1
|
Belinskaia DA, Batalova AA, Voronina PA, Shmurak VI, Vovk MA, Polyanichko AM, Sych TS, Samodurova KV, Antonova VK, Volkova AA, Gerda BA, Jenkins RO, Goncharov NV. Modulation of Albumin Esterase Activity by Warfarin and Diazepam. Int J Mol Sci 2024; 25:11543. [PMID: 39519097 PMCID: PMC11546595 DOI: 10.3390/ijms252111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Data are accumulating on the hydrolytic activity of serum albumin towards esters and organophosphates. Previously, with the help of the technology of proton nuclear magnetic resonance (1H NMR) spectroscopy, we observed the yield of acetate in the solution of bovine serum albumin and p-nitrophenyl acetate (NPA). Thus, we showed that albumin possesses true esterase activity towards NPA. Then, using the methods of molecular docking and molecular dynamics, we established site Sudlow I as the catalytic center of true esterase activity of albumin. In the present work, to expand our understanding of the molecular mechanisms of albumin pseudoesterase and true esterase activity, we investigated-in experiments in vitro and in silico-the interaction of anticoagulant warfarin (WRF, specific ligand of site Sudlow I) and benzodiazepine diazepam (DIA, specific ligand of site Sudlow II) with albumins of different species, and determined how the binding of WRF and DIA affects the hydrolysis of NPA by albumin. It was found that the characteristics of the binding modes of WRF in site Sudlow I and DIA in site Sudlow II of human (HSA), bovine (BSA), and rat (RSA) albumins have species differences, which are more pronounced for site Sudlow I compared to site Sudlow II, and less pronounced between HSA and RSA compared to BSA. WRF competitively inhibits true esterase activity of site Sudlow I towards NPA and does not affect the functioning of site Sudlow II. Diazepam can slow down true esterase activity of site Sudlow I in noncompetitive manner. It was concluded that site Sudlow I is more receptive to allosteric modulation compared to site Sudlow II.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Mikhail A. Vovk
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia (A.M.P.)
| | - Alexander M. Polyanichko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia (A.M.P.)
| | - Tomash S. Sych
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia (A.M.P.)
| | - Kamila V. Samodurova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Vasilisa K. Antonova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Anastasia A. Volkova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Bogdan A. Gerda
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| |
Collapse
|
2
|
Farrugia A, Mori F. Therapeutic solutions of human albumin - The possible effect of process-induced molecular alterations on clinical efficacy and safety. J Pharm Sci 2022; 111:1292-1308. [PMID: 35276228 DOI: 10.1016/j.xphs.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
Human albumin solutions were developed as therapeutic during the Second World War to address blood loss due to battlefield injury. This indication was based on the recognition that albumin provided most of the oncotic capacity of human plasma. For the succeeding sixty years, this formed the basis for the use of albumin in traumatology and emergency medicine. In more recent times, the pharmacological properties arising from albumin's complex structure have become a focus of attention by clinical researchers. In particular, albumin, through anti-inflammatory and anti-oxidant properties, has been proposed as an agent for the treatment of sepsis, cirrhosis and other inflammatory states. Some evidence for these indications has accrued from a number of small clinical trials and observational studies. These studies have not been confirmed in other large trials. Together with other investigators, we have shown that the process of plasma fractionation results in alterations in the structure of albumin, including those parts of the molecule involved in anti-oxidant and anti-inflammatory effects. Albumin products from diverse manufacturers show heterogeneity in their ability to address these effects. In this article, we review the historical development of albumin solutions, pointing out the variations in fractionation chemistries which different manufacturers have adopted. We suggest ways by which the manufacturing processes have contributed to variations in the physico-chemical properties of molecule. We review the outcomes of clinical studies assessing the role of albumin in ameliorating conditions such as sepsis and cirrhosis, and we speculate as to the extent which heterogeneity in the products may have contributed to variable clinical outcomes. Finally, we argue for a change in the perception of the plasma product industry and its regulatory overseers. Historically, albumin has been viewed as a generic commodity, with different preparations being interchangeable in their clinical application. We suggest that this implied biosimilarity is not necessarily applicable for different albumin solutions. The use of albumin, in indications other than its historical role as a plasma expander, can only be validated by clinical investigation of each separate albumin product.
Collapse
Affiliation(s)
- Albert Farrugia
- Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Perth, Australia.
| | - Filippo Mori
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy
| |
Collapse
|
3
|
Belinskaia DA, Voronina PA, Vovk MA, Shmurak VI, Batalova AA, Jenkins RO, Goncharov NV. Esterase Activity of Serum Albumin Studied by 1H NMR Spectroscopy and Molecular Modelling. Int J Mol Sci 2021; 22:10593. [PMID: 34638934 PMCID: PMC8508922 DOI: 10.3390/ijms221910593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Serum albumin possesses esterase and pseudo-esterase activities towards a number of endogenous and exogenous substrates, but the mechanism of interaction of various esters and other compounds with albumin is still unclear. In the present study, proton nuclear magnetic resonance (1H NMR) has been applied to the study of true esterase activity of albumin, using the example of bovine serum albumin (BSA) and p-nitrophenyl acetate (NPA). The site of BSA esterase activity was then determined using molecular modelling methods. According to the data obtained, the accumulation of acetate in the presence of BSA in the reaction mixture is much more intense as compared with the spontaneous hydrolysis of NPA, which indicates true esterase activity of albumin towards NPA. Similar results were obtained for p-nitophenyl propionate (NPP) as substrate. The rate of acetate and propionate release confirms the assumption that there is a site of true esterase activity in the albumin molecule, which is different from the site of the pseudo-esterase activity Sudlow II. The results of molecular modelling of BSA and NPA interaction make it possible to postulate that Sudlow site I is the site of true esterase activity of albumin.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Mikhail A. Vovk
- Centre for Magnetic Resonance, St. Petersburg State University, Universitetskij pr., 26, Peterhof, 198504 St. Petersburg, Russia;
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; (P.A.V.); (V.I.S.); (A.A.B.); (N.V.G.)
| |
Collapse
|
4
|
Pseudosterase activity-based specific detection of human serum albumin on gel. Talanta 2021; 224:121906. [PMID: 33379110 DOI: 10.1016/j.talanta.2020.121906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Human serum albumin (HSA) has pseudoesterase activity. So far on gel specific detection of such property of HSA is never reported. Moreover, protein binding dyes are non-specific for albumin. However, many of such dyes are used for HSA detection. So, dye-based albumin detection on the gel is expected to generate false-positive results for HSA. In this context, we have discovered that Fast Blue BB (FBBB, 0.12%) stains specifically HSA pseudoesterase activity with 2 Naphthyl acetate (2NA) as an ester substrate. Further, neostigmine has not inhibited the pseudoesterase activity associated with HSA. Neostigmine is a known inhibitor of many true esterases like acetylcholinesterase. So, neostigmine addition offers specificity to the method developed for staining of HSA. Additionally, 2NA stains HSA better than bovine serum albumin (BSA). Exploring all these novel findings, we have devised a simple method of HSA detection on the gel, accurately where other esterases are not detected. To the best of our knowledge, our method is the first to detect HSA pseudoesterase activity specifically on gel without getting interfered by any other esterase activity. The method detects HSA better than BSA. We feel that this method will go a long way for the specific detection of HSA on the gel. It is also relevant for understanding the purity of donor human milk matrix and pharmaceutical preparation of HSA. Our method can detect 7 μM of added HSA in human urine. Therefore, our method can be proceeded further for microalbuminuria detection in days to come.
Collapse
|
5
|
Specificity Influences in (1→3)-β-d-Glucan-Supported Diagnosis of Invasive Fungal Disease. J Fungi (Basel) 2020; 7:jof7010014. [PMID: 33383818 PMCID: PMC7824349 DOI: 10.3390/jof7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
(1→3)-β-glucan (BDG) testing as an adjunct in the diagnosis of invasive fungal disease (IFD) has been in use for nearly three decades. While BDG has a very high negative predictive value in this setting, diagnostic false positives may occur, limiting specificity and positive predictive value. Although results may be diagnostically false positive, they are analytically correct, due to the presence of BDG in the circulation. This review surveys the non-IFD causes of elevated circulating BDG. These are in the main, iatrogenic patient contamination through the use of BDG-containing medical devices and parenterally-delivered materials as well as translocation of intestinal luminal BDG due to mucosal barrier injury. Additionally, infection with Nocardia sp. may also contribute to elevated circulating BDG. Knowledge of the factors which may contribute to such non-IFD-related test results can improve the planning and interpretation of BDG assays and permit investigational strategies, such as serial sampling and BDG clearance evaluation, to assess the likelihood of contamination and improve patient care.
Collapse
|
6
|
Belinskaia DA, Batalova AA, Goncharov NV. Effect of Bovine Serum Albumin Redox
Status on Its Interaction with Paraoxon as Determined by Molecular Modeling. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020050063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Yoshihiro S, Ishigaki T, Ookurano H, Yoshitomi F, Hotta T, Kang D, Hokazono E, Kayamori Y. New colorimetric method with bromocresol purple for estimating the redox state of human serum albumin. J Clin Biochem Nutr 2020; 67:257-262. [PMID: 33293766 PMCID: PMC7705087 DOI: 10.3164/jcbn.20-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/22/2020] [Indexed: 11/22/2022] Open
Abstract
Oxidative damage results in protein modification and is observed in many diseases, such as heart failure and renal insufficiency. Human serum albumin is an index of oxidative change and is conventionally measured using high-performance liquid chromatography (HPLC). Although this method is more sensitive than the colorimetric method, it is time-consuming for clinical practice and the sera must be stored at –80°C before analysis. To overcome these limitations, in the present study we developed a new reagent for a more rapid and convenient quantification of oxidative stress, involving determination of the ratio of human nonmercaptalbumin to total albumin using a colorimetric method with bromocresol purple. The clinical utility of the developed reagent was confirmed by demonstrating the consistently higher oxidative stress levels in dialysis patients than in healthy control subjects, matching the results of the conventional HPLC method. This novel approach could be a valuable tool for immediate estimation of the state of oxidative stress during the course of disease and treatment, and could aid clinical treatment decisions.
Collapse
Affiliation(s)
- Sonoko Yoshihiro
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Ishigaki
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hayato Ookurano
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotakechou, Miyazaki, Japan
| | - Fumi Yoshitomi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Krume University Hospital, 67 Asahi-machi, Kurume-shi, Fukuoka 830-0011, Japan
| | - Taeko Hotta
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eisaku Hokazono
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuzo Kayamori
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Mikkat S, Dominik A, Stange J, Eggert M. Comparison of accompanying proteins in different therapeutic human serum albumin preparations. Biologicals 2020; 64:41-48. [DOI: 10.1016/j.biologicals.2020.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
|
9
|
Raoufinia R, Balkani S, Keyhanvar N, Mahdavipor B, Abdolalizadeh J. Human albumin purification: a modified and concise method. J Immunoassay Immunochem 2018; 39:687-695. [DOI: 10.1080/15321819.2018.1531884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ramin Raoufinia
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cellular and Molecular Research Center, School of medicine, Sabzevar University of medical sciences, Sabzevar, Iran
| | - Sanaz Balkani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behroz Mahdavipor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Paramedical faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|