1
|
Arlegi M, Lorenzo C. Evolutionary selection and morphological integration in the hand of modern humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25024. [PMID: 39228137 DOI: 10.1002/ajpa.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES To enhance our understanding of the evolutionary dynamics of the modern human hand by analyzing the degree of integration and ability to respond to selection pressures of each phalanx and metacarpal bone. MATERIALS AND METHODS The sample comprised 96 adult individuals, both female and male, from Euro-American, Afro-American, and European populations. We collected 10 linear measurements from the 19 metacarpals and proximal, middle, and distal phalanges that constitute the five digits of the hand. Using these data, we constructed variance/covariance matrices to quantify the degree of integration and assess the hand ability to respond to selective pressures. RESULTS Distal phalanges are the most evolvable and flexible elements, while being the least integrated and constrained. The thumb is similarly integrated as the second and third rays, while medial rays (fourth and fifth digits) are more integrated. However, the thumb presents different integration and response to selection patterns. No significant relationship was found between functionality and the indices of selection and integration. Finally, the correlation between hand and foot indices yielded significant results for conditional evolvability and flexibility. DISCUSSION The findings suggest different evolutionary trajectories for the metacarpal and distal phalanx in the modern human thumb, likely reflecting varying functional and developmental pressures. The first metacarpal, characterized by high flexibility and low evolvability, appears to have reached a stable, optimal morphology, under stabilizing selection. In contrast, the distal phalanx seems to have undergone directional evolution, suggesting specialization for a specific function. Comparisons between hands and feet suggest that these structures evolve differently under directional selection but similarly under stabilizing selection.
Collapse
Affiliation(s)
- Mikel Arlegi
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Carlos Lorenzo
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| |
Collapse
|
2
|
Lukova A, Dunmore CJ, Tsegai ZJ, Bachmann S, Synek A, Skinner MM. Technical note: Does scan resolution or downsampling impact the analysis of trabecular bone architecture? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25023. [PMID: 39237469 DOI: 10.1002/ajpa.25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The "gold standard" for the assessment of trabecular bone structure is high-resolution micro-CT. In this technical note, we test the influence of initial scan resolution and post hoc downsampling on the quantitative and qualitative analysis of trabecular bone in a Gorilla tibia. We analyzed trabecular morphology in the right distal tibia of one Gorilla gorilla individual to investigate the impact of variation in voxel size on measured trabecular variables. For each version of the micro-CT volume, trabecular bone was segmented using the medical image analysis method. Holistic morphometric analysis was then used to analyze bone volume (BV/TV), anisotropy (DA), trabecular thickness (Tb.Th), spacing (Tb.Sp), and number (Tb.N). Increasing voxel size during initial scanning was found to have a strong impact on DA and Tb.Th measures, while BV/TV, Tb.Sp, and Tb.N were found to be less sensitive to variations in initial scan resolution. All tested parameters were not substantially influenced by downsampling up to 90 μm resolution. Color maps of BV/TV and DA also retained their distribution up to 90 μm. This study is the first to examine the effect of variation in micro-CT voxel size on the analysis of trabecular bone structure using whole epiphysis approaches. Our results indicate that microstructural variables may be measured for most trabecular parameters up to a voxel size of 90 μm for both scan and downsampled resolutions. Moreover, if only BV/TV, Tb.Sp or Tb.N is measured, even larger voxel sizes might be used without substantially affecting the results.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Bachmann
- Computatioal Biomechanics, Institute of Lightweight Design and Structural Biomechanics, Wien, Austria
| | - Alexander Synek
- Computatioal Biomechanics, Institute of Lightweight Design and Structural Biomechanics, Wien, Austria
| | - Matthew M Skinner
- Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
3
|
Kunze J, Harvati K, Hotz G, Karakostis FA. Humanlike manual activities in Australopithecus. J Hum Evol 2024; 196:103591. [PMID: 39366305 DOI: 10.1016/j.jhevol.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 10/06/2024]
Abstract
The evolution of the human hand is a topic of great interest in paleoanthropology. As the hand can be involved in a vast array of activities, knowledge regarding how it was used by early hominins can yield crucial information on the factors driving biocultural evolution. Previous research on early hominin hands focused on the overall bone shape. However, while such approaches can inform on mechanical abilities and the evolved efficiency of manipulation, they cannot be used as a definite proxy for individual habitual activity. Accordingly, it is crucial to examine bone structures more responsive to lifetime biomechanical loading, such as muscle attachment sites or internal bone architecture. In this study, we investigate the manual entheseal patterns of Australopithecus afarensis, Australopithecus africanus, and Australopithecus sediba through the application of the validated entheses-based reconstruction of activity method. Using a comparative sample of later Homo and three great ape genera, we analyze the muscle attachment site proportions on the thumb, fifth ray, and third intermediate phalanx to gain insight into the habitual hand use of Australopithecus. We use a novel statistical procedure to account for the effects of interspecies variation in overall size and ray proportions. Our results highlight the importance of certain muscles of the first and fifth digits for humanlike hand use. In humans, these muscles are required for variable in-hand manipulation and are activated during stone-tool production. The entheses of A. sediba suggest muscle activation patterns consistent with a similar suite of habitual manual activities as in later Homo. In contrast, A. africanus and A. afarensis display a mosaic entheseal pattern that combines indications of both humanlike and apelike manipulation. Overall, these findings provide new evidence that some australopith species were already habitually engaging in humanlike manipulation, even if their manual dexterity was likely not as high as in later Homo.
Collapse
Affiliation(s)
- Jana Kunze
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany.
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany
| | - Gerhard Hotz
- Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland
| | - Fotios Alexandros Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland.
| |
Collapse
|
4
|
Etienne C, Viot J, Watson PJ, Fagan MJ, Houssaye A. How compactness affects long bone resistance to compression-An investigation into the rhinoceros humerus. J Anat 2024. [PMID: 39374349 DOI: 10.1111/joa.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The functional signal of bone internal structure has been widely studied. Isolated form-function relationships have often been assumed from the observation of presumed morphofunctional relationships, but have never been truly tested. Indeed, distinct bone microanatomical feature co-evolve in response to various constraints that are difficult to detangle. This study tested for the first time the impact of various microanatomical parameters taken one by one, plus some in pairs, on bone strength under compression using biomechanical modelling. We carried out finite element analyses on humerus models, obtained from a white rhinoceros, with different heterogeneous internal structures, and analysed the magnitude and distribution of von Mises stresses. These tests validated earlier hypotheses of form-function relationships about the greater resistance to compression provided by the thickening of the cortex and the filling of the medullary area by trabecular bone and highlighted the stronger impact of increasing trabecular bone compactness than of avoiding an open medullary cavity. By making it possible to estimate the relative impact of each parameter and of combinations of microanatomical features, they also showed the more limited impact of the trabecular bone compactness in the epiphyses to resist compression, and the fact that microanatomical changes of opposite but of similar amplitude impact can compensate each other, but that the impact of the sum of two negative microanatomical changes far exceeds the sum of the impacts of each of the two changes taken separately. These results contribute to a better understanding of bone adaptation and form-function relationships so that they later can be used with confidence for palaeobiological inferences on fossil specimens, contributing to a better understanding of skeletal evolution during the evolutionary history of vertebrates. They also highlight the potential of taking internal structure into account in the bone biomechanical analyses. In addition, they can be used in bioinspiration to design resistant structures subjected to compression.
Collapse
Affiliation(s)
- Cyril Etienne
- Mécanismes Adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| | - Jérémie Viot
- Mécanismes Adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| | - Peter J Watson
- Biomedical Engineering Research Group, School of Engineering, University of Hull, Hull, UK
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Michael J Fagan
- Biomedical Engineering Research Group, School of Engineering, University of Hull, Hull, UK
| | - Alexandra Houssaye
- Mécanismes Adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| |
Collapse
|
5
|
Syeda SM, Tsegai ZJ, Cazenave M, Skinner MM, Kivell TL. Cortical bone architecture of hominid intermediate phalanges reveals functional signals of locomotion and manipulation. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24902. [PMID: 38400773 DOI: 10.1002/ajpa.24902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors. MATERIALS AND METHODS Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2-5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa. RESULTS Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft. DISCUSSION Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.
Collapse
Affiliation(s)
- Samar M Syeda
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Marine Cazenave
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Division of Anthropology, American Museum of Natural History (AMNH), New York, USA
| | - Matthew M Skinner
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Dunmore CJ, Bachmann S, Synek A, Pahr DH, Skinner MM, Kivell TL. The deep trabecular structure of first metacarpals in extant hominids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24695. [PMID: 36790736 DOI: 10.1002/ajpa.24695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differences in: (1) the absolute volume of trabecular volume fraction, (2) the distribution of the deeper trabecular network, and (3) the distribution of trabeculae in the medullary cavity, especially beneath the Mc1 disto-radial flange. MATERIALS AND METHODS Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes (n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base. RESULTS P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids. DISCUSSION These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use.
Collapse
Affiliation(s)
- Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Bardo A, Dunmore CJ, Cornette R, Kivell TL. Morphological integration and shape covariation between the trapezium and first metacarpal among extant hominids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24800. [PMID: 37377134 DOI: 10.1002/ajpa.24800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/16/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES The shape of the trapezium and first metacarpal (Mc1) markedly influence thumb mobility, strength, and the manual abilities of extant hominids. Previous research has typically focused solely on trapezium-Mc1 joint shape. Here we investigate how morphological integration and shape covariation between the entire trapezium (articular and non-articular surfaces) and the entire Mc1 reflect known differences in thumb use in extant hominids. MATERIALS AND METHODS We analyzed shape covariation in associated trapezia and Mc1s across a large, diverse sample of Homo sapiens (n = 40 individuals) and other extant hominids (Pan troglodytes, n = 16; Pan paniscus, n = 13; Gorilla gorilla gorilla, n = 27; Gorilla beringei, n = 6; Pongo pygmaeus, n = 14; Pongo abelii, n = 9) using a 3D geometric morphometric approach. We tested for interspecific significant differences in degree of morphological integration and patterns of shape covariation between the entire trapezium and Mc1, as well as within the trapezium-Mc1 joint specifically. RESULTS Significant morphological integration was only found in the trapezium-Mc1 joint of H. sapiens and G. g. gorilla. Each genus showed a specific pattern of shape covariation between the entire trapezium and Mc1 that was consistent with different intercarpal and carpometacarpal joint postures. DISCUSSION Our results are consistent with known differences in habitual thumb use, including a more abducted thumb during forceful precision grips in H. sapiens and a more adducted thumb in other hominids used for diverse grips. These results will help to infer thumb use in fossil hominins.
Collapse
Affiliation(s)
- Ameline Bardo
- Département Homme et Environnement, UMR 7194 - HNHP, CNRS-MNHN, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Raphaël Cornette
- Institute of Systematic, Evolution, Biodiversity (ISYEB), UMR 7205-CNRS/MNHN/UPMC/EPHE, National Museum of Natural History, Paris, France
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
8
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Bachmann S, Dunmore CJ, Skinner MM, Pahr DH, Synek A. A computational framework for canonical holistic morphometric analysis of trabecular bone. Sci Rep 2022; 12:5187. [PMID: 35338187 PMCID: PMC8956643 DOI: 10.1038/s41598-022-09063-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Bone is a remarkable, living tissue that functionally adapts to external loading. Therefore, bone shape and internal structure carry information relevant to many disciplines, including medicine, forensic science, and anthropology. However, morphometric comparisons of homologous regions across different individuals or groups are still challenging. In this study, two methods were combined to quantify such differences: (1) Holistic morphometric analysis (HMA) was used to quantify morphometric values in each bone, (2) which could then be mapped to a volumetric mesh of a canonical bone created by a statistical free-form deformation model (SDM). Required parameters for this canonical holistic morphometric analysis (cHMA) method were identified and the robustness of the method was evaluated. The robustness studies showed that the SDM converged after one to two iterations, had only a marginal bias towards the chosen starting image, and could handle large shape differences seen in bones of different species. Case studies were performed on metacarpal bones and proximal femora of different primate species to confirm prior study results. The differences between species could be visualised and statistically analysed in both case studies. cHMA provides a framework for performing quantitative comparisons of different morphometric quantities across individuals or groups. These comparisons facilitate investigation of the relationship between spatial morphometric variations and function or pathology, or both.
Collapse
Affiliation(s)
- Sebastian Bachmann
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria.
| | - Christopher J Dunmore
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Canterbury, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| |
Collapse
|
10
|
Deckers K, Tsegai ZJ, Skinner MM, Zeininger A, Kivell TL. Ontogenetic changes to metacarpal trabecular bone structure in mountain and western lowland gorillas. J Anat 2022; 241:82-100. [PMID: 35122239 PMCID: PMC9178373 DOI: 10.1111/joa.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
The trabecular bone morphology of adult extant primates has been shown to reflect mechanical loading related to locomotion. However, ontogenetic studies of humans and other mammals suggest an adaptive lag between trabecular bone response and current mechanical loading patterns that could result in adult trabecular bone morphology reflecting juvenile behaviours. This study investigates ontogenetic changes in the trabecular bone structure of the third metacarpal of mountain gorillas (Gorilla beringei beringei; n = 26) and western lowland gorillas (Gorilla gorilla gorilla; n = 26) and its relationship to expected changes in locomotor loading patterns. Results show that trabecular bone reflects predicted mechanical loading throughout ontogeny. Bone volume fraction, trabecular thickness and trabecular number are low at birth and increase with age, although degree of anisotropy remains relatively stable throughout ontogeny. A high concentration of bone volume fraction can be observed in the distopalmar region of the third metacarpal epiphysis in early ontogeny, consistent with the high frequency of climbing, suspensory and other grasping behaviours in young gorillas. High trabecular bone concentration increases dorsally in the epiphysis during the juvenile period as terrestrial knuckle-walking becomes the primary form of locomotion. However, fusion of the epiphysis does not take place until 10-11 years of age, and overall trabecular structure does not fully reflect the adult pattern until 12 years of age, indicating a lag between adult-like behaviours and adult-like trabecular morphology. We found minimal differences in trabecular ontogeny between mountain and western lowland gorillas, despite presumed variation in the frequencies of arboreal locomotor behaviours. Altogether, ontogenetic changes in Gorilla metacarpal trabecular structure reflect overall genus-level changes in locomotor behaviours throughout development, but with some ontogenetic lag that should be considered when drawing functional conclusions from bone structure in extant or fossil adolescent specimens.
Collapse
Affiliation(s)
- Kim Deckers
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Zewdi J Tsegai
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
11
|
Houssaye A, de Perthuis A, Houée G. Sesamoid bones also show functional adaptation in their microanatomy-The example of the patella in Perissodactyla. J Anat 2022; 240:50-65. [PMID: 34402049 PMCID: PMC8655183 DOI: 10.1111/joa.13530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
The patella is the largest sesamoid bone of the skeleton. It is strongly involved in the knee, improving output force and velocity of the knee extensors, and thus plays a major role in locomotion and limb stability. However, the relationships between its structure and functional constraints, that would enable a better understanding of limb bone functional adaptations, are poorly known. This contribution proposes a comparative analysis, both qualitative and quantitative, of the microanatomy of the whole patella in perissodactyls, which show a wide range of morphologies, masses, and locomotor abilities, in order to investigate how the microanatomy of the patella adapts to evolutionary constraints. The inner structure of the patella consists of a spongiosa surrounded by a compact cortex. Contrary to our expectations, there is no increase in compactness with bone size, and thus body size and weight, but only an increase in the tightness of the spongiosa. No particular thickening of the cortex associated with muscle insertions is noticed but a strong thickening is observed anteriorly at about mid-length, where the strong intermediate patellar ligament inserts. The trabeculae are mainly oriented perpendicularly to the posterior articular surface, which highlights that the main stress is anteroposteriorly directed, maintaining the patella against the femoral trochlea. Conversely, anteriorly, trabeculae are rather circumferentially oriented, following the insertion of the patellar ligament and, possibly also, of the quadriceps tendon. A strong variation is observed among perissodactyl families but also intraspecifically, which is in accordance with previous studies suggesting a higher variability in sesamoid bones. Clear trends are nevertheless observed between the three families. Equids have a much thinner cortex than ceratomorphs. Rhinos and equids, both characterized by a development of the medial border, show an increase in trabecular density laterally suggesting stronger stresses laterally. The inner structure in tapirs is more homogeneous despite the absence of medial development of the medial border with no "compensation" of the inner structure, which suggests different stresses on their knees associated with a different morphology of their patellofemoral joint.
Collapse
Affiliation(s)
- Alexandra Houssaye
- Département Adaptations du vivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| | - Adrien de Perthuis
- Département Adaptations du vivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| | - Guillaume Houée
- Département Adaptations du vivantUMR 7179 CNRS/Muséum National d'Histoire NaturelleParisFrance
| |
Collapse
|
12
|
Bird EE, Kivell TL, Skinner MM. Patterns of internal bone structure and functional adaptation in the hominoid scaphoid, lunate, and triquetrum. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Emma E. Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| |
Collapse
|
13
|
Bird EE, Kivell TL, Skinner MM. Cortical and trabecular bone structure of the hominoid capitate. J Anat 2021; 239:351-373. [PMID: 33942895 PMCID: PMC8273598 DOI: 10.1111/joa.13437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Morphological variation in the hominoid capitate has been linked to differences in habitual locomotor activity due to its importance in movement and load transfer at the midcarpal joint proximally and carpometacarpal joints distally. Although the shape of bones and their articulations are linked to joint mobility, the internal structure of bones has been shown experimentally to reflect, at least in part, the loading direction and magnitude experienced by the bone. To date, it is uncertain whether locomotor differences among hominoids are reflected in the bone microarchitecture of the capitate. Here, we apply a whole‐bone methodology to quantify the cortical and trabecular architecture (separately and combined) of the capitate across bipedal (modern Homo sapiens), knuckle‐walking (Pan paniscus, Pan troglodytes, Gorilla sp.), and suspensory (Pongo sp.) hominoids (n = 69). It is hypothesized that variation in bone microarchitecture will differentiate these locomotor groups, reflecting differences in habitual postures and presumed loading force and direction. Additionally, it is hypothesized that trabecular and cortical architecture in the proximal and distal regions, as a result of being part of mechanically divergent joints proximally and distally, will differ across these portions of the capitate. Results indicate that the capitate of knuckle‐walking and suspensory hominoids is differentiated from bipedal Homo primarily by significantly thicker distal cortical bone. Knuckle‐walking taxa are further differentiated from suspensory and bipedal taxa by more isotropic trabeculae in the proximal capitate. An allometric analysis indicates that size is not a significant determinate of bone variation across hominoids, although sexual dimorphism may influence some parameters within Gorilla. Results suggest that internal trabecular and cortical bone is subjected to different forces and functional adaptation responses across the capitate (and possibly other short bones). Additionally, while separating trabecular and cortical bone is normal protocol of current whole‐bone methodologies, this study shows that when applied to carpals, removing or studying the cortical bone separately potentially obfuscates functionally relevant signals in bone structure.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
14
|
The implications of thumb movements for Neanderthal and modern human manipulation. Sci Rep 2020; 10:19323. [PMID: 33244047 PMCID: PMC7692544 DOI: 10.1038/s41598-020-75694-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 11/12/2022] Open
Abstract
Much research has debated the technological abilities of Neanderthals relative to those of early modern humans, with a particular focus on subtle differences in thumb morphology and how this may reflect differences in manipulative behaviors in these two species. Here, we provide a novel perspective on this debate through a 3D geometric morphometric analysis of shape covariation between the trapezial and proximal first metacarpal articular surfaces of Neanderthals (Homo neanderthalensis) in comparison to early and recent humans (Homo sapiens). Results show a distinct pattern of shape covariation in Neanderthals, consistent with more extended and adducted thumb postures that may reflect habitual use of grips commonly used for hafted tools. Both Neanderthals and recent humans demonstrate high intraspecific variation in shape covariation. This intraspecific variation is likely the result of genetic and/or developmental differences, but may also reflect, in part, differing functional requirements imposed by the use of varied tool-kits. These results underscore the importance of holistic joint shape analysis for understanding the functional capabilities and evolution of the modern human thumb.
Collapse
|
15
|
Williams-Hatala EM, Hatala KG, Key A, Dunmore CJ, Kasper M, Gordon M, Kivell TL. Kinetics of stone tool production among novice and expert tool makers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:714-727. [PMID: 33107044 DOI: 10.1002/ajpa.24159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES As is the case among many complex motor tasks that require prolonged practice before achieving expertise, aspects of the biomechanics of knapping vary according to the relative experience/skill level of the practitioner. In archaeological experiments focused on the production of Plio-Pleistocene stone tools, these skill-mediated biomechanical differences have bearings on experimental design, the interpretation of results, and lithic assemblage analysis. A robust body of work exists on variation in kinematic patterns across skill levels but less is known about potential kinetic differences. The current study was undertaken to better understand kinetic patterns observed across skill levels during "Oldowan," freehand stone tool production. MATERIALS AND METHODS Manual pressure data were collected from 23 novice and 9 expert stone tool makers during the production of simple stone flakes using direct hard hammer percussion. RESULTS Results show that expert tool makers experienced significantly lower cumulative pressure magnitudes and pressure-time integral magnitudes compared with novices. In expert knappers, digits I and II experienced similarly high pressures (both peak pressure and pressure-time integrals) and low variability in pressure relative to digits III-V. Novices, in contrast, tended to hold hammerstones such that pressure patterns were similar across digits II-V, and they showed low variability on digit I only. DISCUSSION The similar and consistent emphasis of the thumb by both skill groups indicates the importance of this digit in stabilizing the hammerstone. The emphasis placed on digit II is exclusive to expert knappers, and so this digit may offer osteological signals diagnostic of habitual expert tool production.
Collapse
Affiliation(s)
- Erin Marie Williams-Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA.,Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA.,Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Alastair Key
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Margaret Kasper
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - McKenzie Gordon
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
Dunmore CJ, Skinner MM, Bardo A, Berger LR, Hublin JJ, Pahr DH, Rosas A, Stephens NB, Kivell TL. The position of Australopithecus sediba within fossil hominin hand use diversity. Nat Ecol Evol 2020; 4:911-918. [PMID: 32424278 DOI: 10.1038/s41559-020-1207-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022]
Abstract
The human lineage is marked by a transition in hand use, from locomotion towards increasingly dexterous manipulation, concomitant with bipedalism. The forceful precision grips used by modern humans probably evolved in the context of tool manufacture and use, but when and how many times hominin hands became principally manipulative remains unresolved. We analyse metacarpal trabecular and cortical bone, which provide insight into behaviour during an individual's life, to demonstrate previously unrecognized diversity in hominin hand use. The metacarpals of the palm in Australopithecus sediba have trabecular morphology most like orangutans and consistent with locomotor power-grasping with the fingers, while that of the thumb is consistent with human-like manipulation. This internal morphology is the first record of behaviour consistent with a hominin that used its hand for both arboreal locomotion and human-like manipulation. This hand use is distinct from other fossil hominins in this study, including A. afarensis and A. africanus.
Collapse
Affiliation(s)
- Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Ameline Bardo
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Chaire Internationale de Paléoanthropologie, Collège de France, Paris, France
| | - Dieter H Pahr
- TU Wien Institute of Lightweight Design and Structural Biomechanics, Vienna, Austria
| | - Antonio Rosas
- Department of Paleobiology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Nicholas B Stephens
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|