1
|
Sultanakhmetov G, Limlingan SJM, Fukuchi A, Tsuda K, Suzuki H, Kato I, Saito T, Weitemier AZ, Ando K. Mark4 ablation attenuates pathological phenotypes in a mouse model of tauopathy. Brain Commun 2024; 6:fcae136. [PMID: 38712317 PMCID: PMC11073748 DOI: 10.1093/braincomms/fcae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Accumulation of abnormally phosphorylated tau proteins is linked to various neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. Microtubule affinity-regulating kinase 4 (MARK4) has been genetically and pathologically associated with Alzheimer's disease and reported to enhance tau phosphorylation and toxicity in Drosophila and mouse traumatic brain-injury models but not in mammalian tauopathy models. To investigate the role of MARK4 in tau-mediated neuropathology, we crossed P301S tauopathy model (PS19) and Mark4 knockout mice. We performed behaviour, biochemical and histology analyses to evaluate changes in PS19 pathological phenotype with and without Mark4. Here, we demonstrated that Mark4 deletion ameliorated the tau pathology in a mouse model of tauopathy. In particular, we found that PS19 with Mark4 knockout showed improved mortality and memory compared with those bearing an intact Mark4 gene. These phenotypes were accompanied by reduced neurodegeneration and astrogliosis in response to the reduction of pathological forms of tau, such as those phosphorylated at Ser356, AT8-positive tau and thioflavin S-positive tau. Our data indicate that MARK4 critically contributes to tau-mediated neuropathology, suggesting that MARK4 inhibition may serve as a therapeutic avenue for tauopathies.
Collapse
Affiliation(s)
- Grigorii Sultanakhmetov
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sophia Jobien M Limlingan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Aoi Fukuchi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Keisuke Tsuda
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hirokazu Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Iori Kato
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Adam Z Weitemier
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Sultanakhmetov G, Kato I, Asada A, Saito T, Ando K. Microtubule-affinity regulating kinase family members distinctively affect tau phosphorylation and promote its toxicity in a Drosophila model. Genes Cells 2024; 29:337-346. [PMID: 38329182 PMCID: PMC11447834 DOI: 10.1111/gtc.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Accumulation of abnormally phosphorylated tau and its aggregation constitute a significant hallmark of Alzheimer's disease (AD). Tau phosphorylation at Ser262 and Ser356 in the KXGS motifs of microtubule-binding repeats plays a critical role in its physiological function and AD disease progression. Major tau kinases to phosphorylate tau at Ser262 and Ser356 belong to the Microtubule Affinity Regulating Kinase family (MARK1-4), which are considered one of the major contributors to tau abnormalities in AD. However, whether and how each member affects tau toxicity in vivo is unclear. We used transgenic Drosophila as a model to compare the effect on tau-induced neurodegeneration among MARKs in vivo. MARK4 specifically promotes tau accumulation and Ser396 phosphorylation, which yields more tau toxicity than was caused by other MARKs. Interestingly, MARK1, 2, and 4 increased tau phosphorylation at Ser262 and Ser356, but only MARK4 caused tau accumulation, indicating that these sites alone did not cause pathological tau accumulation. Our results revealed MARKs are different in their effect on tau toxicity, and also in tau phosphorylation at pathological sites other than Ser262 and Ser356. Understanding the implementation of each MARK into neurodegenerative disease helps to develop more target and safety therapies to overcome AD and related tauopathies.
Collapse
Affiliation(s)
- Grigorii Sultanakhmetov
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Iori Kato
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Akiko Asada
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Taro Saito
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Kanae Ando
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
3
|
Yang Z, Yang L, Sun Z, Rong Y, Bai C, Dong Q, Jian L. miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway. Cancer Biol Ther 2023; 24:2281459. [PMID: 37981873 PMCID: PMC10783846 DOI: 10.1080/15384047.2023.2281459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
Glioblastoma as the most common and aggressive central nervous system tumor in adults. Its prognosis and therapeutic outcome are poor due to the limited understanding of its molecular mechanism. Apolipoprotein C-1 (APOC1) as a member of the apolipoprotein family that acts as a tumor promoter in various cancers. MicroRNA (miRNA) can silence gene expression and suppress tumor progression. However, the role of APOC1 and its upstream miRNA has not been explored in glioblastoma. Two glioblastoma cell lines (U87 and U251) were used to explore the role of APOC1 and its upstream miRNA-660-3p in glioblastoma tumorigenesis in vitro. Cells with APOC1/miRNA-660-3p overexpression or knockdown were assessed for their proliferation, migration, and invasion in vitro, and tumorigenesis in vivo. Gene and protein expression was assessed by qRT-PCR and western blot, respectively. Cell proliferation was assessed by the MTT assay and the EdU and Ki67 staining. Cell migration and invasion were assessed by the transwell assay. Tumorigenesis in vivo was assessed in U87 cells with a xenograft mouse model. APOC1 was overexpressed in glioblastoma compared with normal peritumoral tissue and was inversely related to patient prognosis. APOC1 overexpression promotes cell proliferation, migration, and invasion in vitro. APOC1 inhibition reduced tumor growth in vivo. miRNA-660-3p inhibits tumorigenesis by directly targeting APOC1. Mechanistically, APOC1 drives the malignancy of glioblastoma by activating the TGFβ2 signaling pathway. miRNA-660-3p suppresses tumorigenesis by targeting APOC1. Therefore, miRNA-660-3p/APOC1 axis can serve as potential intervention targets in managing glioblastoma progression.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenkai Sun
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxiang Dong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lin Jian
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Lian J, Sun W, Dong F, Zhu X, Sun X, Jia S, Gao L, Wei M. Effectiveness of the treatment of depression associated with cancer and neuroimaging changes in depression-related brain regions in patients treated with the mediator-deuterium acupuncture method. Open Life Sci 2023; 18:20220709. [PMID: 37954100 PMCID: PMC10638839 DOI: 10.1515/biol-2022-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 11/14/2023] Open
Abstract
Cancer patients should be concerned about depression, which can negatively impact their mental health. To develop efficient therapies, it is essential to comprehend the connection between cancer and depression. This study used neuroimaging to investigate the use of mediator-deuterium acupuncture (MDA) for people with cancer-induced depression and its effects on brain regions associated with depression. Resting-state functional magnetic resonance imaging and neurocognitive testing were conducted on the participants, and statistical package for the social sciences was utilized to analyze the behavioral data. Clinical and theoretical data were analyzed to evaluate acupuncture's effectiveness against gynecological cancer. In the research, there were 40 participants, 20 in each group. Except for psychomotor speed, there was no discernible difference in pre-chemotherapy cognitive test results between patients and healthy controls (HCs). However, there were substantial differences in post-treatment cognition test results, showing that the patient group had progressed. According to longitudinal graph analysis, the patient group's local and global brain efficiency significantly declined, and lower local efficiency was associated with lower raw Trail Making Test-A results. Furthermore, poorer verbal memory scores were associated with lower overall performance in the sick group but not in the HC group. According to the research, MDA has potential as a supplemental therapy since it may improve brain function and address depression-related neurological abnormalities in cancer patients. More research is required to fully comprehend the variations between cancer and depression-related brain areas during patient therapy, maybe incorporating MDA.
Collapse
Affiliation(s)
- Jianlun Lian
- Department of Oncology One, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
| | - Weiyuan Sun
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Ministry of Human Resources, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Fang Dong
- Department of Oncology One, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
| | - Xueliang Zhu
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Department of Brain Disease II, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Xue Sun
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Functional Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Songtao Jia
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Acupuncture Rehabilitation Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Limin Gao
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
- Catheter room, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Meimei Wei
- Department of Oncology One, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050011, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei050011, China
| |
Collapse
|
5
|
Oba T, Homma D, Limlingan SJM, Fukuchi A, Asada A, Saito T, Ando K. A cell-penetrating peptide derived from SARS-CoV-2 protein Orf9b allosterically inhibits MARK4 activity and mitigates tau toxicity. Neurobiol Dis 2023; 188:106334. [PMID: 37884211 DOI: 10.1016/j.nbd.2023.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Abnormal activation of microtubule affinity-regulating kinase 4 (MARK4) and its phosphorylation of the microtubule-associated protein tau are believed to play a role in the pathogenesis of Alzheimer's disease, and MARK4 inhibition can be a strategy to develop disease-modifying therapy. Here we report the development of a membrane-permeable peptide that inhibits MARK4 activity in an allosteric manner. The SARS-CoV-2-derived protein Orf9b inhibited MARK4-mediated tau phosphorylation in primary neurons and Drosophila. Orf9b inhibited MARK4 activity in an allosteric manner and did not inhibit the activity of MARK2, which is another MARK family member and is closely related to MARK4. Co-expression of Orf9b in the fly retina expressing human tau and MARK4 suppressed phosphorylation of tau at the microtubule-binding repeats and tau-induced neurodegeneration. We identified the minimal sequence of Orf9b required to suppress MARK4 activity and fused it to a cell-permeable sequence (TAT-Orf9b10-18_78-95). Extracellular supplementation of TAT-Orf9b10-18_78-95 inhibited MARK4 activity in primary neurons, and feeding TAT-Orf9b10-18_78-95 to a fly model of tauopathy lowered phospho-tau levels and suppressed neurodegeneration. These results suggest that TAT-Orf9b10-18_78-95 is a unique class of MARK4 inhibitor and can be used to modify tau toxicity.
Collapse
Affiliation(s)
- Toshiya Oba
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Daiki Homma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Sophia Jobien M Limlingan
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Aoi Fukuchi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan; Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan; Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Japan.
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan; Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Japan.
| |
Collapse
|
6
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood RNA transcripts reveal similar and differential alterations in fundamental cellular processes in Alzheimer's disease and other neurodegenerative diseases. Alzheimers Dement 2023; 19:2618-2632. [PMID: 36541444 PMCID: PMC11633037 DOI: 10.1002/alz.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysfunctional processes in Alzheimer's disease and other neurodegenerative diseases lead to neural degeneration in the central and peripheral nervous system. Research demonstrates that neurodegeneration of any kind is a systemic disease that may even begin outside of the region vulnerable to the disease. Neurodegenerative diseases are defined by the vulnerabilities and pathology occurring in the regions affected. METHOD A random forest machine learning analysis on whole blood transcriptomes from six neurodegenerative diseases generated unbiased disease-classifying RNA transcripts subsequently subjected to pathway analysis. RESULTS We report that transcripts of the blood transcriptome selected for each of the neurodegenerative diseases represent fundamental biological cell processes including transcription regulation, degranulation, immune response, protein synthesis, apoptosis, cytoskeletal components, ubiquitylation/proteasome, and mitochondrial complexes that are also affected in the brain and reveal common themes across six neurodegenerative diseases. CONCLUSION Neurodegenerative diseases share common dysfunctions in fundamental cellular processes. Identifying regional vulnerabilities will reveal unique disease mechanisms. HIGHLIGHTS Transcriptomics offer information about dysfunctional processes. Comparing multiple diseases will expose unique malfunctions within diseases. Blood RNA can be used ante mortem to track expression changes in neurodegenerative diseases. Protocol standardization will make public datasets compatible.
Collapse
Affiliation(s)
- Carol J. Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Danielle L. Brokaw
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul D. Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Bragina EY, Gomboeva DE, Saik OV, Ivanisenko VA, Freidin MB, Nazarenko MS, Puzyrev VP. Apoptosis Genes as a Key to Identification of Inverse Comorbidity of Huntington's Disease and Cancer. Int J Mol Sci 2023; 24:ijms24119385. [PMID: 37298337 DOI: 10.3390/ijms24119385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer and neurodegenerative disorders present overwhelming challenges for healthcare worldwide. Epidemiological studies showed a decrease in cancer rates in patients with neurodegenerative disorders, including the Huntington disease (HD). Apoptosis is one of the most important processes for both cancer and neurodegeneration. We suggest that genes closely connected with apoptosis and associated with HD may affect carcinogenesis. We applied reconstruction and analysis of gene networks associated with HD and apoptosis and identified potentially important genes for inverse comorbidity of cancer and HD. The top 10 high-priority candidate genes included APOE, PSEN1, INS, IL6, SQSTM1, SP1, HTT, LEP, HSPA4, and BDNF. Functional analysis of these genes was carried out using gene ontology and KEGG pathways. By exploring genome-wide association study results, we identified genes associated with neurodegenerative and oncological disorders, as well as their endophenotypes and risk factors. We used publicly available datasets of HD and breast and prostate cancers to analyze the expression of the identified genes. Functional modules of these genes were characterized according to disease-specific tissues. This integrative approach revealed that these genes predominantly exert similar functions in different tissues. Apoptosis along with lipid metabolism dysregulation and cell homeostasis maintenance in the response to environmental stimulus and drugs are likely key processes in inverse comorbidity of cancer in patients with HD. Overall, the identified genes represent the promising targets for studying molecular relations of cancer and HD.
Collapse
Affiliation(s)
- Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Densema E Gomboeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
- Department of Biology, School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
- Department of Medical Genetics, Faculty of General Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valery P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, 634050 Tomsk, Russia
- Department of Medical Genetics, Faculty of General Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Yu K, Li S, Wang C, Zhang Y, Li L, Fan X, Fang L, Li H, Yang H, Sun J, Yang X. APOC1 as a novel diagnostic biomarker for DN based on machine learning algorithms and experiment. Front Endocrinol (Lausanne) 2023; 14:1102634. [PMID: 36891052 PMCID: PMC9987333 DOI: 10.3389/fendo.2023.1102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/13/2023] [Indexed: 02/22/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy is the leading cause of end-stage renal disease, which imposes a huge economic burden on individuals and society, but effective and reliable diagnostic markers are still not available. METHODS Differentially expressed genes (DEGs) were characterized and functional enrichment analysis was performed in DN patients. Meanwhile, a weighted gene co-expression network (WGCNA) was also constructed. For further, algorithms Lasso and SVM-RFE were applied to screening the DN core secreted genes. Lastly, WB, IHC, IF, and Elias experiments were applied to demonstrate the hub gene expression in DN, and the research results were confirmed in mouse models and clinical specimens. RESULTS 17 hub secretion genes were identified in this research by analyzing the DEGs, the important module genes in WGCNA, and the secretion genes. 6 hub secretory genes (APOC1, CCL21, INHBA, RNASE6, TGFBI, VEGFC) were obtained by Lasso and SVM-RFE algorithms. APOC1 was discovered to exhibit elevated expression in renal tissue of a DN mouse model, and APOC1 is probably a core secretory gene in DN. Clinical data demonstrate that APOC1 expression is associated significantly with proteinuria and GFR in DN patients. APOC1 expression in the serum of DN patients was 1.358±0.1292μg/ml, compared to 0.3683±0.08119μg/ml in the healthy population. APOC1 was significantly elevated in the sera of DN patients and the difference was statistical significant (P > 0.001). The ROC curve of APOC1 in DN gave an AUC = 92.5%, sensitivity = 95%, and specificity = 97% (P < 0.001). CONCLUSIONS Our research indicates that APOC1 might be a novel diagnostic biomarker for diabetic nephropathy for the first time and suggest that APOC1 may be available as a candidate intervention target for DN.
Collapse
Affiliation(s)
- Kuipeng Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shan Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunjie Wang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yimeng Zhang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Luyao Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Fan
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Fang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiyun Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huimin Yang
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jintang Sun
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Xiangdong Yang,
| |
Collapse
|
9
|
Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022; 11:cells11121930. [PMID: 35741059 PMCID: PMC9221903 DOI: 10.3390/cells11121930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer’s dementia is the most common, while Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration. Noncoding RNAs (ncRNAs) are defined as transcribed nucleotides that perform a variety of regulatory functions. The mechanisms by which ncRNAs exert their functions are numerous and involve every aspect of cellular life. The same ncRNA can act in multiple ways, leading to different outcomes; in fact, a single ncRNA can participate in the pathogenesis of more than one disease—even if these seem very different, as cancer and neurodegenerative disorders are. The ncRNA activates specific pathways leading to one or the other clinical phenotype, sometimes with obvious mechanisms of inverse comorbidity. We aimed to collect from the existing literature examples of inverse comorbidity in which ncRNAs seem to play a key role. We also investigated the example of mir-519a-3p, and one of its target genes Poly (ADP-ribose) polymerase 1, for the inverse comorbidity mechanism between some cancers and PD. We believe it is very important to study the inverse comorbidity relationship between cancer and neurodegenerative diseases because it will help us to better assess these two major areas of human disease.
Collapse
|
10
|
Jiao B, Xiao X, Yuan Z, Guo L, Liao X, Zhou Y, Zhou L, Wang X, Liu X, Liu H, Jiang Y, Lin Z, Zhu Y, Yang Q, Zhang W, Li J, Shen L. Associations of risk genes with onset age and plasma biomarkers of Alzheimer's disease: a large case-control study in mainland China. Neuropsychopharmacology 2022; 47:1121-1127. [PMID: 35001095 PMCID: PMC8938514 DOI: 10.1038/s41386-021-01258-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Abstract
Most genetic studies concerning risk genes in Alzheimer's disease (AD) are from Caucasian populations, whereas the data remain limited in the Chinese population. In this study, we systematically explored the relationship between AD and risk genes in mainland China. We sequenced 33 risk genes previously reported to be associated with AD in a total of 3604 individuals in the mainland Chinese population. Common variant (MAF ≥ 0.01) based association analysis and gene-based (MAF < 0.01) association test were performed by PLINK 1.9 and Sequence Kernel Association Test-Optimal, respectively. Polygenic risk score (PRS) was calculated, and receiver operating characteristic curve (AUC) was computed. Plasma Aβ42, Aβ40, total tau (T-tau), and neurofilament light chain (NFL) were tested in a subgroup, and their associations with PRS were conducted using the Spearman correlation test. Six common variants varied significantly between AD patients and cognitively normal controls after the adjustment of age, gender, and APOE ε4 status, including variants in ABCA7 (n = 5) and APOE (n = 1). Among them, four variants were novel and two were reported previously. The AUC of PRS was 0.71. The high PRS was significantly associated with an earlier age at onset (P = 4.30 × 10-4). PRS was correlated with plasma Aβ42, Aβ42/Aβ40 ratio, T-tau, and NFL levels. Gene-based association test revealed that ABCA7 and UNC5C reached statistical significance. The common variants in APOE and ABCA7, as well as rare variants in ABCA7 and UNC5C, may contribute to the etiology of AD. Moreover, the PRS, to some extent, could predict the risk, onset age, and biological changes of AD.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
11
|
Axtman AD. Characterizing the role of the dark kinome in neurodegenerative disease - A mini review. Biochim Biophys Acta Gen Subj 2021; 1865:130014. [PMID: 34547390 DOI: 10.1016/j.bbagen.2021.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drugs that modulate previously unexplored targets could potentially slow or halt the progression of neurodegenerative diseases. Several candidate proteins lie within the dark kinome, those human kinases that have not been well characterized. Much of the kinome (~80%) remains poorly studied, and these targets likely harbor untapped biological potential. SCOPE OF REVIEW This review highlights the significance of kinases as mediators of aberrant pathways in neurodegeneration and provides examples of published high-quality small molecules that modulate some of these kinases. MAJOR CONCLUSIONS There is a need for continued efforts to develop high-quality chemical tools to illuminate the function of understudied kinases in the brain. Potent and selective small molecules enable accurate pairing of an observed phenotype with a protein target. GENERAL SIGNIFICANCE The examples discussed herein support the premise that validation of therapeutic hypotheses surrounding kinase targets can be accomplished via small molecules and they can serve as the basis for disease-focused drug development campaigns.
Collapse
Affiliation(s)
- Alison D Axtman
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Ren RJ, Huang Q, Xu G, Gu K, Dammer EB, Wang CF, Xie XY, Chen W, Shao ZY, Chen SD, Wang G. Association between Alzheimer's disease and risk of cancer: A retrospective cohort study in Shanghai, China. Alzheimers Dement 2021; 18:924-933. [PMID: 34482613 DOI: 10.1002/alz.12436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION We investigated the association between Alzheimer's disease (AD) and the risk of cancer in the Chinese population. METHODS In this retrospective cohort study, multivariate Cox proportional hazard regression analysis was used to determine the correlation between AD and the risk of various cancers, as shown by hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS Of 8097 AD patients, the HR for all subsequent cancers was 0.822 (95% CI, 0.728-0.928; P = .002). Among them, three specific cancers were associated with AD: lung cancer (HR, 0.656; 95% CI, 0.494- 0.871; P = .004), prostate and testicular cancer (HR, 0.414; 95% CI, 0.202-0.847; P = .016), and lymphoma (HR, 2.202; 95% CI, 1.005-4.826; P = .049). CONCLUSION Patients with AD might have a lower chance of developing several cancers, including lung cancer and prostate and testicular cancer. Meanwhile, a positive association between AD and a higher incident rate of lymphoma was observed.
Collapse
Affiliation(s)
- Ru-Jing Ren
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Xu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Eric B Dammer
- Department of Biochemistry and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chun-Fang Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin-Yi Xie
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Chen
- Information Center, Shanghai Municipal Commission of Health, Shanghai, China
| | - Zhen-Yi Shao
- Information Center, Shanghai Municipal Commission of Health, Shanghai, China
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Magrì A, Risiglione P, Caccamo A, Formicola B, Tomasello MF, Arrigoni C, Zimbone S, Guarino F, Re F, Messina A. Small Hexokinase 1 Peptide against Toxic SOD1 G93A Mitochondrial Accumulation in ALS Rescues the ATP-Related Respiration. Biomedicines 2021; 9:948. [PMID: 34440152 PMCID: PMC8392704 DOI: 10.3390/biomedicines9080948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in Cu/Zn Superoxide Dismutase (SOD1) gene represent one of the most common causes of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder that specifically affects motor neurons (MNs). The dismutase-active SOD1 G93A mutant is responsible for the formation of toxic aggregates onto the mitochondrial surface, using the Voltage-Dependent Anion Channel 1 (VDAC1) as an anchor point to the organelle. VDAC1 is the master regulator of cellular bioenergetics and by binding to hexokinases (HKs) it controls apoptosis. In ALS, however, SOD1 G93A impairs VDAC1 activity and displaces HK1 from mitochondria, promoting organelle dysfunction, and cell death. Using an ALS cell model, we demonstrate that a small synthetic peptide derived from the HK1 sequence (NHK1) recovers the cell viability in a dose-response manner and the defective mitochondrial respiration profile relative to the ADP phosphorylation. This correlates with an unexpected increase of VDAC1 expression and a reduction of SOD1 mutant accumulation at the mitochondrial level. Overall, our findings provide important new insights into the development of therapeutic molecules to fight ALS and help to better define the link between altered mitochondrial metabolism and MNs death in the disease.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.M.); (S.Z.)
- we.MitoBiotech S.R.L., C.so Italia 172, 95125 Catania, Italy;
| | - Pierpaolo Risiglione
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine & Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (B.F.); (F.R.)
| | | | - Cristina Arrigoni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Stefania Zimbone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.M.); (S.Z.)
| | - Francesca Guarino
- we.MitoBiotech S.R.L., C.so Italia 172, 95125 Catania, Italy;
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine & Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (B.F.); (F.R.)
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.M.); (S.Z.)
- we.MitoBiotech S.R.L., C.so Italia 172, 95125 Catania, Italy;
| |
Collapse
|
14
|
Herring A, Kurapati NK, Krebs S, Grammon N, Scholz LM, Voss G, Miah MR, Budny V, Mairinger F, Haase K, Teuber-Hanselmann S, Dobersalske C, Schramm S, Jöckel KH, Münster Y, Keyvani K. Genetic knockdown of Klk8 has sex-specific multi-targeted therapeutic effects on Alzheimer's pathology in mice. Neuropathol Appl Neurobiol 2021; 47:611-624. [PMID: 33341972 DOI: 10.1111/nan.12687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023]
Abstract
AIMS Previous work in our lab has identified the protease kallikrein-8 (KLK8) as a potential upstream mover in the pathogenesis of Alzheimer's disease (AD). We showed pathologically elevated levels of KLK8 in the cerebrospinal fluid and blood of patients with mild cognitive impairment or dementia due to AD, and in brains of patients and transgenic CRND8 (TgCRND8) mice in incipient stages of the disease. Furthermore, short-term antibody-mediated KLK8 inhibition in moderate stage disease alleviated AD pathology in female mice. However, it remains to be shown whether long-term reversal of KLK8 overexpression can also counteract AD. Therefore, the effects of genetic Klk8-knockdown were determined in TgCRND8 mice. METHODS The effects of heterozygous ablation of murine Klk8 (mKlk8) gene on AD pathology of both sexes were examined by crossbreeding TgCRND8 [hAPP+/-] with mKlk8-knockdown [mKlk8+/-] mice resulting in animals with or without AD pathology which revealed pathologically elevated or normal KLK8 levels. RESULTS mKlk8-knockdown had negligible effects on wildtype animals but led to significant decline of amyloid beta (Aβ) and tau pathology as well as an improvement of structural neuroplasticity in a sex-specific manner in transgenics. These changes were mediated by a shift to non-amyloidogenic cleavage of the human amyloid precursor protein (APP), recovery of the neurovascular unit and maintaining microglial metabolic fitness. Mechanistically, Klk8-knockdown improved Aβ phagocytosis in primary glia and Aβ resistance in primary neurons. Most importantly, transgenic mice revealed less anxiety and a better memory performance. CONCLUSIONS These results reinforce the potential of KLK8 as a therapeutic target in AD.
Collapse
Affiliation(s)
- Arne Herring
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Nirup K Kurapati
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Sofia Krebs
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Nils Grammon
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Luisa M Scholz
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Gerrit Voss
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Muhammad R Miah
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Vanessa Budny
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| | - Katharina Haase
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | | | - Celia Dobersalske
- DKFZ-Division of Translational Neurooncology, West German Cancer Center, German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Schramm
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Yvonne Münster
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Oba T, Saito T, Asada A, Shimizu S, Iijima KM, Ando K. Microtubule affinity-regulating kinase 4 with an Alzheimer's disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. J Biol Chem 2020; 295:17138-17147. [PMID: 33020179 PMCID: PMC7863894 DOI: 10.1074/jbc.ra120.014420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulation of the microtubule-associated protein tau is associated with Alzheimer's disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity-regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356-dependent and -independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.
Collapse
Affiliation(s)
- Toshiya Oba
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Taro Saito
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Sawako Shimizu
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kanae Ando
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
16
|
Ospina-Romero M, Glymour MM, Hayes-Larson E, Mayeda ER, Graff RE, Brenowitz WD, Ackley SF, Witte JS, Kobayashi LC. Association Between Alzheimer Disease and Cancer With Evaluation of Study Biases: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e2025515. [PMID: 33185677 PMCID: PMC7666424 DOI: 10.1001/jamanetworkopen.2020.25515] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Observational studies consistently report inverse associations between cancer and Alzheimer disease (AD). Shared inverse etiological mechanisms might explain this phenomenon, but a systematic evaluation of methodological biases in existing studies is needed. OBJECTIVES To systematically review and meta-analyze evidence on the association between cancer and subsequent AD, systematically identify potential methodological biases in studies, and estimate the influence of these biases on the estimated pooled association between cancer and AD. DATA SOURCES All-language publications were identified from PubMed, Embase, and PsycINFO databases through September 2, 2020. STUDY SELECTION Longitudinal cohort studies and case-control studies on the risk of AD in older adults with a history of any cancer type, prostate cancer, breast cancer, colorectal cancer, or nonmelanoma skin cancer, relative to those with no cancer history. DATA EXTRACTION AND SYNTHESIS Two reviewers independently abstracted the data and evaluated study biases related to confounding, diagnostic bias, competing risks, or survival bias. Random-effects meta-analysis was used to provide pooled estimates of the association between cancer and AD. Metaregressions were used to evaluate whether the observed pooled estimate could be attributable to each bias. The study was designed and conducted according to the Preferring Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. MAIN OUTCOMES AND MEASURES Incidence, hazard, or odds ratios for AD comparing older adults with vs without a previous cancer diagnosis. RESULTS In total, 19 cohort studies and 3 case-control studies of the associations between any cancer type (n = 13), prostate cancer (n = 5), breast cancer (n = 1), and nonmelanoma skin cancer (n = 3) with AD were identified, representing 9 630 435 individuals. In all studies combined, cancer was associated with decreased AD incidence (cohort studies: random-effects hazard ratio, 0.89; 95% CI, 0.79-1.00; case-control studies: random-effects odds ratio, 0.75; 95% CI, 0.61-0.93). Studies with insufficient or inappropriate confounder control or greater likelihood of AD diagnostic bias had mean hazard ratios closer to the null value, indicating that these biases could not explain the observed inverse association. Competing risks bias was rare. Studies with greater likelihood of survival bias had mean hazard ratios farther from the null value. CONCLUSIONS AND RELEVANCE The weak inverse association between cancer and AD may reflect shared inverse etiological mechanisms or survival bias but is not likely attributable to diagnostic bias, competing risks bias, or insufficient or inappropriate control for potential confounding factors.
Collapse
Affiliation(s)
- Monica Ospina-Romero
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- now at Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Eleanor Hayes-Larson
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | | | - Sarah F. Ackley
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Lindsay C. Kobayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
17
|
Li L, Liu Y, Zhao X, Qi C, Zhang Y, Zhang Y, Yu T. Salvianic Acid A Sodium Promotes the Recovery of Motor Function After Spinal Cord Injury in Rats by Reducing Microglia Inflammation through Regulating MIP2/Vdac1/Ndufa12 Signaling Axis. Orthop Surg 2020; 12:1971-1979. [PMID: 33078551 PMCID: PMC7767673 DOI: 10.1111/os.12808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Objective To clarify the effects on and the mechanism of salvianic acid A sodium (SAAS) in the recovery of motor function after spinal cord injury. Methods In vivo and in vitro experiments were carried out in this research to determine the effects of SAAS on tissue damage, neuron survival, microglia polarization, and inflammation after spinal cord injury (SCI). Differentially expressed genes treated with SAAS were screened by transcriptome sequencing, and the molecular mechanism was investigated simultaneously. Results The results revealed that SAAS could promote type M2 polarization of microglia and reduce the proportion of type M1. In this way, it reduced the secretion and expression of inflammatory factors. Compared with Lipopolysaccharides(LPS), 345 genes were upregulated and 407 genes were downregulated in the LPS + SAAS treatment group. In the SAAS group, expression levels of Ndufa12, IL‐6, TNF‐α, and Vdac1 were significantly reduced, while a marked elevation was found in MIP2. In addition, results found in an animal model showed that SAAS could obviously facilitate motor function recovery of mice after spinal cord injury, and it had a good protective effect on spinal cord tissue and neuron cells. Conclusion As a result, the present study clarified both the protective effect of SAAS on neurons after spinal cord injury and the anti‐inflammatory effect of microglia, which is expected to serve as a theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Orthopaedic Surgery, The Affiliated Central Hospital of Qingdao University, Qingdao, China.,Department of Orthopaedic Surgery, The Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Yuanyuan Liu
- Department of Oncology, The Affiliated Central Hospital of Qingdao University, Qingdao, China.,Department of Oncology, The Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Xia Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Qi
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 2020; 48:W244-W251. [PMID: 32484539 PMCID: PMC7319552 DOI: 10.1093/nar/gkaa467] [Citation(s) in RCA: 469] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
miRNet is an easy-to-use, web-based platform designed to help elucidate microRNA (miRNA) functions by integrating users' data with existing knowledge via network-based visual analytics. Since its first release in 2016, miRNet has been accessed by >20 000 researchers worldwide, with ∼100 users on a daily basis. While version 1.0 was focused primarily on miRNA-target gene interactions, it has become clear that in order to obtain a global view of miRNA functions, it is necessary to bring other important players into the context during analysis. Driven by this concept, in miRNet version 2.0, we have (i) added support for transcription factors (TFs) and single nucleotide polymorphisms (SNPs) that affect miRNAs, miRNA-binding sites or target genes, whilst also greatly increased (>5-fold) the underlying knowledgebases of miRNAs, ncRNAs and disease associations; (ii) implemented new functions to allow creation and visual exploration of multipartite networks, with enhanced support for in situ functional analysis and (iii) revamped the web interface, optimized the workflow, and introduced microservices and web application programming interface (API) to sustain high-performance, real-time data analysis. The underlying R package is also released in tandem with version 2.0 to allow more flexible data analysis for R programmers. The miRNet 2.0 website is freely available at https://www.mirnet.ca.
Collapse
Affiliation(s)
- Le Chang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Othman Soufan
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Jianguo Xia
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Institute of Parasitology, McGill University, Montreal, Quebec, Canada.,Department of Animal Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
MARK4 Inhibited by AChE Inhibitors, Donepezil and Rivastigmine Tartrate: Insights into Alzheimer's Disease Therapy. Biomolecules 2020; 10:biom10050789. [PMID: 32443670 PMCID: PMC7277793 DOI: 10.3390/biom10050789] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Microtubule affinity-regulating kinase (MARK4) plays a key role in Alzheimer’s disease (AD) development as its overexpression is directly linked to increased tau phosphorylation. MARK4 is a potential drug target of AD and is thus its structural features are employed in the development of new therapeutic molecules. Donepezil (DP) and rivastigmine tartrate (RT) are acetylcholinesterase (AChE) inhibitors and are used to treat symptomatic patients of mild to moderate AD. In keeping with the therapeutic implications of DP and RT in AD, we performed binding studies of these drugs with the MARK4. Both DP and RT bound to MARK4 with a binding constant (K) of 107 M−1. The temperature dependency of binding parameters revealed MARK−DP complex to be guided by static mode while MARK−RT complex to be guided by both static and dynamic quenching. Both drugs inhibited MARK4 with IC50 values of 5.3 μM (DP) and 6.74 μM (RT). The evaluation of associated enthalpy change (ΔH) and entropy change (ΔS) implied the complex formation to be driven by hydrogen bonding making it seemingly strong and specific. Isothermal titration calorimetry further advocated a spontaneous binding. In vitro observations were further complemented by the calculation of binding free energy by molecular docking and interactions with the functionally-important residues of the active site pocket of MARK4. This study signifies the implications of AChE inhibitors, RT, and DP in Alzheimer’s therapy targeting MARK4.
Collapse
|