1
|
Silcocks M, Farlow A, Hermes A, Tsambos G, Patel HR, Huebner S, Baynam G, Jenkins MR, Vukcevic D, Easteal S, Leslie S. Indigenous Australian genomes show deep structure and rich novel variation. Nature 2023; 624:593-601. [PMID: 38093005 PMCID: PMC10733150 DOI: 10.1038/s41586-023-06831-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/03/2023] [Indexed: 12/20/2023]
Abstract
The Indigenous peoples of Australia have a rich linguistic and cultural history. How this relates to genetic diversity remains largely unknown because of their limited engagement with genomic studies. Here we analyse the genomes of 159 individuals from four remote Indigenous communities, including people who speak a language (Tiwi) not from the most widespread family (Pama-Nyungan). This large collection of Indigenous Australian genomes was made possible by careful community engagement and consultation. We observe exceptionally strong population structure across Australia, driven by divergence times between communities of 26,000-35,000 years ago and long-term low but stable effective population sizes. This demographic history, including early divergence from Papua New Guinean (47,000 years ago) and Eurasian groups1, has generated the highest proportion of previously undescribed genetic variation seen outside Africa and the most extended homozygosity compared with global samples. A substantial proportion of this variation is not observed in global reference panels or clinical datasets, and variation with predicted functional consequence is more likely to be homozygous than in other populations, with consequent implications for medical genomics2. Our results show that Indigenous Australians are not a single homogeneous genetic group and their genetic relationship with the peoples of New Guinea is not uniform. These patterns imply that the full breadth of Indigenous Australian genetic diversity remains uncharacterized, potentially limiting genomic medicine and equitable healthcare for Indigenous Australians.
Collapse
Affiliation(s)
- Matthew Silcocks
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- University of Melbourne, School of Biosciences, Parkville, Victoria, Australia
| | - Ashley Farlow
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia
| | - Azure Hermes
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georgia Tsambos
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sharon Huebner
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gareth Baynam
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Faculty of Health and Medical Sciences, Division of Paediatrics and Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital and Rare Care Centre, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Misty R Jenkins
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- University of Melbourne, Department of Medical Biology, Parkville, Victoria, Australia
| | - Damjan Vukcevic
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia
| | - Simon Easteal
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen Leslie
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
- University of Melbourne, School of Biosciences, Parkville, Victoria, Australia.
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Bardan F, Higgins D, Austin JJ. A custom hybridisation enrichment forensic intelligence panel to infer biogeographic ancestry, hair and eye colour, and Y chromosome lineage. Forensic Sci Int Genet 2023; 63:102822. [PMID: 36525814 DOI: 10.1016/j.fsigen.2022.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Massively parallel sequencing can provide genetic data for hundreds to thousands of loci in a single assay for various types of forensic testing. However, available commercial kits require an initial PCR amplification of short-to-medium sized targets which limits their application for highly degraded DNA. Development and optimisation of large PCR multiplexes also prevents creation of custom panels that target different suites of markers for identity, biogeographic ancestry, phenotype, and lineage markers (Y-chromosome and mtDNA). Hybridisation enrichment, an alternative approach for target enrichment prior to sequencing, uses biotinylated probes to bind to target DNA and has proven successful on degraded and ancient DNA. We developed a customisable hybridisation capture method, that uses individually mixed baits to allow tailored and targeted enrichment to specific forensic questions of interest. To allow collection of forensic intelligence data, we assembled and tested a custom panel of hybridisation baits to infer biogeographic ancestry, hair and eye colour, and paternal lineage (and sex) on modern male and female samples with a range of self-declared ancestries and hair/eye colour combinations. The panel correctly estimated biogeographic ancestry in 9/12 samples (75%) but detected European admixture in three individuals from regions with admixed demographic history. Hair and eye colour were predicted correctly in 83% and 92% of samples respectively, where intermediate eye colour and blond hair were problematic to predict. Analysis of Y-chromosome SNPs correctly assigned sex and paternal haplogroups, the latter complementing and supporting biogeographic ancestry predictions. Overall, we demonstrate the utility of this hybridisation enrichment approach to forensic intelligence testing using a combined suite of biogeographic ancestry, phenotype, and Y-chromosome SNPs for comprehensive biological profiling.
Collapse
Affiliation(s)
- Felicia Bardan
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Denice Higgins
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, South Australia, Australia; School of Dentistry, Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Jeremy J Austin
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
3
|
Y-SNP Haplogroup Hierarchy Finder: a web tool for Y-SNP haplogroup assignment. J Hum Genet 2022; 67:487-493. [DOI: 10.1038/s10038-022-01033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
|
4
|
Curtis R, Ward D, Taylor D, Henry J. Investigation of X-STR haplotype diversity in the Australian Aboriginal population. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2048690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rhianna Curtis
- Division of Biology, Forensic Science SA, Adelaide, South Australia
| | - Denise Ward
- Division of Biology, Forensic Science SA, Adelaide, South Australia
| | - Duncan Taylor
- Division of Biology, Forensic Science SA, Adelaide, South Australia
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia
| | - Julianne Henry
- Division of Biology, Forensic Science SA, Adelaide, South Australia
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia
| |
Collapse
|
5
|
Karmin M, Flores R, Saag L, Hudjashov G, Brucato N, Crenna-Darusallam C, Larena M, Endicott PL, Jakobsson M, Lansing JS, Sudoyo H, Leavesley M, Metspalu M, Ricaut FX, Cox MP. Episodes of Diversification and Isolation in Island Southeast Asian and Near Oceanian Male Lineages. Mol Biol Evol 2022; 39:msac045. [PMID: 35294555 PMCID: PMC8926390 DOI: 10.1093/molbev/msac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Island Southeast Asia (ISEA) and Oceania host one of the world's richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region's male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region's initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40-25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world's least understood regions.
Collapse
Affiliation(s)
- Monika Karmin
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rodrigo Flores
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Lauri Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Georgi Hudjashov
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Nicolas Brucato
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Chelzie Crenna-Darusallam
- Genome Diversity and Disease Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Maximilian Larena
- Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| | - Phillip L Endicott
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department Hommes Natures Societies, Musée de l’Homme, Paris, France
| | - Mattias Jakobsson
- Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| | - J Stephen Lansing
- Complexity Science Hub Vienna, Vienna, Austria
- Santa Fe Institute Center for Advanced Study in the Behavioral Sciences, Stanford University, Santa Fe, USA
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Matthew Leavesley
- School of Humanities and Social Sciences, University of Papua New Guinea, National Capital District, Papua New Guinea
- CABAH and College of Arts, Society and Education, James Cook University, Cairns, QLD, Australia
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - François-Xavier Ricaut
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Rauf S, Austin JJ, Higgins D, Khan MR. Unveiling forensically relevant biogeographic, phenotype and Y-chromosome SNP variation in Pakistani ethnic groups using a customized hybridisation enrichment forensic intelligence panel. PLoS One 2022; 17:e0264125. [PMID: 35176104 PMCID: PMC8853543 DOI: 10.1371/journal.pone.0264125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
Massively parallel sequencing following hybridisation enrichment provides new opportunities to obtain genetic data for various types of forensic testing and has proven successful on modern as well as degraded and ancient DNA. A customisable forensic intelligence panel that targeted 124 SNP markers (67 ancestry informative markers, 23 phenotype markers from the HIrisplex panel, and 35 Y-chromosome SNPs) was used to examine biogeographic ancestry, phenotype and sex and Y-lineage in samples from different ethnic populations of Pakistan including Pothwari, Gilgit, Baloach, Pathan, Kashmiri and Siraiki. Targeted sequencing and computational data analysis pipeline allowed filtering of variants across the targeted loci. Study samples showed an admixture between East Asian and European ancestry. Eye colour was predicted accurately based on the highest p-value giving overall prediction accuracy of 92.8%. Predictions were consistent with reported hair colour for all samples, using the combined highest p-value approach and step-wise model incorporating probability thresholds for light or dark shade. Y-SNPs were successfully recovered only from male samples which indicates the ability of this method to identify biological sex and allow inference of Y-haplogroup. Our results demonstrate practicality of using hybridisation enrichment and MPS to aid in human intelligence gathering and will open many insights into forensic research in South Asia.
Collapse
Affiliation(s)
- Sobiah Rauf
- Genome Editing & Sequencing Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jeremy J. Austin
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denice Higgins
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Dentistry, Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Brucato N, André M, Tsang R, Saag L, Kariwiga J, Sesuki K, Beni T, Pomat W, Muke J, Meyer V, Boland A, Deleuze JF, Sudoyo H, Mondal M, Pagani L, Romero IG, Metspalu M, Cox MP, Leavesley M, Ricaut FX. Papua New Guinean genomes reveal the complex settlement of north Sahul. Mol Biol Evol 2021; 38:5107-5121. [PMID: 34383935 PMCID: PMC8557464 DOI: 10.1093/molbev/msab238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The settlement of Sahul, the lost continent of Oceania, remains one of the most ancient and debated human migrations. Modern New Guineans inherited a unique genetic diversity tracing back 50,000 years, and yet there is currently no model reconstructing their past population dynamics. We generated 58 new whole genome sequences from Papua New Guinea, filling geographical gaps in previous sampling, specifically to address alternative scenarios of the initial migration to Sahul and the settlement of New Guinea. Here, we present the first genomic models for the settlement of northeast Sahul considering one or two migrations from Wallacea. Both models fit our dataset, reinforcing the idea that ancestral groups to New Guinean and Indigenous Australians split early, potentially during their migration in Wallacea where the northern route could have been favored. The earliest period of human presence in Sahul was an era of interactions and gene flow between related but already differentiated groups, from whom all modern New Guineans, Bismarck islanders and Indigenous Australians descend. The settlement of New Guinea was probably initiated from its southeast region, where the oldest archaeological sites have been found. This was followed by two migrations into the south and north lowlands that ultimately reached the west and east highlands. We also identify ancient gene flows between populations in New Guinea, Australia, East Indonesia and the Bismarck Archipelago, emphasizing the fact that the anthropological landscape during the early period of Sahul settlement was highly dynamic rather than the traditional view of extensive isolation.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Mathilde André
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France.,Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Roxanne Tsang
- School of Humanities, Languages and Social Science and Place, Evolution and Rock Art Heritage Unit, Griffith University Centre for Social and Cultural Research, Griffith University, Australia.,Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Lauri Saag
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea.,School of Social Science, University of Queensland, Australia, St Lucia, QLD 4072, Australia
| | - Kylie Sesuki
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Teppsy Beni
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - John Muke
- Social Research Institute, Papua New Guinea
| | - Vincent Meyer
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia.,Department of Biology, University of Padua, Italy
| | | | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea.,College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, Queensland, 4870, Australia.,ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New south Wales, 2522, Australia
| | - François-Xavier Ricaut
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| |
Collapse
|
8
|
Liu J, Ming T, Lang M, Liu H, Xie M, Li J, Wang M, Song F, He G, Wang S, Wang Z, Hou Y. Exploitation of a novel slowly mutating Y-STRs set and evaluation of slowly mutating Y-STRs plus Y-SNPs typing strategy in forensic genetics and evolutionary research. Electrophoresis 2021; 42:774-785. [PMID: 33434344 DOI: 10.1002/elps.202000302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 11/09/2022]
Abstract
The Y-chromosome short tandem repeats (Y-STRs) loci with different mutation rates existing in the Y chromosome non-recombination region (NRY) allow to be applied in human forensics, genealogical researches, historical investigations and evolutionary studies. Currently, there is a high demand for pedigree search to narrow the scope of crime investigations. However, the commonly used Y-STRs kits generally contain Y-STRs with high mutation rates that could cause individuals from the same pedigree to display different haplotypes. Herein, we put forward a new strategy of Slowly Mutating (SM) Y-STRs plus Y-SNPs typing, which could not only improve the resolution and accuracy of pedigree search, but also be applicable to evolutionary research. First, we developed a nine SM Y-STRs assay by evaluating their mutation rates in 210 pedigrees. Then the gene diversity and efficiency of the SM Y-STRs and 172 Y-SNPs sets were investigated by 2304 unrelated males from 24 populations. Furthermore, network and time estimation analyses were performed to evaluate the new strategy's capability to reconstruct phylogenetic tree and reliability to infer the time to the most recent common ancestor (TMRCA). The nine SM Y-STRs assay even had a higher resolution and a comparable capacity of revealing population genetic differentiation compared to 172 Y-SNPs system. This new strategy could optimize the phylogenetic tree generated by commonly used Y-STR panels and obtain a quite consistent time estimations with the published dating.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Tianyue Ming
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Min Lang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China.,Law School, Sichuan University, Chengdu, P. R. China
| | - Hai Liu
- The Institute of Forensic Science and Technology, Henan Provincial Public Security Bureau, Zhengzhou, P. R. China
| | - Minkun Xie
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jienan Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China.,Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China.,Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, P. R. China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
9
|
Wasef S, Wright JL, Adams S, Westaway MC, Flinders C, Willerslev E, Lambert D. Insights Into Aboriginal Australian Mortuary Practices: Perspectives From Ancient DNA. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
10
|
Gundlach S, Junge O, Wienbrandt L, Krawczak M, Caliebe A. Comparison of Markov Chain Monte Carlo Software for the Evolutionary Analysis of Y-Chromosomal Microsatellite Data. Comput Struct Biotechnol J 2019; 17:1082-1090. [PMID: 31452861 PMCID: PMC6700485 DOI: 10.1016/j.csbj.2019.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/25/2019] [Indexed: 11/28/2022] Open
Abstract
The evolutionary analysis of genetic data is an important subject of modern bioscience, with practical applications in diverse fields. Parameters of interest in this context include effective population sizes, mutation rates, population growth rates and the times to most recent common ancestors. Studying Y-chromosomal microsatellite data, in particular, has proven useful to unravel the recent patrilineal history of Homo sapiens populations. We compared the individual analysis options and technical details of four software tools that are widely used for this purpose, namely BATWING, BEAST, IMa2 and LAMARC, all of which use Bayesian coalescent-based Markov chain Monte Carlo (MCMC) methods for parameter estimation. More specifically, we simulated datasets for either eight or 20 hypothetical Y-chromosomal microsatellites, assuming a mutation rate of 0.0030 per generation and a constant or exponentially increasing population size, and used these data to evaluate the parameter estimation capacity of each tool. The datasets comprised between 100 and 1000 samples. In addition to runtime, the practical utility of the tools of interest can also be expected to depend critically upon the convergence behavior of the actual MCMC implementation. In fact, we found that runtime increased, and convergence rate decreased, with increasing sample size as expected. BATWING performed best with respect to runtime and convergence behavior, but only supports simple evolutionary models. As regards the spectrum of evolutionary models covered, and also in terms of cross-platform usability, BEAST provided the greatest flexibility. Finally, IMa2 and LAMARC turned out best to incorporate elaborate migration models in the analysis process.
Collapse
Affiliation(s)
- Sven Gundlach
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| | - Lars Wienbrandt
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| |
Collapse
|
11
|
Population genetic analysis of Yfiler® Plus haplotype data for three South Australian populations. Forensic Sci Int Genet 2019; 41:e23-e25. [DOI: 10.1016/j.fsigen.2019.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/18/2022]
|
12
|
Hopkins C, Taylor D, Hill K, Henry J. Analysis of the South Australian Aboriginal population using the Global AIMs Nano ancestry test. Forensic Sci Int Genet 2019; 41:34-41. [PMID: 30952105 DOI: 10.1016/j.fsigen.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/27/2023]
Abstract
We investigate the ability of the 31 SNP loci in the Global AIMs Nano set to distinguish self-declared Australian Aboriginal individuals from European, Oceanic, African, Native American and East Asian populations. Human evolution suggests that Australian Aboriginal individuals came to Australia approximately 50 000 years ago, during the time it made up part of Sahul. Since then the colonisation of Australia by Europeans has meant significant admixture within the Australian Aboriginal population. These two events present themselves in our study with the Aboriginal population creating a continuous genetic cline between the Oceanic and European groups. We also assigned the Aboriginal individuals into their traditional regional groups to determine whether there was any ability to distinguish these from each other. We found similar results to studies using other markers, namely that the more remote regions (that have been less affected by admixture) diverged from the rest. Overall, we found the ability of the GNano system to differentiate self-declared Australian Aboriginal individuals was reasonable but had limitations that need to be recognised if these assignments are applied to unknown individuals.
Collapse
Affiliation(s)
- Catherine Hopkins
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Duncan Taylor
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia; Forensic Science SA, GPO box 2790, Adelaide, South Australia, 5001, Australia.
| | - Kelly Hill
- Forensic Science SA, GPO box 2790, Adelaide, South Australia, 5001, Australia
| | - Julianne Henry
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia; Forensic Science SA, GPO box 2790, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
13
|
Wright JL, Wasef S, Heupink TH, Westaway MC, Rasmussen S, Pardoe C, Fourmile GG, Young M, Johnson T, Slade J, Kennedy R, Winch P, Pappin M, Wales T, Bates W“B, Hamilton S, Whyman N, van Holst Pellekaan S, McAllister PJ, Taçon PS, Curnoe D, Li R, Millar C, Subramanian S, Willerslev E, Malaspinas AS, Sikora M, Lambert DM. Ancient nuclear genomes enable repatriation of Indigenous human remains. SCIENCE ADVANCES 2018; 4:eaau5064. [PMID: 30585290 PMCID: PMC6300400 DOI: 10.1126/sciadv.aau5064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
After European colonization, the ancestral remains of Indigenous people were often collected for scientific research or display in museum collections. For many decades, Indigenous people, including Native Americans and Aboriginal Australians, have fought for their return. However, many of these remains have no recorded provenance, making their repatriation very difficult or impossible. To determine whether DNA-based methods could resolve this important problem, we sequenced 10 nuclear genomes and 27 mitogenomes from ancient pre-European Aboriginal Australians (up to 1540 years before the present) of known provenance and compared them to 100 high-coverage contemporary Aboriginal Australian genomes, also of known provenance. We report substantial ancient population structure showing strong genetic affinities between ancient and contemporary Aboriginal Australian individuals from the same geographic location. Our findings demonstrate the feasibility of successfully identifying the origins of unprovenanced ancestral remains using genomic methods.
Collapse
Affiliation(s)
- Joanne L. Wright
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Sally Wasef
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Tim H. Heupink
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
- Global Health Institute, Epidemiology and Social Medicine, University of Antwerp, Belgium
| | - Michael C. Westaway
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Simon Rasmussen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Colin Pardoe
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT, Australia
| | | | - Michael Young
- Barkandji/Paakantyi Elder, Red Cliffs, VIC, Australia
| | - Trish Johnson
- Barkandji/Paakantyi Elder, Pooncarie, NSW, Australia
| | - Joan Slade
- Ngiyampaa Elder, Ivanhoe, NSW, Australia
| | | | - Patsy Winch
- Mutthi Mutthi Elder, Balranald, NSW, Australia
| | - Mary Pappin
- Mutthi Mutthi Elder, Broken Hill, NSW, Australia
| | - Tapij Wales
- Thanynakwith Elder, Napranum, QLD, Australia
| | | | | | | | - Sheila van Holst Pellekaan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Paul S.C. Taçon
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Darren Curnoe
- ARC Centre of Excellence for Australian Biodiversity and Heritage and Paleontology, Geobiology and Earth Archives Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Craig Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sankar Subramanian
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. (M.S.); (D.M.L.)
| | - David M. Lambert
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
- Corresponding author. (M.S.); (D.M.L.)
| |
Collapse
|
14
|
Morales J, Welter D, Bowler EH, Cerezo M, Harris LW, McMahon AC, Hall P, Junkins HA, Milano A, Hastings E, Malangone C, Buniello A, Burdett T, Flicek P, Parkinson H, Cunningham F, Hindorff LA, MacArthur JAL. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol 2018; 19:21. [PMID: 29448949 PMCID: PMC5815218 DOI: 10.1186/s13059-018-1396-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
The accurate description of ancestry is essential to interpret, access, and integrate human genomics data, and to ensure that these benefit individuals from all ancestral backgrounds. However, there are no established guidelines for the representation of ancestry information. Here we describe a framework for the accurate and standardized description of sample ancestry, and validate it by application to the NHGRI-EBI GWAS Catalog. We confirm known biases and gaps in diversity, and find that African and Hispanic or Latin American ancestry populations contribute a disproportionately high number of associations. It is our hope that widespread adoption of this framework will lead to improved analysis, interpretation, and integration of human genomics data.
Collapse
Affiliation(s)
- Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Danielle Welter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Emily H. Bowler
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Maria Cerezo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Laura W. Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Aoife C. McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Peggy Hall
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9305 USA
| | - Heather A. Junkins
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9305 USA
| | - Annalisa Milano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Emma Hastings
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Cinzia Malangone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Annalisa Buniello
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Lucia A. Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9305 USA
| | - Jacqueline A. L. MacArthur
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| |
Collapse
|
15
|
Tobler R, Rohrlach A, Soubrier J, Bover P, Llamas B, Tuke J, Bean N, Abdullah-Highfold A, Agius S, O'Donoghue A, O'Loughlin I, Sutton P, Zilio F, Walshe K, Williams AN, Turney CSM, Williams M, Richards SM, Mitchell RJ, Kowal E, Stephen JR, Williams L, Haak W, Cooper A. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 2017; 544:180-184. [PMID: 28273067 DOI: 10.1038/nature21416] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Aboriginal Australians represent one of the longest continuous cultural complexes known. Archaeological evidence indicates that Australia and New Guinea were initially settled approximately 50 thousand years ago (ka); however, little is known about the processes underlying the enormous linguistic and phenotypic diversity within Australia. Here we report 111 mitochondrial genomes (mitogenomes) from historical Aboriginal Australian hair samples, whose origins enable us to reconstruct Australian phylogeographic history before European settlement. Marked geographic patterns and deep splits across the major mitochondrial haplogroups imply that the settlement of Australia comprised a single, rapid migration along the east and west coasts that reached southern Australia by 49-45 ka. After continent-wide colonization, strong regional patterns developed and these have survived despite substantial climatic and cultural change during the late Pleistocene and Holocene epochs. Remarkably, we find evidence for the continuous presence of populations in discrete geographic areas dating back to around 50 ka, in agreement with the notable Aboriginal Australian cultural attachment to their country.
Collapse
Affiliation(s)
- Ray Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Adam Rohrlach
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Julien Soubrier
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Pere Bover
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jonathan Tuke
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nigel Bean
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Shane Agius
- South Australian Museum, Adelaide, South Australia 5005, Australia
| | - Amy O'Donoghue
- South Australian Museum, Adelaide, South Australia 5005, Australia
| | | | - Peter Sutton
- South Australian Museum, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Fran Zilio
- South Australian Museum, Adelaide, South Australia 5005, Australia
| | - Keryn Walshe
- South Australian Museum, Adelaide, South Australia 5005, Australia
| | - Alan N Williams
- Palaeontology, Geobiology and Earth Archives Research Centre, and Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chris S M Turney
- Palaeontology, Geobiology and Earth Archives Research Centre, and Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Stephen M Richards
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Robert J Mitchell
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Emma Kowal
- Alfred Deakin Institute, Deakin University, Melbourne, Victoria 3125, Australia
| | - John R Stephen
- Australian Genome Research Facility, The Waite Research Precinct, Adelaide, South Australia 5064, Australia
| | - Lesley Williams
- Community Elder and Cultural Advisor, Cherbourg, Queensland, Australia
| | - Wolfgang Haak
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Archeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
16
|
Nagle N, van Oven M, Wilcox S, van Holst Pellekaan S, Tyler-Smith C, Xue Y, Ballantyne KN, Wilcox L, Papac L, Cooke K, van Oorschot RAH, McAllister P, Williams L, Kayser M, Mitchell RJ. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity. Sci Rep 2017; 7:43041. [PMID: 28287095 PMCID: PMC5347126 DOI: 10.1038/srep43041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Sheila van Holst Pellekaan
- Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Kaye N. Ballantyne
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Luka Papac
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - R. John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Nagle N, Ballantyne KN, van Oven M, Tyler-Smith C, Xue Y, Wilcox S, Wilcox L, Turkalov R, van Oorschot RAH, van Holst Pellekaan S, Schurr TG, McAllister P, Williams L, Kayser M, Mitchell RJ. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania. J Hum Genet 2017; 62:343-353. [PMID: 27904152 DOI: 10.1038/jhg.2016.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
Abstract
Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Kaye N Ballantyne
- Office of the Chief Forensic Scientist, Victorian Police Forensic Services Department, Melbourne, VIC, Australia
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, VIC, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Rust Turkalov
- Australian Genome Research Facility, Melbourne, VIC, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victorian Police Forensic Services Department, Melbourne, VIC, Australia
| | - Sheila van Holst Pellekaan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Biological Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, QLD, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R John Mitchell
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Bergström A, Nagle N, Chen Y, McCarthy S, Pollard MO, Ayub Q, Wilcox S, Wilcox L, van Oorschot RAH, McAllister P, Williams L, Xue Y, Mitchell RJ, Tyler-Smith C. Deep Roots for Aboriginal Australian Y Chromosomes. Curr Biol 2016; 26:809-13. [PMID: 26923783 PMCID: PMC4819516 DOI: 10.1016/j.cub.2016.01.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 11/27/2022]
Abstract
Australia was one of the earliest regions outside Africa to be colonized by fully modern humans, with archaeological evidence for human presence by 47,000 years ago (47 kya) widely accepted [1, 2]. However, the extent of subsequent human entry before the European colonial age is less clear. The dingo reached Australia about 4 kya, indirectly implying human contact, which some have linked to changes in language and stone tool technology to suggest substantial cultural changes at the same time [3]. Genetic data of two kinds have been proposed to support gene flow from the Indian subcontinent to Australia at this time, as well: first, signs of South Asian admixture in Aboriginal Australian genomes have been reported on the basis of genome-wide SNP data [4]; and second, a Y chromosome lineage designated haplogroup C(∗), present in both India and Australia, was estimated to have a most recent common ancestor around 5 kya and to have entered Australia from India [5]. Here, we sequence 13 Aboriginal Australian Y chromosomes to re-investigate their divergence times from Y chromosomes in other continents, including a comparison of Aboriginal Australian and South Asian haplogroup C chromosomes. We find divergence times dating back to ∼50 kya, thus excluding the Y chromosome as providing evidence for recent gene flow from India into Australia.
Collapse
Affiliation(s)
- Anders Bergström
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Yuan Chen
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Shane McCarthy
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Martin O Pollard
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Qasim Ayub
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria 3052, Australia; Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052 Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victorian Police Forensic Services Department, Melbourne, VIC 3085, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, QLD 4011, Australia
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|