1
|
Role of Nasal Fibroblasts in Airway Remodeling of Chronic Rhinosinusitis: The Modulating Functions Reexamined. Int J Mol Sci 2023; 24:ijms24044017. [PMID: 36835423 PMCID: PMC9965487 DOI: 10.3390/ijms24044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial inflammatory disease of the nose and sinuses that affects more than 10% of the adult population worldwide. Currently, CRS is classified into endotypes according to the inflammatory response (Th1, Th2, and Th17) or the distribution of immune cells in the mucosa (eosinophilic and non-eosinophilic). CRS induces mucosal tissue remodeling. Extracellular matrix (ECM) accumulation, fibrin deposition, edema, immune cell infiltration, and angiogenesis are observed in the stromal region. Conversely, epithelial-to-mesenchymal transition (EMT), goblet cell hyperplasia, and increased epithelial permeability, hyperplasia, and metaplasia are found in the epithelium. Fibroblasts synthesize collagen and ECM, which create a structural skeleton of tissue and play an important role in the wound-healing process. This review discusses recent knowledge regarding the modulation of tissue remodeling by nasal fibroblasts in CRS.
Collapse
|
2
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1241-1250. [DOI: 10.1093/jpp/rgac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022]
|
3
|
Groeger M, Spanier G, Wolf M, Deschner J, Proff P, Schröder A, Kirschneck C. Effects of histamine on human periodontal ligament fibroblasts under simulated orthodontic pressure. PLoS One 2020; 15:e0237040. [PMID: 32764823 PMCID: PMC7413485 DOI: 10.1371/journal.pone.0237040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
As type-I-allergies show an increasing prevalence in the general populace, orthodontic patients may also be affected by histamine release during treatment. Human periodontal ligament fibroblasts (PDLF) are regulators of orthodontic tooth movement. However, the impact of histamine on PDLF in this regard is unknown. Therefore PDLF were incubated without or with an orthodontic compressive force of 2g/cm2 with and without additional histamine. To assess the role of histamine-1-receptor (H1R) H1R-antagonist cetirizine was used. Expression of histamine receptors and important mediators of orthodontic tooth movement were investigated. PDLF expressed histamine receptors H1R, H2R and H4R, but not H3R. Histamine increased the expression of H1R, H2R and H4R as well as of interleukin-6, cyclooxygenase-2, and prostaglandin-E2 secretion even without pressure application and induced receptor activator of NF-kB ligand (RANKL) protein expression with unchanged osteoprotegerin secretion. These effects were not observed in presence of H1R antagonist cetirizine. By expressing histamine receptors, PDLF seem to be able to respond to fluctuating histamine levels in the periodontal tissue. Increased histamine concentration was associated with enhanced expression of proinflammatory mediators and RANKL, suggesting an inductive effect of histamine on PDLF-mediated osteoclastogenesis and orthodontic tooth movement. Since cetirizine inhibited these effects, they seem to be mainly mediated via histamine receptor H1R.
Collapse
Affiliation(s)
- Marcella Groeger
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, Mainz, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
4
|
Hildebrand KR, Page LM, Billstrom TM, Steinauer JJ, Eddinger KA, Arjomand S, Yaksh TL. Characterization of Effect of Repeated Bolus or Continuous Intrathecal Infusion of Morphine on Spinal Mass Formation in the Dog. Neuromodulation 2019; 22:790-798. [PMID: 31124198 DOI: 10.1111/ner.12963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND We determined whether intrathecally delivering the same daily dose of morphine (MS) at a fixed concentration of 25 mg/mL by periodic boluses versus continuous infusion would reduce intrathecal mass (IMs) formation in dogs. METHODS Adult dogs (hound cross, n = 32) were implanted with intrathecal catheters connected to SynchroMed II infusion pumps. Animals were randomly assigned to receive infusion of 0.48 mL/day of saline or MS dosing (12 mg/day at 25 mg/mL) as boluses: x1 (q24hour), x2 (q12hour), x4 (q6hour), or x8 (q3hour) given at the rate of 1000 μL/hour, or as a continuous infusion (25 mg/mL/20 μL/hour). RESULTS With IT saline, minimal pathology was noted. In contrast, animals receiving morphine displayed spinally compressing durally derived masses with the maximal cross-sectional area being greatest near the catheter tip. Histopathology showed that IMs consisted of fibroblasts in a collagen (type 1) matrix comprised of newly formed collagen near the catheter and mature collagen on the periphery of the mass. The rank order of median cross-sectional mass area (mm2 ) was: Saline: 0.7 mm2 ; x2: 1.8 mm2 ; x4: 2.7 mm2 ; x1: 2.7 mm2 ; x8: 4.2 mm2 ; Continuous: 8.1 mm2 , with statistical difference from saline being seen with continuous (p < 0.0001) and x8 (p < 0.05). Bench studies with a 2D diffusion chamber confirmed an increase in dye distribution and lower peak concentrations after bolus delivery versus continuous infusion of dye. CONCLUSIONS Using multiple bolus dosing, IMs were reduced as compared to continuous infusion, suggesting relevance of bolus delivery in yielding reduced intrathecal masses.
Collapse
Affiliation(s)
- Keith R Hildebrand
- Medtronic, Restorative Therapies Group, Targeted Drug Delivery, Minneapolis, MN, USA
| | - Linda M Page
- Medtronic, Restorative Therapies Group, Targeted Drug Delivery, Minneapolis, MN, USA
| | - Tina M Billstrom
- Medtronic Physiological Research Laboratories, Coon Rapid, MN, USA
| | - Joanne J Steinauer
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Shervin Arjomand
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Virani S, Akers A, Stephenson K, Smith S, Kennedy L, Alpini G, Francis H. Comprehensive Review of Molecular Mechanisms during Cholestatic Liver Injury and Cholangiocarcinoma. JOURNAL OF LIVER 2018; 7:231. [PMID: 30613437 PMCID: PMC6319937 DOI: 10.4172/2167-0889.1000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholestatic liver injury is characterized by damage induced on the biliary tree and cholangiocytes, the cells lining the biliary tree, thus they are termed "cholangiopathies". Cholangiopathies include diseases such as Primary Biliary Cholangitis, Primary Sclerosing Cholangitis, Biliary Atresia and Cholangiocarcinoma. These pathologies lack viable therapies and most patients are diagnosed during late stage disease progression (with the exception of Biliary Atresia, which is found shortly after birth). The lack of therapies for these diseases has put a significant burden on the need for liver transplantation as this is the only indicative "cure" for cholangiopathies. The molecular mechanisms for cholangiopathies have been extensively studied; however, and unfortunately, the lack of effective biomarkers and therapeutics remains. In this review article we highlight the latest studies to investigate the molecular mechanisms regulating cholangiopathies and the potential therapeutics that might be discovered.
Collapse
Affiliation(s)
- Shohaib Virani
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| | - Austin Akers
- Department of Internal Medicine, Baylor Scott & White Health, Texas, USA
| | - Kristen Stephenson
- Department of Internal Medicine, Baylor Scott & White Health, Texas, USA
| | - Steven Smith
- Department of Internal Medicine, Baylor Scott & White Health, Texas, USA
| | - Lindsey Kennedy
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas, USA
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Texas, USA
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| |
Collapse
|
6
|
Kennedy DW. Editorial. Int Forum Allergy Rhinol 2016; 5:875-6. [PMID: 26468693 DOI: 10.1002/alr.21659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Jones LR, Greene J, Chen KM, Divine G, Chitale D, Shah V, Datta I, Worsham MJ. Biological significance of genome-wide DNA methylation profiles in keloids. Laryngoscope 2016; 127:70-78. [DOI: 10.1002/lary.26063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Lamont R. Jones
- Department of Otolaryngology-Head and Neck Surgery; Henry Ford Hospital; Detroit Michigan U.S.A
| | - Joshua Greene
- Department of Otolaryngology-Head and Neck Surgery; Henry Ford Hospital; Detroit Michigan U.S.A
| | - Kang Mei Chen
- Department of Otolaryngology-Head and Neck Surgery; Henry Ford Hospital; Detroit Michigan U.S.A
| | - George Divine
- Department of Public Health Sciences; Henry Ford Health System; Detroit Michigan U.S.A
| | - Dhananjay Chitale
- Department of Pathology; Henry Ford Health System; Detroit Michigan U.S.A
| | - Veena Shah
- Department of Pathology; Henry Ford Health System; Detroit Michigan U.S.A
| | - Indrani Datta
- Department of Public Health Sciences Center for Bioinformatics; Henry Ford Health System; Detroit Michigan U.S.A
| | - Maria J. Worsham
- Department of Otolaryngology-Head and Neck Surgery; Henry Ford Hospital; Detroit Michigan U.S.A
| |
Collapse
|
8
|
Virakul S, Phetsuksiri T, van Holten-Neelen C, Schrijver B, van Steensel L, Dalm VASH, Paridaens D, van den Bosch WA, van Hagen PM, Dik WA. Histamine induces NF-κB controlled cytokine secretion by orbital fibroblasts via histamine receptor type-1. Exp Eye Res 2016; 147:85-93. [PMID: 27170049 DOI: 10.1016/j.exer.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
Mast cells and their products are likely to be involved in regulating orbital fibroblast activity in Graves' Ophthalmopathy (GO). Histamine is abundantly present in granules of mast cells and is released upon mast cell activation. However, the effect of histamine on orbital fibroblasts has not been examined so far. Orbital tissues from GO patients and controls were analyzed for the presence of mast cells using toluidine blue staining and immunohistochemical detection of CD117 (stem cell factor receptor). Orbital fibroblasts were cultured from GO patients and healthy controls, stimulated with histamine and cytokines (IL-6, IL-8, CCL2, CCL5, CCL7, CXCL10 and CXCL11) were measured in culture supernatants. Also hyaluronan levels were measured in culture supernatants and hyaluronan synthase (HAS) and hyaluronidase (HYAL) gene expression levels were determined. In addition, histamine receptor subtype gene expression levels were examined as well as the effect of the histamine receptor-1 (HRH1) antagonist loratadine and NF-κB inhibitor SC-514 on histamine-induced cytokine production. Mast cell numbers were increased in GO orbital tissues. Histamine stimulated the production of IL-6, IL-8 and CCL2 by orbital fibroblasts, while it had no effect on the production of CCL5, CCL7, CXCL10, CXCL11 and hyaluronan. Orbital fibroblasts expressed HRH1 and loratadine and SC-514 both blocked histamine-induced IL-6, IL-8 and CCL2 production by orbital fibroblasts. In conclusion, this study demonstrates that histamine can induce the production of NF-κB controlled-cytokines by orbital fibroblasts, which supports a role for mast cells in GO.
Collapse
Affiliation(s)
- Sita Virakul
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands; Internal Medicine, Division of Clinical Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Tanachaporn Phetsuksiri
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Conny van Holten-Neelen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Benjamin Schrijver
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Leendert van Steensel
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands; Internal Medicine, Division of Clinical Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - P Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands; Internal Medicine, Division of Clinical Immunology, Erasmus MC, Rotterdam, The Netherlands; Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|