1
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Menegon F, De Marchi F, Aprile D, Zanelli I, Decaroli G, Comi C, Tondo G. From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines 2024; 12:1675. [PMID: 39200140 PMCID: PMC11351954 DOI: 10.3390/biomedicines12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The conversion from mild cognitive impairment (MCI) to dementia is influenced by several factors, including comorbid conditions such as metabolic and vascular diseases. Understanding the impact of these comorbidities can help in the disease management of patients with a higher risk of progressing to dementia, improving outcomes. In the current study, we aimed to analyze data from a large cohort of MCI (n = 188) by principal component analysis (PCA) and cluster analysis (CA) to classify patients into distinct groups based on their comorbidity profile and to predict the risk of conversion to dementia. From our analysis, four clusters emerged. CA showed a significantly higher rate of disease progression for Cluster 1, which was predominantly characterized by extremely high obesity and diabetes compared to other clusters. In contrast, Cluster 3, which was defined by a lower prevalence of all comorbidities, had a lower conversion rate. Cluster 2, mainly including subjects with traumatic brain injuries, showed the lowest rate of conversion. Lastly, Cluster 4, including a high load of hearing loss and depression, showed an intermediate risk of conversion. This study underscores the significant impact of specific comorbidity profiles on the progression from MCI to dementia, highlighting the need for targeted interventions and management strategies for individuals with these comorbidity profiles to potentially delay or prevent the onset of dementia.
Collapse
Affiliation(s)
- Federico Menegon
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Iacopo Zanelli
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Greta Decaroli
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy; (G.D.); (C.C.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy; (G.D.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy; (G.D.); (C.C.)
| |
Collapse
|
3
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
4
|
Milner T, Brown MRG, Jones C, Leung AWS, Brémault-Phillips S. Multidimensional digital biomarker phenotypes for mild cognitive impairment: considerations for early identification, diagnosis and monitoring. Front Digit Health 2024; 6:1265846. [PMID: 38510280 PMCID: PMC10952843 DOI: 10.3389/fdgth.2024.1265846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Mild Cognitive Impairment (MCI) poses a challenge for a growing population worldwide. Early identification of risk for and diagnosis of MCI is critical to providing the right interventions at the right time. The paucity of reliable, valid, and scalable methods for predicting, diagnosing, and monitoring MCI with traditional biomarkers is noteworthy. Digital biomarkers hold new promise in understanding MCI. Identifying digital biomarkers specifically for MCI, however, is complex. The biomarker profile for MCI is expected to be multidimensional with multiple phenotypes based on different etiologies. Advanced methodological approaches, such as high-dimensional statistics and deep machine learning, will be needed to build these multidimensional digital biomarker profiles for MCI. Comparing patients to these MCI phenotypes in clinical practice can assist clinicians in better determining etiologies, some of which may be reversible, and developing more precise care plans. Key considerations in developing reliable multidimensional digital biomarker profiles specific to an MCI population are also explored.
Collapse
Affiliation(s)
- Tracy Milner
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Matthew R. G. Brown
- Department of ComputingScience, University of Alberta, Edmonton, AB, Canada
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), University of Alberta, Edmonton, AB, Canada
| | - Chelsea Jones
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), University of Alberta, Edmonton, AB, Canada
| | - Ada W. S. Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Suzette Brémault-Phillips
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), University of Alberta, Edmonton, AB, Canada
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Du M, Liu M, Liu J. The trajectory of depressive symptoms over time and the presence of depressive symptoms at a single time point with the risk of dementia among US older adults: A national prospective cohort study. Psychiatry Clin Neurosci 2024; 78:169-175. [PMID: 37984429 DOI: 10.1111/pcn.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
AIM This study aims to assess the association between trajectories of depressive symptoms and the risk of dementia, and to compare the predictive ability of trajectories using multiple data points with depressive symptoms at a single data point. METHODS We included 5306 older adults from the Health and Retirement Study. We assessed depressive symptoms using the Center for Epidemiology Depression Scale (CES-D), and identified its 8- year trajectories (2002-2010) using latent class trajectory modeling. We calculated hazard ratios (HR) using Cox proportional hazards models. The concordance index (C-index) was used to compare the discriminative power of the models. RESULTS We identified two trajectories of depressive symptoms, characterized by maintaining low CES-D scores, and moderate starting scores that steadily increased throughout the follow-up period. During 40,199 person-years, compared to the low trajectory, the increasing trajectory of depressive symptoms was associated with a higher risk of dementia (HR = 1.35; 95% CI: 1.09-1.67) (C-index = 0.759). For every point increase in the degree of depressive symptoms (CES-D scores) in 2010, the risk of dementia increased by 7% (95% CI: 1.03-1.12) (C-index = 0.760). The presence of depressive symptoms (CES-D scores ≥3) in 2010 was not associated with an increased risk of dementia (HR = 1.18; 95% CI: 0.98-1.43) (C-index = 0.759). The C-index values of cox models showed similar discriminative power. CONCLUSIONS The increasing trajectory of depressive symptoms at multiple data points and the degree of depressive symptoms at a single data point were associated with an increased risk of subsequent dementia among older adults.
Collapse
Affiliation(s)
- Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Du M, Tao L, Liu M, Liu J. Trajectories of health conditions and their associations with the risk of cognitive impairment among older adults: insights from a national prospective cohort study. BMC Med 2024; 22:20. [PMID: 38195549 PMCID: PMC10777570 DOI: 10.1186/s12916-024-03245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The associations between trajectories of different health conditions and cognitive impairment among older adults were unknown. Our cohort study aimed to investigate the impact of various trajectories, including sleep disturbances, depressive symptoms, functional limitations, and multimorbidity, on the subsequent risk of cognitive impairment. METHODS We conducted a prospective cohort study by using eight waves of national data from the Health and Retirement Study (HRS 2002-2018), involving 4319 adults aged 60 years or older in the USA. Sleep disturbances and depressive symptoms were measured using the Jenkins Sleep Scale and the Centers for Epidemiologic Research Depression (CES-D) scale, respectively. Functional limitations were assessed using activities of daily living (ADLs) and instrumental activities of daily living (IADLs), respectively. Multimorbidity status was assessed by self-reporting physician-diagnosed diseases. We identified 8-year trajectories at four examinations from 2002 to 2010 using latent class trajectory modeling. We screened participants for cognitive impairment using the 27-point HRS cognitive scale from 2010 to 2018 across four subsequent waves. We calculated hazard ratios (HR) using Cox proportional hazard models. RESULTS During 25,914 person-years, 1230 participants developed cognitive impairment. In the fully adjusted model 3, the trajectories of sleep disturbances and ADLs limitations were not associated with the risk of cognitive impairment. Compared to the low trajectory, we found that the increasing trajectory of depressive symptoms (HR = 1.39; 95% CI = 1.17-1.65), the increasing trajectory of IADLs limitations (HR = 1.88; 95% CI = 1.43-2.46), and the high trajectory of multimorbidity status (HR = 1.48; 95% CI = 1.16-1.88) all posed an elevated risk of cognitive impairment. The increasing trajectory of IADLs limitations was associated with a higher risk of cognitive impairment among older adults living in urban areas (HR = 2.30; 95% CI = 1.65-3.21) and those who smoked (HR = 2.77; 95% CI = 1.91-4.02) (all P for interaction < 0.05). CONCLUSIONS The results suggest that tracking trajectories of depressive symptoms, instrumental functioning limitations, and multimorbidity status may be a potential and feasible screening method for identifying older adults at risk of cognitive impairment.
Collapse
Affiliation(s)
- Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Haraldsen IH, Hatlestad-Hall C, Marra C, Renvall H, Maestú F, Acosta-Hernández J, Alfonsin S, Andersson V, Anand A, Ayllón V, Babic A, Belhadi A, Birck C, Bruña R, Caraglia N, Carrarini C, Christensen E, Cicchetti A, Daugbjerg S, Di Bidino R, Diaz-Ponce A, Drews A, Giuffrè GM, Georges J, Gil-Gregorio P, Gove D, Govers TM, Hallock H, Hietanen M, Holmen L, Hotta J, Kaski S, Khadka R, Kinnunen AS, Koivisto AM, Kulashekhar S, Larsen D, Liljeström M, Lind PG, Marcos Dolado A, Marshall S, Merz S, Miraglia F, Montonen J, Mäntynen V, Øksengård AR, Olazarán J, Paajanen T, Peña JM, Peña L, Peniche DL, Perez AS, Radwan M, Ramírez-Toraño F, Rodríguez-Pedrero A, Saarinen T, Salas-Carrillo M, Salmelin R, Sousa S, Suyuthi A, Toft M, Toharia P, Tveitstøl T, Tveter M, Upreti R, Vermeulen RJ, Vecchio F, Yazidi A, Rossini PM. Intelligent digital tools for screening of brain connectivity and dementia risk estimation in people affected by mild cognitive impairment: the AI-Mind clinical study protocol. Front Neurorobot 2024; 17:1289406. [PMID: 38250599 PMCID: PMC10796757 DOI: 10.3389/fnbot.2023.1289406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
More than 10 million Europeans show signs of mild cognitive impairment (MCI), a transitional stage between normal brain aging and dementia stage memory disorder. The path MCI takes can be divergent; while some maintain stability or even revert to cognitive norms, alarmingly, up to half of the cases progress to dementia within 5 years. Current diagnostic practice lacks the necessary screening tools to identify those at risk of progression. The European patient experience often involves a long journey from the initial signs of MCI to the eventual diagnosis of dementia. The trajectory is far from ideal. Here, we introduce the AI-Mind project, a pioneering initiative with an innovative approach to early risk assessment through the implementation of advanced artificial intelligence (AI) on multimodal data. The cutting-edge AI-based tools developed in the project aim not only to accelerate the diagnostic process but also to deliver highly accurate predictions regarding an individual's risk of developing dementia when prevention and intervention may still be possible. AI-Mind is a European Research and Innovation Action (RIA H2020-SC1-BHC-06-2020, No. 964220) financed between 2021 and 2026. First, the AI-Mind Connector identifies dysfunctional brain networks based on high-density magneto- and electroencephalography (M/EEG) recordings. Second, the AI-Mind Predictor predicts dementia risk using data from the Connector, enriched with computerized cognitive tests, genetic and protein biomarkers, as well as sociodemographic and clinical variables. AI-Mind is integrated within a network of major European initiatives, including The Virtual Brain, The Virtual Epileptic Patient, and EBRAINS AISBL service for sensitive data, HealthDataCloud, where big patient data are generated for advancing digital and virtual twin technology development. AI-Mind's innovation lies not only in its early prediction of dementia risk, but it also enables a virtual laboratory scenario for hypothesis-driven personalized intervention research. This article introduces the background of the AI-Mind project and its clinical study protocol, setting the stage for future scientific contributions.
Collapse
Affiliation(s)
| | | | - Camillo Marra
- Memory Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Fernando Maestú
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
| | | | - Soraya Alfonsin
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | | | - Abhilash Anand
- Performance and Assurance Solutions, Digital Solutions, DNV, Oslo, Norway
| | | | - Aleksandar Babic
- Healthcare Programme, Group Research and Development, DNV, Oslo, Norway
| | - Asma Belhadi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | | | - Ricardo Bruña
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
| | - Naike Caraglia
- Memory Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudia Carrarini
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | | | - Americo Cicchetti
- The Graduate School of Health Economics and Management (ALTEMS), Catholic University of the Sacred Heart, Rome, Italy
| | - Signe Daugbjerg
- The Graduate School of Health Economics and Management (ALTEMS), Catholic University of the Sacred Heart, Rome, Italy
| | - Rossella Di Bidino
- The Graduate School of Health Economics and Management (ALTEMS), Catholic University of the Sacred Heart, Rome, Italy
| | | | - Ainar Drews
- IT Department, University of Oslo, Oslo, Norway
| | - Guido Maria Giuffrè
- Memory Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Pedro Gil-Gregorio
- Department of Geriatric Medicine, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Geriatrics, Fundación para la Investigación Biomédica del Hospital Clínico San Carlos, Madrid, Spain
| | | | - Tim M. Govers
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Harry Hallock
- Healthcare Programme, Group Research and Development, DNV, Oslo, Norway
| | - Marja Hietanen
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Lone Holmen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jaakko Hotta
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Samuel Kaski
- Department of Computer Science, Helsinki Institute of Information Technology, Aalto University, Helsinki, Finland
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Rabindra Khadka
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Antti S. Kinnunen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Anne M. Koivisto
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
- Department of Neurosciences, University of Helsinki, Helsinki, Finland
- Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Shrikanth Kulashekhar
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Denis Larsen
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Pedro G. Lind
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Alberto Marcos Dolado
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Serena Marshall
- Healthcare Programme, Group Research and Development, DNV, Oslo, Norway
| | - Susanne Merz
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
| | - Francesca Miraglia
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | - Juha Montonen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Ville Mäntynen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | | | - Javier Olazarán
- Neurology Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | | | - Ana S. Perez
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mohamed Radwan
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Federico Ramírez-Toraño
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | - Andrea Rodríguez-Pedrero
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | - Timo Saarinen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Mario Salas-Carrillo
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Memory Unit, Department of Geriatrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
| | - Sonia Sousa
- School of Digital Technologies, Tallinn University, Tallinn, Estonia
| | - Abdillah Suyuthi
- Performance and Assurance Solutions, Digital Solutions, DNV, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pablo Toharia
- Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Mats Tveter
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Ramesh Upreti
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Robin J. Vermeulen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabrizio Vecchio
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Como, Italy
| | - Anis Yazidi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Paolo Maria Rossini
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
8
|
Katayama O, Stern Y, Habeck C, Lee S, Harada K, Makino K, Tomida K, Morikawa M, Yamaguchi R, Nishijima C, Misu Y, Fujii K, Kodama T, Shimada H. Neurophysiological markers in community-dwelling older adults with mild cognitive impairment: an EEG study. Alzheimers Res Ther 2023; 15:217. [PMID: 38102703 PMCID: PMC10722716 DOI: 10.1186/s13195-023-01368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Neurodegeneration and structural changes in the brain due to amyloid deposition have been observed even in individuals with mild cognitive impairment (MCI). EEG measurement is considered an effective tool because it is noninvasive, has few restrictions on the measurement environment, and is simple and easy to use. In this study, we investigated the neurophysiological characteristics of community-dwelling older adults with MCI using EEG. METHODS Demographic characteristics, cognitive function, physical function, resting-state MRI and electroencephalogram (rs-EEG), event-related potentials (ERPs) during Simon tasks, and task proportion of correct responses and reaction times (RTs) were obtained from 402 healthy controls (HC) and 47 MCI participants. We introduced exact low-resolution brain electromagnetic tomography-independent component analysis (eLORETA-ICA) to assess the rs-EEG network in community-dwelling older adults with MCI. RESULTS A lower proportion of correct responses to the Simon task and slower RTs were observed in the MCI group (p < 0.01). Despite no difference in brain volume between the HC and MCI groups, significant decreases in dorsal attention network (DAN) activity (p < 0.05) and N2 amplitude of ERP (p < 0.001) were observed in the MCI group. Moreover, DAN activity demonstrated a correlation with education (Rs = 0.32, p = 0.027), global cognitive function (Rs = 0.32, p = 0.030), and processing speed (Rs = 0.37, p = 0.010) in the MCI group. The discrimination accuracy for MCI with the addition of the eLORETA-ICA network ranged from 0.7817 to 0.7929, and the area under the curve ranged from 0.8492 to 0.8495. CONCLUSIONS The eLORETA-ICA approach of rs-EEG using noninvasive and relatively inexpensive EEG demonstrates specific changes in elders with MCI. It may provide a simple and valid assessment method with few restrictions on the measurement environment and may be useful for early detection of MCI in community-dwelling older adults.
Collapse
Affiliation(s)
- Osamu Katayama
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan.
- Japan Society for the Promotion of Science, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Physical Therapy, Graduate School of Health Sciences, Kyoto Tachibana University, 34 Yamada-Cho, Oyake, Yamashina-Ku, Kyoto, 607-8175, Japan.
| | - Yaakov Stern
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Christian Habeck
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sangyoon Lee
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Kenji Harada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Keitaro Makino
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Kouki Tomida
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Masanori Morikawa
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Ryo Yamaguchi
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Chiharu Nishijima
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Yuka Misu
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Kazuya Fujii
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| | - Takayuki Kodama
- Department of Physical Therapy, Graduate School of Health Sciences, Kyoto Tachibana University, 34 Yamada-Cho, Oyake, Yamashina-Ku, Kyoto, 607-8175, Japan
| | - Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu City, Aichi, 474-8511, Japan
| |
Collapse
|
9
|
Amrapala A, Sabé M, Solmi M, Maes M. Neuropsychiatric disturbances in mild cognitive impairment: A scientometric analysis. Ageing Res Rev 2023; 92:102129. [PMID: 37981054 DOI: 10.1016/j.arr.2023.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Behavioral and psychological symptoms of dementia (BPSD) have been extensively studied in dementia than its prodromal stage, known as mild cognitive impairment (MCI). A scientometric study on BPSD in MCI would be valuable in synthesizing the existing body of research and providing insights into the trends, networks, and influencers within this area. We searched for related literature in the Web of Science database and extracted complete text and citation records of each publication. The primary objective was to map the research evolution of BPSD in MCI and highlight dominant research themes. The secondary objective was to identify research network characteristics (authors, journals, countries, and institutions) and abundances. A total of 12,369 studies published between 1980 and 2022 were included in the analysis. We found 51 distinct clusters from the co-cited reference network that were highly credible with significant modularity (Q = 0.856) and silhouette scores (S = 0.932). Five major research domains were identified: symptoms, diagnosis, brain substrates, biochemical pathways, and interventions. In recent years, the research focus in this area has been on gut microbiota, e-health, COVID-19, cognition, and delirium. Collectively, findings from this scientometric analysis can help clarify the scope and direction of future research and clinical practices.
Collapse
Affiliation(s)
- Arisara Amrapala
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Digital and AI for Mental Health, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Michel Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv and Technological Center for Emergency Medicine, Plovdiv, Bulgaria; Kyung Hee University, Seoul, Republic of Korea; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
10
|
Fernández MP, Labra JA, Menor J, Alegre E. Analysis of Convergent Validity of Performance-Based Activities of Daily Living Assessed by PA-IADL Test in Relation to Traditional (Standard) Cognitive Assessment to Identify Older Adults with Mild Cognitive Impairment. Behav Sci (Basel) 2023; 13:975. [PMID: 38131831 PMCID: PMC10740513 DOI: 10.3390/bs13120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Difficulty in performing instrumental activities of daily living (IADLs) is currently considered an important indicator of cognitive impairment in the elderly. A non-experimental case-control investigation was conducted to assess the convergent validity of the PA-IADL with traditional (standard) cognitive assessment tests in its ability to identify adults with mild cognitive impairment. The analysis of the data was carried out by means of various multivariate statistical tests, and the sequence in its execution led to the conclusion that 8 of the 12 Tasks that make up the PA-IADL allow for the identification of people with mild cognitive impairment (MCI) to the same extent as traditional cognitive assessment tests and regardless of age. Age was found to be a moderating variable in the performance of the eight tasks; however, the results allow us to hypothesize that people with MCI experience a significant decline when it happens but thereafter, the deterioration that occurs does so at the same rate as the deterioration experienced by healthy people. They also allow us to hypothesize that the difference in the cognitive skills required by the eight functional tasks, and therefore also in the cognitive skills required by the traditional (standard) tests of a person with MCI compared to a person of the same age without MCI (Healthy), is approximately 10 years. These hypotheses have remarkable relevance and should be tested via longitudinal research. In the meantime, the results highlight the importance of the IADL assessment for the diagnosis of MCI as a complement to the standard cognitive assessment.
Collapse
Affiliation(s)
- María Paula Fernández
- Department of Psychology, Oviedo University, Plaza de Feijoo, 33003 Oviedo, Spain; (M.P.F.); (J.M.)
| | - José Antonio Labra
- Department of Psychology, Oviedo University, Plaza de Feijoo, 33003 Oviedo, Spain; (M.P.F.); (J.M.)
| | - Julio Menor
- Department of Psychology, Oviedo University, Plaza de Feijoo, 33003 Oviedo, Spain; (M.P.F.); (J.M.)
| | - Eva Alegre
- Department of Well-Being and Health, Town Hall of Villaquilambre, 24193 Villaquilambre, Spain;
| |
Collapse
|
11
|
Ren Y, Shahbaba B, Stark CEL. Improving clinical efficiency in screening for cognitive impairment due to Alzheimer's. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12494. [PMID: 37908438 PMCID: PMC10613605 DOI: 10.1002/dad2.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION To reduce demands on expert time and improve clinical efficiency, we developed a framework to evaluate whether inexpensive, accessible data could accurately classify Alzheimer's disease (AD) clinical diagnosis and predict the likelihood of progression. METHODS We stratified relevant data into three tiers: obtainable at primary care (low-cost), mostly available at specialty visits (medium-cost), and research-only (high-cost). We trained several machine learning models, including a hierarchical model, an ensemble model, and a clustering model, to distinguish between diagnoses of cognitively unimpaired, mild cognitive impairment, and dementia due to AD. RESULTS All models showed viable classification, but the hierarchical and ensemble models outperformed the conventional model. Classifier "error" was predictive of progression rates, and cluster membership identified subgroups with high and low risk of progression within 1.5 to 3 years. DISCUSSION Accessible, inexpensive clinical data can be used to guide AD diagnosis and are predictive of current and future disease states. HIGHLIGHTS Classification performance using cost-effective features was accurate and robustHierarchical classification outperformed conventional multinomial classificationClassification labels indicated significant changes in conversion risk at follow-upA clustering-classification method identified subgroups at high risk of decline.
Collapse
Affiliation(s)
- Yueqi Ren
- Mathematical, Computational and Systems Biology Graduate ProgramCenter for Complex Biological SystemsUniversity of California IrvineIrvineCaliforniaUSA
- Medical Scientist Training Program, School of MedicineUniversity of California IrvineIrvineCaliforniaUSA
| | - Babak Shahbaba
- Mathematical, Computational and Systems Biology Graduate ProgramCenter for Complex Biological SystemsUniversity of California IrvineIrvineCaliforniaUSA
- Department of StatisticsDonald Bren School of Information and Computer SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Craig E. L. Stark
- Mathematical, Computational and Systems Biology Graduate ProgramCenter for Complex Biological SystemsUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineNeurobiology and BehaviorIrvineCaliforniaUSA
| |
Collapse
|
12
|
Nitzan K, Frenkel D, Parker MO, Doron R. Editorial: Alzheimer-related affective symptoms - mechanism and treatment. Front Aging Neurosci 2023; 15:1267304. [PMID: 37680539 PMCID: PMC10482250 DOI: 10.3389/fnagi.2023.1267304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
- Keren Nitzan
- Department of Education and Psychology, The Open University, Ra'anana, Israel
| | - Dan Frenkel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Matthew O. Parker
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Ra'anana, Israel
| |
Collapse
|
13
|
Katabathula S, Davis PB, Xu R. Sex-Specific Heterogeneity of Mild Cognitive Impairment Identified Based on Multi-Modal Data Analysis. J Alzheimers Dis 2023; 91:233-243. [PMID: 36404544 PMCID: PMC11391386 DOI: 10.3233/jad-220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI), a prodromal phase of Alzheimer's disease (AD), is heterogeneous with different rates and risks of progression to AD. There are significant gender disparities in the susceptibility, prognosis, and outcomes in patients with MCI, with female being disproportionately negatively impacted. OBJECTIVE The aim of this study was to identify sex-specific heterogeneity of MCI using multi-modality data and examine the differences in the respective MCI subtypes with different prognostic outcomes or different risks for MCI to AD conversion. METHODS A total of 325 MCI subjects (146 women, 179 men) and 30 relevant features were considered. Mixed-data clustering was applied to women and men separately to discover gender-specific MCI subtypes. Gender differences were compared in the respective subtypes of MCI by examining their MCI to AD disease prognosis, descriptive statistics, and conversion rates. RESULTS We identified three MCI subtypes: poor-, good-, and best-prognosis for women and for men, separately. The subtype-wise comparison (for example, poor-prognosis subtype in women versus poor-prognosis subtype in men) showed significantly different means for brain volumetric, cognitive test-related, also for the proportion of comorbidities. Also, there were substantial gender differences in the proportions of participants who reverted to normal function, remained stable, or converted to AD. CONCLUSION Analyzing sex-specific heterogeneity of MCI offers the opportunity to advance the understanding of the pathophysiology of both MCI and AD, allows stratification of risk in clinical trials of interventions, and suggests gender-based early intervention with targeted treatment for patients at risk of developing AD.
Collapse
Affiliation(s)
- Sreevani Katabathula
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|