1
|
Silventoinen K, Maia J, Li W, Sund R, Gouveia ÉR, Antunes A, Marques G, Thomis M, Jelenkovic A, Kaprio J, Freitas D. Genetic regulation of body size and morphology in children: a twin study of 22 anthropometric traits. Int J Obes (Lond) 2023; 47:181-189. [PMID: 36635383 PMCID: PMC10023566 DOI: 10.1038/s41366-023-01253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Anthropometric measures show high heritability, and genetic correlations have been found between obesity-related traits. However, we lack a comprehensive analysis of the genetic background of human body morphology using detailed anthropometric measures. METHODS Height, weight, 7 skinfold thicknesses, 7 body circumferences and 4 body diameters (skeletal breaths) were measured in 214 pairs of twin children aged 3-18 years (87 monozygotic pairs) in the Autonomous Region of Madeira, Portugal. Factor analysis (Varimax rotation) was used to analyze the underlying structure of body physique. Genetic twin modeling was used to estimate genetic and environmental contributions to the variation and co-variation of the anthropometric traits. RESULTS Together, two factors explained 80% of the variation of all 22 anthropometric traits in boys and 73% in girls. Obesity measures (body mass index, skinfold thickness measures, as well as waist and hip circumferences) and limb circumferences loaded most strongly on the first factor, whereas height and body diameters loaded especially on the second factor. These factors as well as all anthropometric measures showed high heritability (80% or more for most of the traits), whereas the rest of the variation was explained by environmental factors not shared by co-twins. Obesity measures showed high genetic correlations (0.75-0.98). Height showed the highest genetic correlations with body diameter measures (0.58-0.76). Correlations between environmental factors not shared by co-twins were weaker than the genetic correlations but still substantial. The correlation patterns were roughly similar in boys and girls. CONCLUSIONS Our results show high genetic correlations underlying the human body physique, suggesting that there are sets of genes widely affecting anthropometric traits. Better knowledge of these genetic variants can help to understand the development of obesity and other features of the human physique.
Collapse
Affiliation(s)
- Karri Silventoinen
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland.
| | - José Maia
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Reijo Sund
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Élvio R Gouveia
- Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
- LARSYS, Interactive Technologies Institute, Funchal, Portugal
| | - António Antunes
- Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
| | - Gonçalo Marques
- Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
| | - Martine Thomis
- Physical Activity, Sports & Health Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Aline Jelenkovic
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Duarte Freitas
- Center of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
- Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
| |
Collapse
|
2
|
Ortiz-Prado E, Mendieta G, Simbaña-Rivera K, Gomez-Barreno L, Landazuri S, Vasconez E, Calvopiña M, Viscor G. Genotyped indigenous Kiwcha adults at high altitude are lighter and shorter than their low altitude counterparts. J Physiol Anthropol 2022; 41:8. [PMID: 35272696 PMCID: PMC8908589 DOI: 10.1186/s40101-022-00280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Anthropometric measures have been classically used to understand the impact of environmental factors on the living conditions of individuals and populations. Most reference studies on development and growth in which anthropometric measures were used were carried out in populations that are located at sea level, but there are few studies carried out in high altitude populations. Objective The objective of this study was to evaluate the anthropometric and body composition in autochthonous Kiwcha permanently living at low and high altitudes. Methodology A cross-sectional study of anthropometric and body composition between genetically matched lowland Kiwcha from Limoncocha (n = 117), 230 m in the Amazonian basin, and high-altitude Kiwcha from Oyacachi (n = 95), 3800 m in Andean highlands. Student’s t-test was used to analyze the differences between continuous variables, and the chi-square test was performed to check the association or independence of categorical variables. Fisher’s exact test or Spearman’s test was used when the variable had evident asymmetries with histograms prior to the selection of the test. Results This study shows that high altitude men are shorter than their counterparts who live at low altitude, with p = 0.019. About body muscle percentage, women at high altitudes have less body muscle percentage (− 24.8%). In comparison, men at high altitudes have significantly more muscle body mass percentage (+ 13.5%) than their lowland counterparts. Body fat percentage was lower among low altitude women (− 15.5%), and no differences were found among men. Conclusions This is the first study to be performed in two genotyped controlled matching populations located at different altitudes to our best knowledge. The anthropometric differences vary according to sex, demonstrating that high altitude populations are, in general, lighter and shorter than their low altitude controls. Men at high altitude have more muscled bodies compared to their lowland counterparts, but their body age was older than their actual age. Supplementary Information The online version contains supplementary material available at 10.1186/s40101-022-00280-6.
Collapse
|
3
|
Phetthong T, Khongkrapan A, Jinawath N, Seo GH, Wattanasirichaigoon D. Compound Heterozygote of Point Mutation and Chromosomal Microdeletion Involving OTUD6B Coinciding with ZMIZ1 Variant in Syndromic Intellectual Disability. Genes (Basel) 2021; 12:genes12101583. [PMID: 34680978 PMCID: PMC8535745 DOI: 10.3390/genes12101583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 02/02/2023] Open
Abstract
The OTUD6B and ZMIZ1 genes were recently identified as causes of syndromic intellectual disability (ID) with shared phenotypes of facial dysmorphism, distal limb anomalies, and seizure disorders. OTUD6B- and ZMIZ1-related ID are inherited in autosomal recessive and autosomal dominant patterns, respectively. We report a 5-year-old girl with developmental delay, facial phenotypes resembling Williams syndrome, and cardiac defects. The patient also had terminal broadening of the fingers and polydactyly. Cytogenomic microarray (CMA), whole exome sequencing (WES), and mRNA analysis were performed. The CMA showed a paternally inherited 0.118 Mb deletion of 8q21.3, chr8:92084087–92202189, with OTUD6B involved. The WES identified a hemizygous OTUD6B variant, c.873delA (p.Lys291AsnfsTer3). The mother was heterozygous for this allele. The WES also demonstrated a heterozygous ZMIZ1 variant, c.1491 + 2T > C, in the patient and her father. This ZMIZ1 variant yielded exon 14 skipping, as evidenced by mRNA study. We suggest that Williams syndrome-like phenotypes, namely, periorbital edema, hanging cheek, and long and smooth philtrum represent expanded phenotypes of OTUD6B-related ID. Our data expand the genotypic spectrum of OTUD6B- and ZMIZ1-related disorders. This is the first reported case of a compound heterozygote featuring point mutation, chromosomal microdeletion of OTUD6B, and the unique event of OTUD6B, coupled with ZMIZ1 variants.
Collapse
Affiliation(s)
- Tim Phetthong
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.P.); (A.K.)
- Division of Medical Genetics, Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Arthaporn Khongkrapan
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.P.); (A.K.)
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Go-Hun Seo
- Department of Medical Genetics, 3billion, Inc., Seoul 05505, Korea;
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.P.); (A.K.)
- Correspondence:
| |
Collapse
|
4
|
Cai W, Lin H, Qi R, Lin X, Zhao Y, Chen W, Huang Z. Psoas Muscle Density Predicts Occurrences of Hepatic Encephalopathy in Patients Receiving Transjugular Intrahepatic Portosystemic Shunts within 1 year. Cardiovasc Intervent Radiol 2021; 45:93-101. [PMID: 34523022 DOI: 10.1007/s00270-021-02961-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/29/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE We aimed to assess the efficacy of psoas density (PD) for predicting hepatic encephalopathy (HE) after transjugular intrahepatic portosystemic shunt (TIPS) procedures. METHODS Data were collected from patients who underwent TIPS procedures at a single institution between 2013 and 2019. PD was manually measured using software on unenhanced CT scans at the level of third lumbar vertebra. Laboratory and physical examination data were collected within 24 h after admission in order to compare the differences between patients with and without post-TIPS HE. RESULTS A total of 251 patients were included in this study. Among these patients, 77 (30.7%) developed post-TIPS HE within one year after TIPS creation. The threshold of PD for predicting HE was 51.24 Hounsfield unit (HU). PD values less than this threshold were correlated with an increased risk of HE (hazard ratio 0.92; 95% CI 0.89-0.95, P < 0.001). The area under the receiver operating characteristic curve (AUROC) of PD was 0.743 (95% CI 0.685-0.796), which was superior to Model for End-stage Liver Disease (MELD) (0.569, P = 0.007), albumin-bilirubin score (ALBI) (0.641, P = 0.018), and Child-Pugh score (0.583, P = 0.003). CONCLUSION PD measurement showed good HE predictive value in cirrhotic patients who underwent TIPS. This measure also performed better than MELD, ALBI and Child-Pugh.
Collapse
Affiliation(s)
- Weimin Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Hanyu Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Ruyi Qi
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Xinran Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Yuan Zhao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Weizhen Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China.
| |
Collapse
|