1
|
Akış B, Çakmak R, Şentürk M. New Sulfonate Ester-Linked Fluorinated Hydrazone Derivatives as Multitarget Carbonic Anhydrase and Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, Molecular Docking and ADME Analysis. Chem Biodivers 2024:e202401849. [PMID: 39159154 DOI: 10.1002/cbdv.202401849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
In this study, some new hydrazone derivatives (2a-g) was designed, synthesized for first time, and evaluated as multitarget inhibitors of AChE, BChE, hCA I and hCA II. The chemical structures of new hybrids were confirmed by elemental analysis and some spectroscopic techniques. All tested compounds showed low nanomolar inhibition with IC50 values of in the range of 30.4-264.0 nM against hCA I, 23.2-251.6 nM against hCA II, 12.1-114.3 nM against AChE, and 76.4-134.0 nM against BChE. These compounds inhibited hCA I and AChE more than acetazolamide (AZA) and neostigmine. Among them, compounds 2c and 2e, which have a linear structure, were determined to be the most active inhibitor candidates against these selected enzymes. Molecular docking studies were carried out on the compounds (2a--g), revealing their binding interactions with the active site of AChE, BChE, hCA I and hCA II thus supporting the experimental findings. Additionally, in silico absorption, distribution, metabolism, and excretion (ADME) prediction studies of the obtained compounds (2a--g) with in silico approaches were carried out to determine their solubility, whether they have the potential to cross the blood-brain barrier (BBB), values such as GI absorption and drug likeness principles.
Collapse
Affiliation(s)
- Berna Akış
- Department of Chemistry, Graduate Education Institute, Batman University, 72100, Batman, Türkiye
| | - Reşit Çakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, 72060, Batman, Türkiye
| | - Murat Şentürk
- Department of Biochemistry, Faculty of Pharmacy, Ağrı Ibrahim Çecen University, 04100, Ağrı, Türkiye
| |
Collapse
|
2
|
Orioli R, Belluti F, Gobbi S, Rampa A, Bisi A. Naturally Inspired Coumarin Derivatives in Alzheimer's Disease Drug Discovery: Latest Advances and Current Challenges. Molecules 2024; 29:3514. [PMID: 39124919 PMCID: PMC11313984 DOI: 10.3390/molecules29153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The main feature of neurodegenerative diseases, including Alzheimer's disease, is the network of complex and not fully recognized neuronal pathways and targets involved in their onset and progression. The therapeutic treatment, at present mainly symptomatic, could benefit from a polypharmacological approach based on the development of a single molecular entity designed to simultaneously modulate different validated biological targets. This strategy is principally based on molecular hybridization, obtained by linking or merging different chemical moieties acting with synergistic and/or complementary mechanisms. The coumarin core, widely found in nature, endowed with a recognized broad spectrum of pharmacological activities, large synthetic accessibility and favourable pharmacokinetic properties, appears as a valuable, privileged scaffold to be properly modified in order to obtain compounds able to engage different selected targets. The scientific literature has long been interested in the multifaceted profiles of coumarin derivatives, and in this review, a survey of the most important results of the last four years, on both natural and synthetic coumarin-based compounds, regarding the development of anti-Alzheimer's compounds is reported.
Collapse
Affiliation(s)
| | | | | | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy; (R.O.); (F.B.); (S.G.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy; (R.O.); (F.B.); (S.G.)
| |
Collapse
|
3
|
Beydoun MA, Beydoun HA, Hu YH, Maino Vieytes CA, Noren Hooten N, Song M, Georgescu MF, Fanelli-Kuczmarski MT, Meirelles O, Launer LJ, Evans MK, Zonderman AB. Plasma proteomic biomarkers and the association between poor cardiovascular health and incident dementia: The UK Biobank study. Brain Behav Immun 2024; 119:995-1007. [PMID: 38710337 PMCID: PMC11285716 DOI: 10.1016/j.bbi.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The study examined how plasma proteome indicators may explain the link between poor cardiovascular health (CVH) and dementia risk. METHODS The present study involved 28,974 UK Biobank participants aged 50-74y at baseline (2006-2010) who were followed-up for ≤ 15 y for incidence of dementia. CVH was calculated using Life's Essential 8 (LE8) total scores. The scores were standardized and reverse coded to reflect poor CVH (LE8z_rev). OLINK proteomics was available on this sample (k = 1,463 plasma proteins). The study primarily tested the mediating effects of the plasma proteome in LE8z_rev-dementia effect. The total effect was decomposed into "mediation only" or pure indirect effect (PIE), "interaction only" or interaction referent (INTREF), "neither mediation nor interaction" or controlled direct effect (CDE), and "both mediation and interaction" or mediated interaction (INTMED). RESULTS The study found poorer CVH assessed by LE8z_rev increased the risk of all-cause dementia by 11 % [per 1 SD, hazard ratio, (HR) = 1.11, 95 % CI: 1.03-1.20, p = 0.005). The study identified 11 plasma proteins with strong mediating effects, with GDF15 having the strongest association with dementia risk (per 1 SD, HR = 1.24, 95 % CI: 1.16, 1.33, P < 0.001 when LE8z_rev is set at its mean value) and the largest proportion mediated combining PIE and INTMED (62.6 %; 48 % of TE is PIE), followed by adrenomedullin or ADM. A first principal component with 10 top mediators (TNFRSF1A, GDF15, FSTL3, COL6A3, PLAUR, ADM, GFRAL, ACVRL1, TNFRSF6B, TGFA) mediated 53.6 % of the LE8z_rev-dementia effect. Using all the significant PIE (k = 526) proteins, we used OLINK Insight pathway analysis to identify key pathways, which revealed the involvement of the immune system, signal transduction, metabolism, disease, protein metabolism, hemostasis, membrane trafficking, extracellular matrix organization, developmental biology, and gene expression among others. STRING analysis revealed that five top consistent proteomic mediators were represented in two larger clusters reflecting numerous interconnected biological gene ontology pathways, most notably cytokine-mediated signaling pathway for GDF15 cluster (GO:0019221) and regulation of peptidyl-tyrosine phosphorylation for the ADM cluster (GO:0050730). CONCLUSION Dementia is linked to poor CVH mediated by GDF15 and ADM among several key proteomic markers which collectively explained ∼ 54 % of the total effect.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States.
| | - Hind A Beydoun
- VA National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Washington, DC 20420, United States; Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Christian A Maino Vieytes
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Minkyo Song
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Marie T Fanelli-Kuczmarski
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, United States
| |
Collapse
|
4
|
Tuovinen T, Häkli J, Rytty R, Krüger J, Korhonen V, Järvelä M, Helakari H, Kananen J, Nikkinen J, Veijola J, Remes AM, Kiviniemi V. The relative brain signal variability increases in the behavioral variant of frontotemporal dementia and Alzheimer's disease but not in schizophrenia. J Cereb Blood Flow Metab 2024:271678X241262583. [PMID: 38897598 DOI: 10.1177/0271678x241262583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Overlapping symptoms between Alzheimer's disease (AD), behavioral variant of frontotemporal dementia (bvFTD), and schizophrenia (SZ) can lead to misdiagnosis and delays in appropriate treatment, especially in cases of early-onset dementia. To determine the potential of brain signal variability as a diagnostic tool, we assessed the coefficient of variation of the BOLD signal (CVBOLD) in 234 participants spanning bvFTD (n = 53), AD (n = 17), SZ (n = 23), and controls (n = 141). All underwent functional and structural MRI scans. Data unveiled a notable increase in CVBOLD in bvFTD patients across both datasets (local and international, p < 0.05), revealing an association with clinical scores (CDR and MMSE, r = 0.46 and r = -0.48, p < 0.0001). While SZ and control group demonstrated no significant differences, a comparative analysis between AD and bvFTD patients spotlighted elevated CVBOLD in the frontopolar cortices for the latter (p < 0.05). Furthermore, CVBOLD not only presented excellent diagnostic accuracy for bvFTD (AUC 0.78-0.95) but also showcased longitudinal repeatability. During a one-year follow-up, the CVBOLD levels increased by an average of 35% in the bvFTD group, compared to a 2% increase in the control group (p < 0.05). Our findings suggest that CVBOLD holds promise as a biomarker for bvFTD, offering potential for monitoring disease progression and differentiating bvFTD from AD and SZ.
Collapse
Affiliation(s)
- Timo Tuovinen
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Jani Häkli
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Riikka Rytty
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Neurology, Hyvinkää Hospital, The Wellbeing Services County of Central Uusimaa, Hyvinkää, Finland
| | - Johanna Krüger
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurology, Neurocenter, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Janne Kananen
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Juha Nikkinen
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Department of Oncology and Radiotherapy, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Juha Veijola
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Anne M Remes
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Çakmak R, Başaran E, Sahin K, Şentürk M, Durdağı S. Synthesis of Novel Hydrazide-Hydrazone Compounds and In Vitro and In Silico Investigation of Their Biological Activities against AChE, BChE, and hCA I and II. ACS OMEGA 2024; 9:20030-20041. [PMID: 38737075 PMCID: PMC11079868 DOI: 10.1021/acsomega.3c10182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
The abnormal levels of the human carbonic anhydrase isoenzymes I and II (hCA I and II) and cholinesterase enzymes, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are linked with various disorders including Alzheimer's disease. In this study, six new nicotinic hydrazide derivatives (7-12) were designed and synthesized for the first time, and their inhibitory profiles against hCA I, hCA II, AChE, and BChE were investigated by in vitro assays and in silico studies. The structures of novel molecules were elucidated by using spectroscopic techniques and elemental analysis. These molecules showed inhibitory activities against hCA I and II with IC50 values ranging from 7.12 to 45.12 nM. Compared to reference drug acetazolamide (AZA), compound 8 was the most active inhibitor against hCA I and II. On the other hand, it was determined that IC50 values of the tested molecules ranged between 21.45 and 61.37 nM for AChE and between 18.42 and 54.74 nM for BChE. Among them, compound 12 was the most potent inhibitor of AChE and BChE, with IC50 values of 21.45 and 18.42 nM, respectively. In order to better understand the mode of action of these new compounds, state-of-the-art molecular modeling techniques were also conducted.
Collapse
Affiliation(s)
- Reşit Çakmak
- Medical
Laboratory Techniques Program, Vocational School of Health Services, Batman University, 72000 Batman, Türkiye
| | - Eyüp Başaran
- Department
of Chemistry and Chemical Processing Technologies, Vocational School
of Technical Sciences, Batman University, 72000 Batman, Türkiye
| | - Kader Sahin
- Department
of Analytical Chemistry, School of Pharmacy, Bahcesehir University, 34353 Istanbul, Türkiye
| | - Murat Şentürk
- Department
of Biochemistry, Pharmacy Faculty, Ağrı
Ibrahim Çecen University, 04100 Ağrı, Türkiye
| | - Serdar Durdağı
- Computational
Biology and Molecular Simulations Laboratory, Department of Biophysics,
School of Medicine, Bahçeşehir
University, 34353 İstanbul, Türkiye
- Lab
for Innovative
Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34353 İstanbul, Türkiye
- Molecular
Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, 34353 Istanbul, Türkiye
| |
Collapse
|
6
|
Carey A, Parodi‐Rullan R, Vazquez‐Torres R, Canepa E, Fossati S. Homocysteine potentiates amyloid β -induced death receptor 4- and 5-mediated cerebral endothelial cell apoptosis, blood brain barrier dysfunction and angiogenic impairment. Aging Cell 2024; 23:e14106. [PMID: 38358083 PMCID: PMC11113365 DOI: 10.1111/acel.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebrovascular dysfunction has been implicated as a major contributor to Alzheimer's Disease (AD) pathology, with cerebral endothelial cell (cEC) stress promoting ischemia, cerebral-blood flow impairments and blood-brain barrier (BBB) permeability. Recent evidence suggests that cardiovascular (CV)/cerebrovascular risk factors, including hyperhomocysteinemia (Hhcy), exacerbate AD pathology and risk. Yet, the underlying molecular mechanisms for this interaction remain unclear. Our lab has demonstrated that amyloid beta 40 (Aβ40) species, and particularly Aβ40-E22Q (AβQ22; vasculotropic Dutch mutant), promote death receptor 4 and 5 (DR4/DR5)-mediated apoptosis in human cECs, barrier permeability, and angiogenic impairment. Previous studies show that Hhcy also induces EC dysfunction, but it remains unknown whether Aβ and homocysteine function through common molecular mechanisms. We tested the hypotheses that Hhcy exacerbates Aβ-induced cEC DR4/5-mediated apoptosis, barrier dysfunction, and angiogenesis defects. This study was the first to demonstrate that Hhcy specifically potentiates AβQ22-mediated activation of the DR4/5-mediated extrinsic apoptotic pathway in cECs, including DR4/5 expression, caspase 8/9/3 activation, cytochrome-c release and DNA fragmentation. Additionally, we revealed that Hhcy intensifies the deregulation of the same cEC junction proteins mediated by Aβ, precipitating BBB permeability. Furthermore, Hhcy and AβQ22, impairing VEGF-A/VEGFR2 signaling and VEGFR2 endosomal trafficking, additively decrease cEC angiogenic capabilities. Overall, these results show that the presence of the CV risk factor Hhcy exacerbates Aβ-induced cEC apoptosis, barrier dysfunction, and angiogenic impairment. This study reveals specific mechanisms through which amyloidosis and Hhcy jointly operate to produce brain EC dysfunction and death, highlighting new potential molecular targets against vascular pathology in comorbid AD/CAA and Hhcy conditions.
Collapse
Affiliation(s)
- Ashley Carey
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Rebecca Parodi‐Rullan
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Rafael Vazquez‐Torres
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Elisa Canepa
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Silvia Fossati
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
8
|
Supuran CT. Drug interactions of carbonic anhydrase inhibitors and activators. Expert Opin Drug Metab Toxicol 2024; 20:143-155. [PMID: 38450431 DOI: 10.1080/17425255.2024.2328152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) have been established drug targets for decades, with their inhibitors and activators possessing relevant pharmacological activity and applications in various fields. At least 11 sulfonamides/sulfamates are clinically used as diuretics, antiglaucoma, antiepileptic, or antiobesity agents and one derivative, SLC-0111, is in clinical trials as antitumor/antimetastatic agent. The activators were less investigated with no clinically used agent. AREAS COVERED Drug interactions between CA inhibitors/activators and various other agents are reviewed in publications from the period March 2020 - January 2024. EXPERT OPINION Drug interactions involving these agents revealed several interesting findings. Acetazolamide plus loop diuretics is highy effective in acute decompensated heart failure, whereas ocular diseases such as X-linked retinoschisis and macular edema were treated by acetazolamide plus bevacizumab or topical NSAIDs. Potent anti-infective effects of acetazolamide and other CAIs, alone or in combination with other agents were demonstrated for the management of Neisseria gonorrhoea, vancomycin resistant enterococci, Acanthamoeba castellanii, Trichinella spiralis, and Cryptococcus neoformans infections. Topiramate, in combination with phentermine is incresingly used for the management of obesity, whereas zonisamide plus levodopa is highly effective for Parkinson's disease. Acetazolamide, methazolamide, ethoxzolamide, and SLC-0111 showed synergistic antitumor/antimetastatic action in combination with many other antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, FI, Italy
| |
Collapse
|
9
|
Kelly L, Brown C, Michalik D, Hawkes CA, Aldea R, Agarwal N, Salib R, Alzetani A, Ethell DW, Counts SE, de Leon M, Fossati S, Koronyo‐Hamaoui M, Piazza F, Rich SA, Wolters FJ, Snyder H, Ismail O, Elahi F, Proulx ST, Verma A, Wunderlich H, Haack M, Dodart JC, Mazer N, Carare RO. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy. Alzheimers Dement 2024; 20:1421-1435. [PMID: 37897797 PMCID: PMC10917045 DOI: 10.1002/alz.13512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Daniel Michalik
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Roxana Aldea
- Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Nivedita Agarwal
- Neuroradiology sectionScientific Institute IRCCS Eugenio MedeaBosisio Parini, LCItaly
| | - Rami Salib
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Aiman Alzetani
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Scott E. Counts
- Dept. Translational NeuroscienceDept. Family MedicineMichigan State UniversityGrand RapidsMichiganUSA
| | - Mony de Leon
- Brain Health Imaging InstituteDepartment of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Maya Koronyo‐Hamaoui
- Departments of NeurosurgeryNeurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | - Heather Snyder
- Alzheimer's AssociationMedical & Scientific RelationsChicagoIllinoisUSA
| | - Ozama Ismail
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Fanny Elahi
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Ajay Verma
- Formation Venture Engineering FoundryTopsfieldMassachusettsUSA
| | | | | | | | | | - Roxana O. Carare
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
10
|
Anzovino A, Canepa E, Alves M, Lemon NL, Carare RO, Fossati S. Amyloid Beta Oligomers Activate Death Receptors and Mitochondria-Mediated Apoptotic Pathways in Cerebral Vascular Smooth Muscle Cells; Protective Effects of Carbonic Anhydrase Inhibitors. Cells 2023; 12:2840. [PMID: 38132159 PMCID: PMC10741628 DOI: 10.3390/cells12242840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Amyloid beta (Aβ) deposition within the brain vasculature is an early hallmark of Alzheimer's disease (AD), which triggers loss of brain vascular smooth muscle cells (BVSMCs) in cerebral arteries, via poorly understood mechanisms, altering cerebral blood flow, brain waste clearance, and promoting cognitive impairment. We have previously shown that, in brain endothelial cells (ECs), vasculotropic Aβ species induce apoptosis through death receptors (DRs) DR4 and DR5 and mitochondria-mediated mechanisms, while FDA-approved carbonic anhydrase inhibitors (CAIs) prevent mitochondria-mediated EC apoptosis in vitro and in vivo. In this study, we analyzed Aβ-induced extrinsic and intrinsic (DR- and mitochondria-mediated) apoptotic pathways in BVSMC, aiming to unveil new therapeutic targets to prevent BVSMC stress and death. We show that both apoptotic pathways are activated in BVSMCs by oligomeric Aβ42 and Aβ40-Q22 (AβQ22) and mitochondrial respiration is severely impaired. Importantly, the CAIs methazolamide (MTZ) and acetazolamide (ATZ) prevent the pro-apoptotic effects in BVSMCs, while reducing caspase 3 activation and Aβ deposition in the arterial walls of TgSwDI animals, a murine model of cerebral amyloid angiopathy (CAA). This study reveals new molecular targets and a promising therapeutic strategy against BVSMC dysfunction in AD, CAA, and ARIA (amyloid-related imaging abnormalities) complications of recently FDA-approved anti-Aβ antibodies.
Collapse
Affiliation(s)
- Amy Anzovino
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Elisa Canepa
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Micaelly Alves
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Nicole L. Lemon
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| |
Collapse
|