1
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Páez A, Frimpong E, Mograss M, Dang‐Vu TT. The effectiveness of exercise interventions targeting sleep in older adults with cognitive impairment or Alzheimer's disease and related dementias (AD/ADRD): A systematic review and meta-analysis. J Sleep Res 2024; 33:e14189. [PMID: 38462491 PMCID: PMC11597006 DOI: 10.1111/jsr.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Sleep loss is associated with reduced health and quality of life, and increased risk of Alzheimer's disease and related dementias. Up to 66% of persons with Alzheimer's disease and related dementias experience poor sleep, which can predict or accelerate the progression of cognitive decline. Exercise is a widely accessible intervention for poor sleep that can protect against functional and cognitive decline. No previous systematic reviews have investigated the effectiveness of exercise for sleep in older adults with mild cognitive impairment or Alzheimer's disease and related dementias. We systematically reviewed controlled interventional studies of exercise targeting subjectively or objectively (polysomnography/actigraphy) assessed sleep in persons with mild cognitive impairment or Alzheimer's disease and related dementias. We conducted searches in PubMed, Embase, Scopus and Cochrane-Library (n = 6745). Nineteen randomised and one non-randomised controlled interventional trials were included, representing the experiences of 3278 persons with mild cognitive impairment or Alzheimer's disease and related dementias. Ten had low-risk, nine moderate-risk, and one high-risk of bias. Six studies with subjective and eight with objective sleep outcomes were meta-analysed (random-effects model). We found moderate- to high-quality evidence for the beneficial effects of exercise on self-reported and objectively-measured sleep outcomes in persons with mild cognitive impairment or Alzheimer's disease and related dementias. However, no studies examined key potential moderators of these effects, such as sex, napping or medication use. Our results have important implications for clinical practice. Sleep may be one of the most important modifiable risk factors for a range of health conditions, including cognitive decline and the progression of Alzheimer's disease and related dementias. Given our findings, clinicians may consider adding exercise as an effective intervention or adjuvant strategy for improving sleep in older persons with mild cognitive impairment or Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Arsenio Páez
- Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQuebecCanada
- Nuffield Department for Primary Care Health SciencesUniversity of OxfordOxfordUK
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)MontrealQuebecCanada
| | - Emmanuel Frimpong
- Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQuebecCanada
| | - Melodee Mograss
- Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQuebecCanada
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
| | - Thien Thanh Dang‐Vu
- Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)MontrealQuebecCanada
| |
Collapse
|
3
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
4
|
Emish M, Young SD. Remote Wearable Neuroimaging Devices for Health Monitoring and Neurophenotyping: A Scoping Review. Biomimetics (Basel) 2024; 9:237. [PMID: 38667247 PMCID: PMC11048695 DOI: 10.3390/biomimetics9040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Digital health tracking is a source of valuable insights for public health research and consumer health technology. The brain is the most complex organ, containing information about psychophysical and physiological biomarkers that correlate with health. Specifically, recent developments in electroencephalogram (EEG), functional near-infra-red spectroscopy (fNIRS), and photoplethysmography (PPG) technologies have allowed the development of devices that can remotely monitor changes in brain activity. The inclusion criteria for the papers in this review encompassed studies on self-applied, remote, non-invasive neuroimaging techniques (EEG, fNIRS, or PPG) within healthcare applications. A total of 23 papers were reviewed, comprising 17 on using EEGs for remote monitoring and 6 on neurofeedback interventions, while no papers were found related to fNIRS and PPG. This review reveals that previous studies have leveraged mobile EEG devices for remote monitoring across the mental health, neurological, and sleep domains, as well as for delivering neurofeedback interventions. With headsets and ear-EEG devices being the most common, studies found mobile devices feasible for implementation in study protocols while providing reliable signal quality. Moderate to substantial agreement overall between remote and clinical-grade EEGs was found using statistical tests. The results highlight the promise of portable brain-imaging devices with regard to continuously evaluating patients in natural settings, though further validation and usability enhancements are needed as this technology develops.
Collapse
Affiliation(s)
- Mohamed Emish
- Department of Informatics, University of California, Irvine, CA 92697-3100, USA;
| | - Sean D. Young
- Department of Informatics, University of California, Irvine, CA 92697-3100, USA;
- Department of Emergency Medicine, University of California, Irvine, CA 92697-3100, USA
| |
Collapse
|
5
|
Thomas RJ. A matter of fragmentation. Sleep 2024; 47:zsae030. [PMID: 38285604 DOI: 10.1093/sleep/zsae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/31/2024] Open
Affiliation(s)
- Robert Joseph Thomas
- Professor of Medicine, Harvard Medical School, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
6
|
Ferini-Strambi L. Which Are the Most Reliable Sleep Parameters that Predict Cognitive Decline and Alzheimer's Disease? J Alzheimers Dis 2024; 97:1641-1643. [PMID: 38339936 DOI: 10.3233/jad-231311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep disorders can represent an independent risk factor for cognitive decline and Alzheimer's disease (AD). It remains to be clarified if specific sleep parameters could be considered biomarkers of AD-related neurodegeneration. Several studies solely investigated the results of cross-sectional research, without providing conclusive evidence. Few longitudinal studies showed some inconsistencies in macrostructural and microstructural sleep findings. Methodological heterogeneity among studies can explain the discrepancies in the results. Moreover, the polysomnographic findings are usually related to only one-night recording. The combination of actigraphic recordings with sleep EEG monitoring for some consecutive days should be considered in future research.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|