigation, we detected a general similarity in the Y chromosome lineages among the geographically dispersed Bantu-speaking populations suggesting a shared heritage and the shallow time depth of the Bantu Expansion. Also, micro-variations in the Bantu Y chromosomal composition across the continent highlight location-specific gene flow patterns with non-Bantu-speaking populations (Khoisan, Pygmy, Afro-Asiatic). Our Y chromosomal results also indicate that the three Bantu-speaking Southeast populations genotyped exhibit unique gene flow patterns involving Eurasian populations but fail to reveal a prevailing genetic affinity to East or Central African Bantu-speaking groups. In addition, the Y-SNP data underscores a longitudinal partitioning in sub-Sahara Africa of two R1b1 subgroups, R1b1-P25* (west) and R1b1a2-M269 (east). No evidence was observed linking the B2a haplogroup detected in the genotyped Southeast African Bantu-speaking populations to gene flow from contemporary Khoisan groups.
Collapse
Affiliation(s)
- Daine J Rowold
- Foundation for Applied Molecular Evolution, Gainesville, FL 32601, USA
| | | | - Oliver Stojkovic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
25
|
Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries. Genetics 2016; 204:303-14. [PMID: 27474727 DOI: 10.1534/genetics.116.187369] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa.
Collapse
|
26
|
Barbieri C, Hübner A, Macholdt E, Ni S, Lippold S, Schröder R, Mpoloka SW, Purps J, Roewer L, Stoneking M, Pakendorf B. Refining the Y chromosome phylogeny with southern African sequences. Hum Genet 2016; 135:541-553. [PMID: 27043341 PMCID: PMC4835522 DOI: 10.1007/s00439-016-1651-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/04/2022]
Abstract
The recent availability of large-scale sequence data for the human Y chromosome has revolutionized analyses of and insights gained from this non-recombining, paternally inherited chromosome. However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging branches found in Africa has not been adequately documented. Here, we analyze over 900 kb of Y chromosome sequence obtained from 547 individuals from southern African Khoisan- and Bantu-speaking populations, identifying 232 new sequences from basal haplogroups A and B. We identify new clades in the phylogeny, an older age for the root, and substantially older ages for some individual haplogroups. Furthermore, while haplogroup B2a is traditionally associated with the spread of Bantu speakers, we find that it probably also existed in Khoisan groups before the arrival of Bantu speakers. Finally, there is pronounced variation in branch length between major haplogroups; in particular, haplogroups associated with Bantu speakers have significantly longer branches. Technical artifacts cannot explain this branch length variation, which instead likely reflects aspects of the demographic history of Bantu speakers, such as recent population expansion and an older average paternal age. The influence of demographic factors on branch length variation has broader implications both for the human Y phylogeny and for similar analyses of other species.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Enrico Macholdt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Shengyu Ni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | | | - Josephine Purps
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, 10559, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, 10559, Berlin, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Brigitte Pakendorf
- Dynamique du Langage, UMR5596, CNRS & Université Lyon 2, 69363, Lyon Cedex 07, France.
| |
Collapse
|
27
|
González-Santos M, Montinaro F, Oosthuizen O, Oosthuizen E, Busby GBJ, Anagnostou P, Destro-Bisol G, Pascali V, Capelli C. Genome-Wide SNP Analysis of Southern African Populations Provides New Insights into the Dispersal of Bantu-Speaking Groups. Genome Biol Evol 2015; 7:2560-8. [PMID: 26363465 PMCID: PMC4607521 DOI: 10.1093/gbe/evv164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The expansion of Bantu-speaking agropastoralist populations had a great impact on the genetic, linguistic, and cultural variation of sub-Saharan Africa. It is generally accepted that Bantu languages originated in an area around the present border between Cameroon and Nigeria approximately 5,000 years ago, from where they spread South and East becoming the largest African linguistic branch. The demic consequences of this event are reflected in the relatively high genetic homogeneity observed across most of sub-Saharan Africa populations. In this work, we explored genome-wide single nucleotide polymorphism data from 28 populations to characterize the genetic components present in sub-Saharan African populations. Combining novel data from four Southern African populations with previously published results, we reject the hypothesis that the “non-Bantu” genetic component reported in South-Eastern Africa (Mozambique) reflects extensive gene flow between incoming agriculturalist and resident hunter-gatherer communities. We alternatively suggest that this novel component is the result of demographic dynamics associated with the Bantu dispersal.
Collapse
Affiliation(s)
| | - Francesco Montinaro
- Department of Zoology, University of Oxford, United Kingdom Institute of Legal Medicine, Catholic University, Rome, Italy
| | | | | | - George B J Busby
- Department of Zoology, University of Oxford, United Kingdom Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università "La Sapienza", Rome, Italy Istituto Italiano di Antropologia, Rome, Italy
| | - Giovanni Destro-Bisol
- Dipartimento di Biologia Ambientale, Università "La Sapienza", Rome, Italy Istituto Italiano di Antropologia, Rome, Italy
| | | | | |
Collapse
|
28
|
Sadr K. Livestock First Reached Southern Africa in Two Separate Events. PLoS One 2015; 10:e0134215. [PMID: 26295347 PMCID: PMC4546641 DOI: 10.1371/journal.pone.0134215] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
After several decades of research on the subject, we now know when the first livestock reached southern Africa but the question of how they got there remains a contentious topic. Debate centres on whether they were brought with a large migration of Khoe-speakers who originated from East Africa; or whether the livestock were traded down-the-line among hunter-gatherer communities; or indeed whether there was a long history of diverse small scale population movements in this part of the world, one or more of which 'infiltrated' livestock into southern Africa. A new analysis of the distribution of stone toolkits from a sizeable sample of sub-equatorial African Later Stone Age sites, coupled with existing knowledge of the distribution of the earliest livestock remains and ceramics vessels, has allowed us to isolate two separate infiltration events that brought the first livestock into southern Africa just over 2000 years ago; one infiltration was along the Atlantic seaboard and another entered the middle reaches of the Limpopo River Basin. These findings agree well with the latest results of genetic research which together indicate that multiple, small-scale infiltrations probably were responsible for bringing the first livestock into southern Africa.
Collapse
Affiliation(s)
- Karim Sadr
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
29
|
60,000 years of interactions between Central and Eastern Africa documented by major African mitochondrial haplogroup L2. Sci Rep 2015. [PMID: 26211407 PMCID: PMC4515592 DOI: 10.1038/srep12526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70–50 ka into Eastern or Southern Africa, (2) postglacial movements (15–10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.
Collapse
|
30
|
Pugach I, Stoneking M. Genome-wide insights into the genetic history of human populations. INVESTIGATIVE GENETICS 2015; 6:6. [PMID: 25834724 PMCID: PMC4381409 DOI: 10.1186/s13323-015-0024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Although mtDNA and the non-recombining Y chromosome (NRY) studies continue to provide valuable insights into the genetic history of human populations, recent technical, methodological and computational advances and the increasing availability of large-scale, genome-wide data from contemporary human populations around the world promise to reveal new aspects, resolve finer points, and provide a more detailed look at our past demographic history. Genome-wide data are particularly useful for inferring migrations, admixture, and fine structure, as well as for estimating population divergence and admixture times and fluctuations in effective population sizes. In this review, we highlight some of the stories that have emerged from the analyses of genome-wide SNP genotyping data concerning the human history of Southern Africa, India, Oceania, Island South East Asia, Europe and the Americas and comment on possible future study directions. We also discuss advantages and drawbacks of using SNP-arrays, with a particular focus on the ascertainment bias, and ways to circumvent it.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| |
Collapse
|
31
|
Macholdt E, Slatkin M, Pakendorf B, Stoneking M. New insights into the history of the C-14010 lactase persistence variant in Eastern and Southern Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156:661-4. [PMID: 25448164 DOI: 10.1002/ajpa.22675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022]
Abstract
Lactase persistence (LP), the ability to digest lactose into adulthood, is strongly associated with the cultural traits of pastoralism and milk-drinking among human populations, and several different genetic variants are known that confer LP. Recent studies of LP variants in Southern African populations, with a focus on Khoisan-speaking groups, found high frequencies of an LP variant (the C-14010 allele) that also occurs in Eastern Africa, and concluded that the C-14010 allele was brought to Southern Africa via a migration of pastoralists from Eastern Africa. However, this conclusion was based on indirect evidence; to date no study has jointly analyzed data on the C-14010 allele from both Southern African Khoisan-speaking groups and Eastern Africa. Here, we combine and analyze published data on the C-14010 allele in Southern and Eastern African populations, consisting of haplotypes with the C-14010 allele and four closely-linked short tandem repeat loci. Our results provide direct evidence for the previously-hypothesized Eastern African origin of the C-14010 allele in Southern African Khoisan-speaking groups. In addition, we find evidence for a separate introduction of the C-14010 allele into the Bantu-speaking Xhosa. The estimated selection intensity on the C-14010 allele in Eastern Africa is lower than that in Southern Africa, which suggests that in Eastern Africa the dietary changes conferring the fitness advantage associated with LP occurred some time after the origin of the C-14010 allele. Conversely, in Southern Africa the fitness advantage was present when the allele was introduced, as would be expected if pastoralism was introduced concomitantly.
Collapse
Affiliation(s)
- Enrico Macholdt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
32
|
Marks SJ, Montinaro F, Levy H, Brisighelli F, Ferri G, Bertoncini S, Batini C, Busby GBJ, Arthur C, Mitchell P, Stewart BA, Oosthuizen O, Oosthuizen E, D'Amato ME, Davison S, Pascali V, Capelli C. Static and moving frontiers: the genetic landscape of Southern African Bantu-speaking populations. Mol Biol Evol 2014; 32:29-43. [PMID: 25223418 DOI: 10.1093/molbev/msu263] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A consensus on Bantu-speaking populations being genetically similar has emerged in the last few years, but the demographic scenarios associated with their dispersal are still a matter of debate. The frontier model proposed by archeologists postulates different degrees of interaction among incoming agropastoralist and resident foraging groups in the presence of "static" and "moving" frontiers. By combining mitochondrial DNA and Y chromosome data collected from several southern African populations, we show that Bantu-speaking populations from regions characterized by a moving frontier developing after a long-term static frontier have larger hunter-gatherer contributions than groups from areas where a static frontier was not followed by further spatial expansion. Differences in the female and male components suggest that the process of assimilation of the long-term resident groups into agropastoralist societies was gender biased. Our results show that the diffusion of Bantu languages and culture in Southern Africa was a process more complex than previously described and suggest that the admixture dynamics between farmers and foragers played an important role in shaping the current patterns of genetic diversity.
Collapse
Affiliation(s)
- Sarah J Marks
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Francesco Montinaro
- Department of Zoology, University of Oxford, Oxford, United Kingdom Institute of Legal Medicine, Catholic University, Rome, Italy
| | - Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, U.O. Struttura Complessa di Medicina Legale, Azienda Ospedaliero, Universitaria di Modena, Modena, Italy
| | | | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - George B J Busby
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Charles Arthur
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Peter Mitchell
- School of Archaeology, University of Oxford, Oxford, United Kingdom School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | - Maria Eugenia D'Amato
- Biotechnology Department, Forensic DNA Laboratory, University of the Western Cape, Bellville, South Africa
| | - Sean Davison
- Biotechnology Department, Forensic DNA Laboratory, University of the Western Cape, Bellville, South Africa
| | | | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Pakendorf B. Coevolution of languages and genes. Curr Opin Genet Dev 2014; 29:39-44. [PMID: 25170984 DOI: 10.1016/j.gde.2014.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 02/05/2023]
Abstract
The evolution of languages shares certain characteristics with that of genes, such as the predominantly vertical line of transmission and the retention of traces of past events such as contact. Thus, studies of language phylogenies and their correlations with genetic phylogenies can enrich our understanding of human prehistory, while insights gained from genetic studies of past population contact can help shed light on the processes underlying language contact and change. As demonstrated by recent research, these evolutionary processes are more complex than simple models of gene-language coevolution predict, with linguistic boundaries only occasionally functioning as barriers to gene flow. More frequently, admixture takes place irrespective of linguistic differences, but with a detectable impact of contact-induced changes in the languages concerned.
Collapse
Affiliation(s)
- Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS & Université Lyon Lumière 2, Lyon, France.
| |
Collapse
|
34
|
Barbieri C, Vicente M, Oliveira S, Bostoen K, Rocha J, Stoneking M, Pakendorf B. Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in Southern Africa. PLoS One 2014; 9:e99117. [PMID: 24901532 PMCID: PMC4047067 DOI: 10.1371/journal.pone.0099117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/11/2014] [Indexed: 01/10/2023] Open
Abstract
Bantu speech communities expanded over large parts of sub-Saharan Africa within the last 4000–5000 years, reaching different parts of southern Africa 1200–2000 years ago. The Bantu languages subdivide in several major branches, with languages belonging to the Eastern and Western Bantu branches spreading over large parts of Central, Eastern, and Southern Africa. There is still debate whether this linguistic divide is correlated with a genetic distinction between Eastern and Western Bantu speakers. During their expansion, Bantu speakers would have come into contact with diverse local populations, such as the Khoisan hunter-gatherers and pastoralists of southern Africa, with whom they may have intermarried. In this study, we analyze complete mtDNA genome sequences from over 900 Bantu-speaking individuals from Angola, Zambia, Namibia, and Botswana to investigate the demographic processes at play during the last stages of the Bantu expansion. Our results show that most of these Bantu-speaking populations are genetically very homogenous, with no genetic division between speakers of Eastern and Western Bantu languages. Most of the mtDNA diversity in our dataset is due to different degrees of admixture with autochthonous populations. Only the pastoralist Himba and Herero stand out due to high frequencies of particular L3f and L3d lineages; the latter are also found in the neighboring Damara, who speak a Khoisan language and were foragers and small-stock herders. In contrast, the close cultural and linguistic relatives of the Herero and Himba, the Kuvale, are genetically similar to other Bantu-speakers. Nevertheless, as demonstrated by resampling tests, the genetic divergence of Herero, Himba, and Kuvale is compatible with a common shared ancestry with high levels of drift, while the similarity of the Herero, Himba, and Damara probably reflects admixture, as also suggested by linguistic analyses.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology, University of Bologna, Bologna, Italy
- * E-mail: (CB); (BP)
| | - Mário Vicente
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- STAB VIDA, Investigação e Serviços em Ciências Biológicas, Lda, Oeiras, Portugal
| | - Sandra Oliveira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Koen Bostoen
- Department of African Languages and Cultures, Ghent University, KongoKing Research Group, Ghent, Belgium
- Université libre de Bruxelles, Faculté de Philosophie et Lettres, Brussels, Belgium
| | - Jorge Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS and Université Lyon Lumière 2, Lyon, France
- * E-mail: (CB); (BP)
| |
Collapse
|
35
|
Affiliation(s)
- Tom Güldemann
- Humboldt University Berlin / Max Planck Institute for Evolutionary Anthropology Leipzig
| |
Collapse
|