1
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Li L, Ran Y, Zhuang Y, Wang L, Chen J, Sun Y, Lu S, Ye F, Mei L, Ning Y, Dai F. Risk analysis of air pollutants and types of anemia: a UK Biobank prospective cohort study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1343-1356. [PMID: 38607561 DOI: 10.1007/s00484-024-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Previous studies have suggested that exposure to air pollutants may be associated with specific blood indicators or anemia in certain populations. However, there is insufficient epidemiological data and prospective evidence to evaluate the relationship between environmental air pollution and specific types of anemia. We conducted a large-scale prospective cohort study based on the UK Biobank. Annual average concentrations of NO2, PM2.5, PM2.5-10, and PM10 were obtained from the ESCAPE study using the Land Use Regression (LUR) model. The association between atmospheric pollutants and different types of anemia was investigated using the Cox proportional hazards model. Furthermore, restricted cubic splines were used to explore exposure-response relationships for positive associations, followed by stratification and effect modification analyses by gender and age. After adjusting for demographic characteristics, 3-4 of the four types of air pollution were significantly associated with an increased risk of iron deficiency, vitamin B12 deficiency and folate deficiency anemia, while there was no significant association with other defined types of anemia. After full adjustment, we estimated that the hazard ratios (HRs) of iron deficiency anemia associated with each 10 μg/m3 increase in NO2, PM2.5, and PM10 were 1.04 (95%CI: 1.02, 1.07), 2.00 (95%CI: 1.71, 2.33), and 1.10 (95%CI: 1.02, 1.20) respectively. The HRs of folate deficiency anemia with each 10 μg/m3 increase in NO2, PM2.5, PM2.5-10, and PM10 were 1.25 (95%CI: 1.12, 1.40), 4.61 (95%CI: 2.03, 10.47), 2.81 (95%CI: 1.11, 7.08), and 1.99 (95%CI: 1.25, 3.15) respectively. For vitamin B12 deficiency anemia, no significant association with atmospheric pollution was found. Additionally, we estimated almost linear exposure-response curves between air pollution and anemia, and interaction analyses suggested that gender and age did not modify the association between air pollution and anemia. Our research provided reliable evidence for the association between long-term exposure to PM10, PM2.5, PM2.5-10, NO2, and several types of anemia. NO2, PM2.5, and PM10 significantly increased the risk of iron deficiency anemia and folate deficiency anemia. Additionally, we found that the smaller the PM diameter, the higher the risk, and folate deficiency anemia was more susceptible to air pollution than iron deficiency anemia. No association was observed between the four types of air pollution and hemolytic anemia, aplastic anemia, and other types of anemia. Although the mechanisms are not well understood, we emphasize the need to limit the levels of PM and NO2 in the environment to reduce the potential impact of air pollution on folate and iron deficiency anemia.
Collapse
Affiliation(s)
- Laifu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yan Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yan Zhuang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Lianli Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Jiamiao Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yating Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Shiwei Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fangchen Ye
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Lin Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yu Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fei Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China.
| |
Collapse
|
3
|
Yang C, Wang W, Wang F, Wang Y, Zhang F, Liang Z, Liang C, Wang J, Ma L, Li P, Li S, Zhang L. Ambient PM 2.5 components and prevalence of chronic kidney disease: a nationwide cross-sectional survey in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:70. [PMID: 38353840 DOI: 10.1007/s10653-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a global public health concern, and accumulating evidence has indicated that air pollution increases the odds of CKD. However, a limited number of studies have examined the long-term effects of ambient fine particulate matter (PM2.5) components on the risk of CKD among general population; thus, major knowledge gaps remain. METHODS Using data from a nationwide representative cross-sectional survey in China and a validated PM2.5 composition dataset, we established generalized linear models to quantify the association between five major components of PM2.5 and CKD prevalence. RESULTS There were significant associations between long-term exposure to three PM2.5 components [including black carbon (BC), sulfate (SO42-), organic matter (OM)] and increased odds of CKD prevalence. Along with an interquartile range (IQR) increment in BC (3.3 μg/m3), SO42- (9.7 μg/m3), and OM (16.2 μg/m3) at a 4-year moving average, the odds ratios (ORs) for CKD prevalence were 1.28 (95% CI 1.07, 1.54), 1.23 (95% CI 1.03, 1.45), and 1.23 (95% CI 1.02, 1.47), respectively. We did not detect any significant association of the other two PM2.5 components [nitrate (NO3-) or ammonium (NH4+)] with CKD prevalence. Stratified analyses revealed no differences (P ≥ 0.05) in the effect estimates of subgroups based on administrative region, sex, age, and other demographic characteristics. For instance, along with an IQR increment in BC at a 4-year moving average, the ORs of CKD prevalence among males and females were 1.30 (95% CI 0.98, 1.73) and 1.29 (95% CI 1.01, 1.65), respectively. The odds of CKD were generally higher with increasing PM2.5 composition concentration. CONCLUSIONS Our study demonstrated that long-term exposure to specific PM2.5 components including BC, SO42-, and OM increased CKD risk in the general population. This study could provide new insights into source-directed PM2.5 control and CKD prevention.
Collapse
Affiliation(s)
- Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
| | - Fulin Wang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yueyao Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Feifei Zhang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Ze Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chenyu Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
| | - Lin Ma
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China
| | - Shuangcheng Li
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Luxia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China.
- National Institute of Health Data Science at Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Yang X, Zhang Q, Sun Y, Li C, Zhou H, Jiang C, Li J, Zhang L, Chen X, Tang N. Joint effect of ambient PM 2.5 exposure and vitamin B 12 during pregnancy on the risk of gestational diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162514. [PMID: 36868273 DOI: 10.1016/j.scitotenv.2023.162514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Evidence has indicated that the risk of gestational diabetes mellitus (GDM) was linked to PM2.5 exposure during pregnancy, but findings on susceptible exposure windows are inconsistent. Further, previous studies have not paid attention to B12 intake in the relationship between PM2.5 exposure and GDM. The study is aimed to identify the strength and exposure periods for associations of PM2.5 exposure with GDM, followed by exploring the potential interplay of gestational B12 levels and PM2.5 exposure on the risk of GDM. METHODS The participants were recruited in a birth cohort between 2017 and 2018, and 1396 eligible pregnant women who completed a 75-g oral glucose tolerance test (OGTT) were included. Prenatal PM2.5 concentrations were estimated using an established spatiotemporal model. Logistic and linear regression analyses were used to test associations of gestational PM2.5 exposure with GDM and OGTT-glucose levels, respectively. The joint associations of gestational PM2.5 exposure and B12 level on GDM were examined under crossed exposure combinations of PM2.5 (high versus low) and B12 (insufficient versus sufficient). RESULTS In the 1396 pregnant women, the median levels of PM2.5 exposure during the 12 weeks before pregnancy, the 1st trimester, and the 2nd trimesters were 59.33 μg/m3, 63.44 μg/m3, and 64.39 μg/m3, respectively. The risk of GDM was significantly associated with a 10 μg/m3 increase of PM2.5 during the 2nd trimester (RR = 1.44, 95 % CI: 1.01, 2.04). The percentage change in fasting glucose was also associated with PM2.5 exposure during the 2nd trimester. A higher risk of GDM was observed among women with high PM2.5 exposure and insufficient B12 levels than those with low PM2.5 and sufficient B12. CONCLUSION The study supported higher PM2.5 exposure during the 2nd trimester is significantly associated with GDM risk. It first highlighted insufficient B12 status might enhance adverse effects of air pollution on GDM.
Collapse
Affiliation(s)
- Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yao Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Wilker EH, Osman M, Weisskopf MG. Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ 2023; 381:e071620. [PMID: 37019461 PMCID: PMC10498344 DOI: 10.1136/bmj-2022-071620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To investigate the role of air pollutants in risk of dementia, considering differences by study factors that could influence findings. DESIGN Systematic review and meta-analysis. DATA SOURCES EMBASE, PubMed, Web of Science, Psycinfo, and OVID Medline from database inception through July 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies that included adults (≥18 years), a longitudinal follow-up, considered US Environmental Protection Agency criteria air pollutants and proxies of traffic pollution, averaged exposure over a year or more, and reported associations between ambient pollutants and clinical dementia. Two authors independently extracted data using a predefined data extraction form and assessed risk of bias using the Risk of Bias In Non-randomised Studies of Exposures (ROBINS-E) tool. A meta-analysis with Knapp-Hartung standard errors was done when at least three studies for a given pollutant used comparable approaches. RESULTS 2080 records identified 51 studies for inclusion. Most studies were at high risk of bias, although in many cases bias was towards the null. 14 studies could be meta-analysed for particulate matter <2.5 µm in diameter (PM2.5). The overall hazard ratio per 2 μg/m3 PM2.5 was 1.04 (95% confidence interval 0.99 to 1.09). The hazard ratio among seven studies that used active case ascertainment was 1.42 (1.00 to 2.02) and among seven studies that used passive case ascertainment was 1.03 (0.98 to 1.07). The overall hazard ratio per 10 μg/m3 nitrogen dioxide was 1.02 ((0.98 to 1.06); nine studies) and per 10 μg/m3 nitrogen oxide was 1.05 ((0.98 to 1.13); five studies). Ozone had no clear association with dementia (hazard ratio per 5 μg/m3 was 1.00 (0.98 to 1.05); four studies). CONCLUSION PM2.5 might be a risk factor for dementia, as well as nitrogen dioxide and nitrogen oxide, although with more limited data. The meta-analysed hazard ratios are subject to limitations that require interpretation with caution. Outcome ascertainment approaches differ across studies and each exposure assessment approach likely is only a proxy for causally relevant exposure in relation to clinical dementia outcomes. Studies that evaluate critical periods of exposure and pollutants other than PM2.5, and studies that actively assess all participants for outcomes are needed. Nonetheless, our results can provide current best estimates for use in burden of disease and regulatory setting efforts. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021277083.
Collapse
Affiliation(s)
- Elissa H Wilker
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marwa Osman
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|