1
|
Jiang J, Cai X, Qu H, Yao Q, He T, Yang M, Zhou H, Zhang X. Case report: Identification of facioscapulohumeral muscular dystrophy 1 in two siblings with normal phenotypic parents using optical genome mapping. Front Neurol 2024; 15:1258831. [PMID: 38361638 PMCID: PMC10867183 DOI: 10.3389/fneur.2024.1258831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Objective Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is one of the most common forms of autosomal-dominant muscular dystrophies characterized by variable disease penetrance due to shortened D4Z4 repeat units on 4q35. The molecular diagnosis of FSHD1 is usually made by Southern blotting, which is complex, time-consuming, and lacks clinical practicality. Therefore, in this study, optical genome mapping (OGM) is employed for the genetic diagnosis of FSHD1. Furthermore, epigenetic heterogeneity is determined from methylation analysis. Methods Genomic DNA samples from four members of the same family were subjected to whole-exome sequencing. OGM was used to identify structural variations in D4Z4, while sodium bisulfite sequencing helped identify the methylation levels of CpG sites in a region located distally to the D4Z4 array. A multidisciplinary team collected the clinical data, and comprehensive family analyses aided in the assessment of phenotypes and genotypes. Results Whole-exome sequencing did not reveal variants related to clinical phenotypes in the patients. OGM showed that the proband was a compound heterozygote for the 4qA allele with four and eight D4Z4 repeat units, whereas the affected younger brother had only one 4qA allele with four D4Z4 repeat units. Both the proband and her younger brother were found to display asymmetric weakness predominantly involving the facial, shoulder girdle, and upper arm muscles, whereas the younger brother had more severe clinical symptoms. The proband's father, who was found to be normal after a neurological examination, also carried the 4qA allele with eight D4Z4 repeat units. The unaffected mother exhibited 49 D4Z4 repeat units of the 4qA allele and a minor mosaic pattern with four D4Z4 repeat units of the 4qA allele. Consequently, the presence of the 4qA allele in the four D4Z4 repeat units strongly pointed to the occurrence of maternal germline mosaicism. The CpG6 methylation levels were lower in symptomatic patients compared to those in the asymptomatic parents. The older sister had lower clinical scores and ACSS and higher CpG6 methylation levels than that of her younger brother. Conclusions In this study, two siblings with FSHD1 with phenotypically normal parents were identified by OGM. Our findings suggest that the 4qA allele of four D4Z4 repeats was inherited through maternal germline mosaicism. The clinical phenotype heterogeneity is influenced by the CpG6 methylation levels. The results of this study greatly aid in the molecular diagnosis of FSHD1 and in also understanding the clinical phenotypic variability underlying the disease.
Collapse
Affiliation(s)
- Jieni Jiang
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaotang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haibo Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qiang Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tiantian He
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mei Yang
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Zídková J, Kramářová T, Kopčilová J, Réblová K, Haberlová J, Mazanec R, Voháňka S, Gřegořová A, Langová M, Honzík T, Šoukalová J, Ošlejšková H, Solařová P, Vyhnálková E, Fajkusová L. Genetic findings in Czech patients with limb girdle muscular dystrophy. Clin Genet 2023; 104:542-553. [PMID: 37526466 DOI: 10.1111/cge.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Limb girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of muscular dystrophies. The study presents an overview of molecular characteristics of a large cohort of LGMD patients who are representative of the Czech LGMD population. We present 226 LGMD probands in which 433 mutant alleles carrying 157 different variants with a supposed pathogenic effect were identified. Fifty-four variants have been described only in the Czech LGMD population so far. LGMD R1 caplain3-related is the most frequent subtype of LGMD involving 53.1% of patients with genetically confirmed LGMD, followed by LGMD R9 FKRP-related (11.1%), and LGMD R12 anoctamin5-related (7.1%). If we consider identified variants, then all but five were small-scale variants. One large gene deletion was identified in the LAMA2 gene and two deletions in each of CAPN3 and SGCG. We performed comparison our result with other published studies. The results obtained in the Czech LGMD population clearly differ from the outcome of other LGMD populations in two aspects-we have a more significant proportion of patients with LGMD R1 calpain3-related and a smaller proportion of LGMD R2 dysferlin-related.
Collapse
Affiliation(s)
- Jana Zídková
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tereza Kramářová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Johana Kopčilová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stanislav Voháňka
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Andrea Gřegořová
- Department of Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Martina Langová
- Department of Medical Genetics, Thomayer University Hospital, Praha, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Praha, Czech Republic
| | - Jana Šoukalová
- Institute of Medical Genetics and Genomics, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Hana Ošlejšková
- Department of Child Neurology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Pavla Solařová
- Department of Medical Genetics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Emílie Vyhnálková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Genetics, University Hospital Brno and Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Delourme M, Charlene C, Gerard L, Ganne B, Perrin P, Vovan C, Bertaux K, Nguyen K, Bernard R, Magdinier F. Complex 4q35 and 10q26 Rearrangements: A Challenge for Molecular Diagnosis of Patients With Facioscapulohumeral Dystrophy. Neurol Genet 2023; 9:e200076. [PMID: 37200893 PMCID: PMC10188231 DOI: 10.1212/nxg.0000000000200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 05/20/2023]
Abstract
Background and Objectives After clinical evaluation, the molecular diagnosis of type 1 facioscapulohumeral dystrophy (FSHD1) relies in most laboratories on the detection of a shortened D4Z4 array at the 4q35 locus by Southern blotting. In many instances, this molecular diagnosis remains inconclusive and requires additional experiments to determine the number of D4Z4 units or identify somatic mosaicism, 4q-10q translocations, and proximal p13E-11 deletions. These limitations highlight the need for alternative methodologies, illustrated by the recent emergence of novel technologies such as molecular combing (MC), single molecule optical mapping (SMOM), or Oxford Nanopore-based long-read sequencing providing a more comprehensive analysis of 4q and 10q loci. Over the last decade, MC revealed a further increasing complexity in the organization of the 4q and 10q distal regions in patients with FSHD with cis-duplication of D4Z4 arrays in approximately 1%-2% of cases. Methods By using MC, we investigated in our center 2,363 cases for molecular diagnosis of FSHD. We also evaluated whether previously reported cis-duplications might be identified by SMOM using the Bionano EnFocus FSHD 1.0 algorithm. Results In our cohort of 2,363 samples, we identified 147 individuals carrying an atypical organization of the 4q35 or 10q26 loci. Mosaicism is the most frequent category followed by cis-duplications of the D4Z4 array. We report here chromosomal abnormalities of the 4q35 or 10q26 loci in 54 patients clinically described as FSHD, which are not present in the healthy population. In one-third of the 54 patients, these rearrangements are the only genetic defect suggesting that they might be causative of the disease. By analyzing DNA samples from 3 patients carrying a complex rearrangement of the 4q35 region, we further showed that the SMOM direct assembly of the 4q and 10q alleles failed to reveal these abnormalities and lead to negative results for FSHD molecular diagnosis. Discussion This work further highlights the complexity of the 4q and 10q subtelomeric regions and the need of in-depth analyses in a significant number of cases. This work also highlights the complexity of the 4q35 region and interpretation issues with consequences on the molecular diagnosis of patients or genetic counseling.
Collapse
Affiliation(s)
- Megane Delourme
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Chaix Charlene
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Laurene Gerard
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Benjamin Ganne
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Pierre Perrin
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Catherine Vovan
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Karine Bertaux
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Karine Nguyen
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Rafaëlle Bernard
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Frederique Magdinier
- From the Aix Marseille University (M.D., B.G., P.P., K.N., R.B., F.M.), INSERM; Département de Génétique Médicale (C.C., L.G., C.V., K.B., K.N., R.B.), and Centre de Ressources Biologiques (K.B.), AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| |
Collapse
|
4
|
Montagnese F, de Valle K, Lemmers RJLF, Mul K, Dumonceaux J, Voermans N. 268th ENMC workshop - Genetic diagnosis, clinical classification, outcome measures, and biomarkers in Facioscapulohumeral Muscular Dystrophy (FSHD): Relevance for clinical trials. Neuromuscul Disord 2023; 33:447-462. [PMID: 37099914 DOI: 10.1016/j.nmd.2023.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Federica Montagnese
- Department of Neurology, Ludwig-Maximilian University Munich, Friedrich-Baur-Institute, Germany
| | - Katy de Valle
- Department of Neurology, The Royal Children's Hospital, Melbourne, Australia
| | - Richard J L F Lemmers
- Department Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, United Kingdom of Great Britain and Northern Ireland, London WC1N 1EH, United Kingdom
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Erdmann H, Scharf F, Gehling S, Benet-Pagès A, Jakubiczka S, Becker K, Seipelt M, Kleefeld F, Knop KC, Prott EC, Hiebeler M, Montagnese F, Gläser D, Vorgerd M, Hagenacker T, Walter MC, Reilich P, Neuhann T, Zenker M, Holinski-Feder E, Schoser B, Abicht A. Methylation of the 4q35 D4Z4 repeat defines disease status in facioscapulohumeral muscular dystrophy. Brain 2023; 146:1388-1402. [PMID: 36100962 DOI: 10.1093/brain/awac336] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.
Collapse
Affiliation(s)
- Hannes Erdmann
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | - Anna Benet-Pagès
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Institute of Neurogenomics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Sibylle Jakubiczka
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | | | - Maria Seipelt
- Department of Neurology, Universitätsklinikum Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Felix Kleefeld
- Department of Neurology and Experimental Neurology, Charité Berlin, 10117 Berlin, Germany
| | | | | | - Miriam Hiebeler
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Matthias Vorgerd
- Department of Neurology, Berufgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, 44789 Bochum, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Angela Abicht
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| |
Collapse
|
6
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
7
|
Distrofia muscolare facio-scapolo-omerale. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies. Over the last decade, a consensus was reached regarding the underlying cause of FSHD allowing—for the first time—a targeted approach to treatment. FSHD is the result of a toxic gain-of-function from de-repression of the DUX4 gene, a gene not normally expressed in skeletal muscle. With a clear therapeutic target, there is increasing interest in drug development for FSHD, an interest buoyed by the recent therapeutic successes in other neuromuscular diseases. Herein, we review the underlying disease mechanism, potential therapeutic approaches as well as the state of trial readiness in the planning and execution of future clinical trials in FSHD.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Rieken A, Bossler AD, Mathews KD, Moore SA. CLIA Laboratory Testing for Facioscapulohumeral Dystrophy: A Retrospective Analysis. Neurology 2020; 96:e1054-e1062. [PMID: 33443126 PMCID: PMC8055331 DOI: 10.1212/wnl.0000000000011412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Objective To summarize facioscapulohumeral muscular dystrophy (FSHD) diagnostic testing results from the University of Iowa Molecular Pathology Laboratory. Methods All FSHD tests performed in the diagnostic laboratory from January 2015 to July 2019 were retrospectively reviewed. Testing was by restriction enzyme digestion and Southern blot analysis with sequencing of SMCHD1, if indicated. Cases were classified as FSHD1 (4q35 EcoRI size ≤40 kb; 1–10 D4Z4 repeats), FSHD2 (permissive 4q35A allele, D4Z4 hypomethylation, and pathogenic SMCHD1 variant), or non-FSHD1,2. We also noted cases with borderline EcoRI fragment size (41–43 kb; 11 D4Z4 repeats), cases that meet criteria for both FSHD1 and FSHD2, somatic mosaicism, and cases with hybrid alleles that add complexity to test interpretation. Results Of the 1,594 patients with FSHD tests included in the analysis, 703 (44.1%) were diagnosed with FSHD. Among these positive tests, 664 (94.5%) met criteria for FSHD1 and 39 (5.5%) met criteria for FSHD2. Of all 1,594 cases, 20 (1.3%) had a 4q35 allele of borderline size, 23 (1.5%) were somatic mosaics, and 328 (20.9%) had undergone translocation events. Considering only cases with at least 1 4q35A allele, D4Z4 repeat number differed significantly among groups: FSHD1 cases median 6.0 (interquartile range [IQR] 4–7) repeats, FSHD2 cases 15.0 (IQR 12–22) repeats, and non-FSHD1,2 cases 28.0 (IQR 19–40) repeats. Conclusion FSHD1 accounts for 94.5% of genetically confirmed cases of FSHD. The data show a continuum of D4Z4 repeat numbers with FSHD1 samples having the fewest, FSHD2 an intermediate number, and non-FSHD1,2 the most.
Collapse
Affiliation(s)
- Autumn Rieken
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City
| | - Aaron D Bossler
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City
| | - Katherine D Mathews
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City
| | - Steven A Moore
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City.
| |
Collapse
|
10
|
Dai Y, Li P, Wang Z, Liang F, Yang F, Fang L, Huang Y, Huang S, Zhou J, Wang D, Cui L, Wang K. Single-molecule optical mapping enables quantitative measurement of D4Z4 repeats in facioscapulohumeral muscular dystrophy (FSHD). J Med Genet 2020; 57:109-120. [PMID: 31506324 PMCID: PMC7029236 DOI: 10.1136/jmedgenet-2019-106078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Facioscapulohumeral muscular dystrophy (FSHD) is a common adult muscular dystrophy. Over 95% of FSHD cases are associated with contraction of the D4Z4 tandem repeat (~3.3 kb per unit) at 4q35 with a specific genomic configuration (haplotype) called 4qA. Molecular diagnosis of FSHD typically requires pulsed-field gel electrophoresis with Southern blotting. We aim to develop novel genomic and computational methods for characterising D4Z4 repeat numbers in FSHD. METHODS We leveraged a single-molecule optical mapping platform that maps locations of restriction enzyme sites on high molecular weight (>150 kb) DNA molecules. We developed bioinformatics methods to address several challenges, including the differentiation of 4qA with 4qB alleles, the differentiation of 4q35 and 10q26 segmental duplications, the quantification of repeat numbers with different enzymes that may or may not have recognition sites within D4Z4 repeats. We evaluated the method on 25 human subjects (13 patients, 3 individual control subjects, 9 control subjects from 3 families) labelled by the Nb.BssSI and/or Nt.BspQI enzymes. RESULTS We demonstrated that the method gave a direct quantitative measurement of repeat numbers on D4Z4 repeats with 4qA allelic configuration and the levels of postzygotic mosaicism. Our method had high concordance with Southern blots from several cohorts on two platforms (Bionano Saphyr and Bionano Irys), but with improved quantification of repeat numbers. CONCLUSION While the study is limited by small sample size, our results demonstrated that single-molecule optical mapping is a viable approach for more refined analysis on genotype-phenotype relationships in FSHD, especially when postzygotic mosaicism is present.
Collapse
Affiliation(s)
- Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Pidong Li
- GrandOmics Biosciences, Beijing, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Center of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, China
| | - Fan Yang
- GrandOmics Biosciences, Beijing, China
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shangzhi Huang
- Department of Medical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China, Beijing, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
12
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, provides a powerful model of the complex interplay between genetic and epigenetic mechanisms of chromatin regulation. FSHD is caused by dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is a pioneer transcription factor that activates a program of gene expression during early human development, after which its expression is silenced in most somatic cells. When misexpressed in FSHD skeletal muscle, the DUX4 program leads to accumulated muscle pathology. Epigenetic regulators of the disease locus represent particularly attractive therapeutic targets for FSHD, as many are not global modifiers of the genome, and altering their expression or activity should allow correction of the underlying defect.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 4
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing
- Genetic Loci
- Genome, Human
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/classification
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Mutation
- Severity of Illness Index
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| | - Peter L Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| |
Collapse
|
13
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
14
|
Denny AP, Heather AK. Are Antioxidants a Potential Therapy for FSHD? A Review of the Literature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7020295. [PMID: 28690764 PMCID: PMC5485364 DOI: 10.1155/2017/7020295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy affecting approximately 1 in 7500 individuals worldwide. It is a progressive disease characterised by skeletal muscle weakness and wasting. A genetic mutation on the 4q35 chromosome results in the expression of the double homeobox 4 gene (DUX4) which drives oxidative stress, inflammation, toxicity, and atrophy within the skeletal muscle. FSHD is characterised by oxidative stress, and there is currently no cure and a lack of therapies for the disease. Antioxidants have been researched for many years, with investigators aiming to use antioxidants therapeutically for oxidative stress-associated diseases. This has included both natural and synthetic antioxidants. The use of antioxidants in preclinical or clinical models has been largely successful with a plethora of research reporting positive results. However, when translated to clinical trials, the use of antioxidants as a therapeutic intervention for a variety of disease has been largely unsuccessful. Moreover, specifically focusing on FSHD, limited research has been conducted on the use of antioxidants as a therapy in either preclinical or clinical models. This review summarises the current state of antioxidant use in the treatment of FSHD and discusses their potential avenue for therapeutic use for FSHD patients.
Collapse
Affiliation(s)
- Adam Philip Denny
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alison Kay Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Jones TI, Himeda CL, Perez DP, Jones PL. Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2017; 27:221-238. [PMID: 28161093 PMCID: PMC5815870 DOI: 10.1016/j.nmd.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/11/2016] [Indexed: 01/26/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite repeat. The resulting DNA hypomethylation and relaxation of epigenetic repression leads to increased expression of the deleterious DUX4-fl mRNA encoded within the distal D4Z4 repeat. With the typical late onset of muscle weakness, prevalence of asymptomatic individuals, and an autosomal dominant mode of inheritance, FSHD is often passed on from one generation to the next and affects multiple individuals within a family. Here we have characterized unique collections of 114 lymphoblastoid cell lines (LCLs) generated from 12 multigenerational FSHD families, including 56 LCLs from large, genetically homogeneous families in Utah. We found robust expression of DUX4-fl in most FSHD LCLs and a good correlation between DNA hypomethylation and repeat length. In addition, DUX4-fl levels can be manipulated using epigenetic drugs as in myocytes, suggesting that some epigenetic pathways regulating DUX4-fl in myocytes are maintained in LCLs. Overall, these FSHD LCLs provide an alternative cellular model in which to study many aspects of D4Z4, DUX4, and FSHD gene regulation in a background of low genetic variation. Significantly, these non-adherent immortal LCLs are amenable for high-throughput screening of potential therapeutics targeting DUX4-fl mRNA or protein expression.
Collapse
Affiliation(s)
- Takako I Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Charis L Himeda
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Daniel P Perez
- FSH Society, 450 Bedford Street, Lexington, MA 02420, USA.
| | - Peter L Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
16
|
Lemmers RJLF. Analyzing Copy Number Variation Using Pulsed-Field Gel Electrophoresis: Providing a Genetic Diagnosis for FSHD1. Methods Mol Biol 2017; 1492:107-125. [PMID: 27822859 DOI: 10.1007/978-1-4939-6442-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The myopathy facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by copy number variation of the D4Z4 macrosatellite repeat on chromosome 4. In unaffected individuals the number of 3.3 kb D4Z4 units varies between 8 and 100, whereas 1-10 units are seen in FSHD1 cases. A homologous and heterogenous D4Z4 array can be found on chromosome 10q, but contractions of this array are typically not associated with FSHD. Discriminating between the chromosome 4 and chromosome 10 D4Z4 arrays, as well as determining the array size, requires the use of pulsed-field gel electrophoresis, Southern blotting, and the isolation of high-quality DNA.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
17
|
Gatica LV, Rosa AL. A complex interplay of genetic and epigenetic events leads to abnormal expression of the DUX4 gene in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2016; 26:844-852. [PMID: 27816329 DOI: 10.1016/j.nmd.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a prevalent inherited human myopathy, develops following a complex interplay of genetic and epigenetic events. FSHD1, the more frequent genetic form, is associated with: (1) deletion of an integral number of 3.3 Kb (D4Z4) repeated elements at the chromosomal region 4q35, (2) a specific 4q35 subtelomeric haplotype denominated 4qA, and (3) decreased methylation of cytosines at the 4q35-linked D4Z4 units. FSHD2 is most often caused by mutations at the SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1) gene, on chromosome 18p11.32. FSHD2 individuals also carry the 4qA haplotype and decreased methylation of D4Z4 cytosines. Each D4Z4 unit contains a copy of the retrotransposed gene DUX4 (double homeobox containing protein 4). DUX4 gene functionality was questioned in the past because of its pseudogene-like structure, its location on repetitive telomeric DNA sequences (i.e. junk DNA), and the elusive nature of both the DUX4 transcript and the encoded protein, DUX4. It is now known that DUX4 is a nuclear-located transcription factor, which is normally expressed in germinal tissues. Aberrant DUX4 expression triggers a deregulation cascade inhibiting muscle differentiation, sensitizing cells to oxidative stress, and inducing muscle atrophy. A unifying pathogenic model for FSHD emerged with the recognition that the FSHD-permissive 4qA haplotype corresponds to a polyadenylation signal that stabilizes the DUX4 mRNA, allowing the toxic protein DUX4 to be expressed. This working hypothesis for FSHD pathogenesis highlights the intrinsic epigenetic nature of the molecular mechanism underlying FSHD as well as the pathogenic pathway connecting FSHD1 and FSHD2. Pharmacological control of either DUX4 gene expression or the activity of the DUX4 protein constitutes current potential rational therapeutic approaches to treat FSHD.
Collapse
Affiliation(s)
| | - Alberto Luis Rosa
- Laboratorio de Biología Celular y Molecular, Fundación Allende, Argentina; Servicio de Genética Médica y Laboratorio Diagnóstico Biología Molecular, Sanatorio Allende, Córdoba, Argentina; Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.
| |
Collapse
|
18
|
Himeda CL, Jones TI, Jones PL. CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Mol Ther 2016; 24:527-35. [PMID: 26527377 PMCID: PMC4786914 DOI: 10.1038/mt.2015.200] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent myopathies, affecting males and females of all ages. Both forms of the disease are linked by epigenetic derepression of the D4Z4 macrosatellite repeat array at chromosome 4q35, leading to aberrant expression of D4Z4-encoded RNAs in skeletal muscle. Production of full-length DUX4 (DUX4-fl) mRNA from the derepressed D4Z4 array results in misexpression of DUX4-FL protein and its transcriptional targets, and apoptosis, ultimately leading to accumulated muscle pathology. Returning the chromatin at the FSHD locus to its nonpathogenic, epigenetically repressed state would simultaneously affect all D4Z4 RNAs, inhibiting downstream pathogenic pathways, and is thus an attractive therapeutic strategy. Advances in CRISPR/Cas9-based genome editing make it possible to target epigenetic modifiers to an endogenous disease locus, although reports to date have focused on more typical genomic regions. Here, we demonstrate that a CRISPR/dCas9 transcriptional inhibitor can be specifically targeted to the highly repetitive FSHD macrosatellite array and alter the chromatin to repress expression of DUX4-fl in primary FSHD myocytes. These results implicate the promoter and exon 1 of DUX4 as potential therapeutic targets and demonstrate the utility of CRISPR technology for correction of the epigenetic dysregulation in FSHD.
Collapse
Affiliation(s)
- Charis L Himeda
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Takako I Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter L Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- The Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Calandra P, Cascino I, Lemmers RJLF, Galluzzi G, Teveroni E, Monforte M, Tasca G, Ricci E, Moretti F, van der Maarel SM, Deidda G. Allele-specific DNA hypomethylation characterises FSHD1 and FSHD2. J Med Genet 2016; 53:348-55. [PMID: 26831754 DOI: 10.1136/jmedgenet-2015-103436] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/28/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with an epigenetic defect on 4qter. Two clinically indistinguishable forms of FSHD are known, FSHD1 and FSHD2. FSHD1 is caused by contraction of the highly polymorphic D4Z4 macrosatellite repeat array on chromosome 4q35. FSHD2 is caused by pathogenic mutations of the SMCHD1 gene.Both genetic defects lead to D4Z4 DNA hypomethylation. In the presence of a polymorphic polyadenylation signal (PAS), DNA hypomethylation leads to inappropriate expression of the D4Z4-encoded DUX4 transcription factor in skeletal muscle. Currently, hypomethylation is not diagnostic per se because of the interference of non-pathogenic arrays and the lack of information about the presence of DUX4-PAS. METHODS We investigated, by bisulfite sequencing, the DNA methylation levels of the region distal to the D4Z4 array selectively in PAS-positive alleles. RESULTS Comparison of FSHD1, FSHD2 and Control subjects showed a highly significant difference of methylation levels in all CpGs tested. Importantly, using a cohort of 112 samples, one of these CpGs (CpG6) is able to discriminate the affected individuals with a sensitivity of 0.95 supporting this assay potential for FSHD diagnosis. Moreover, our study showed a relationship between PAS-specific methylation and severity of the disease. CONCLUSIONS These data point to the CpGs distal to the D4Z4 array as a critical region reflecting multiple factors affecting the epigenetics of FSHD. Additionally, methylation analysis of this region allows the establishment of a rapid and sensitive tool for FSHD diagnosis.
Collapse
Affiliation(s)
- Patrizia Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | - Isabella Cascino
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Giuliana Galluzzi
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | - Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy Institute of Pathology, Catholic University School of Medicine, Rome, Italy
| | - Mauro Monforte
- Institute of Neurology, Catholic University School of Medicine, Rome, Italy
| | | | - Enzo Ricci
- Institute of Neurology, Catholic University School of Medicine, Rome, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| | | | - Giancarlo Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo (Rome), Italy
| |
Collapse
|
20
|
Himeda CL, Jones TI, Jones PL. Facioscapulohumeral muscular dystrophy as a model for epigenetic regulation and disease. Antioxid Redox Signal 2015; 22:1463-82. [PMID: 25336259 PMCID: PMC4432493 DOI: 10.1089/ars.2014.6090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Aberrant epigenetic regulation is an integral aspect of many diseases and complex disorders. Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, is caused by disrupted genetic and epigenetic regulation of a macrosatellite repeat. FSHD provides a powerful model to investigate disease-relevant epigenetic modifiers and general mechanisms of epigenetic regulation that govern gene expression. RECENT ADVANCES In the context of a genetically permissive allele, the one aspect of FSHD that is consistent across all known cases is the aberrant epigenetic state of the disease locus. In addition, certain mutations in the chromatin regulator SMCHD1 (structural maintenance of chromosomes hinge-domain protein 1) are sufficient to cause FSHD2 and enhance disease severity in FSHD1. Thus, there are multiple pathways to generate the epigenetic dysregulation required for FSHD. CRITICAL ISSUES Why do some individuals with the genetic requirements for FSHD develop disease pathology, while others remain asymptomatic? Similarly, disease progression is highly variable among individuals. What are the relative contributions of genetic background and environmental factors in determining disease manifestation, progression, and severity in FSHD? What is the interplay between epigenetic factors regulating the disease locus and which, if any, are viable therapeutic targets? FUTURE DIRECTIONS Epigenetic regulation represents a potentially powerful therapeutic target for FSHD. Determining the epigenetic signatures that are predictive of disease severity and identifying the spectrum of disease modifiers in FSHD are vital to the development of effective therapies.
Collapse
Affiliation(s)
- Charis L Himeda
- The Wellstone Program and the Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School , Worcester, Massachusetts
| | | | | |
Collapse
|
21
|
Diagnostic approach for FSHD revisited: SMCHD1 mutations cause FSHD2 and act as modifiers of disease severity in FSHD1. Eur J Hum Genet 2014; 23:808-16. [PMID: 25370034 DOI: 10.1038/ejhg.2014.191] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 11/08/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder with a wide clinical variability. Contractions of the D4Z4 macrosatellite repeat on chromosome 4q35 are the molecular basis of the pathophysiology. Recently, in a subset of patients without D4Z4 repeat contractions, variants in the SMCHD1 gene have been identified that lead to hypomethylation of D4Z4 and thus DUX4 transcription, which causes FSHD type 2. In this study, we have screened 55 FSHD1-negative and 40 FSHD1-positive patients from unrelated families for potentially pathogenic variants in SMCHD1 by next-generation sequencing (NGS). We identified variants in SMCHD1 in 11 index patients, including missense, splice site and non-sense mutations. We developed a pyrosequencing assay to determine the methylation status of the D4Z4 repeat array and found significantly lower methylation levels for FSHD2 patients than for healthy controls and FSHD1 patients. Two out of eleven SMCHD1 mutation carriers had moderately contracted D4Z4 alleles thus these patients are suffering from FSHD1 and 2. Comparing the phenotype of patients, all FSHD2 patients were relatively mildly affected while patients with FSHD1+2 were much more severely affected than expected from their D4Z4 copy number. Our findings confirm the role of SMCHD1 mutations in FSHD2 and as a modifier of disease severity. With SMCHD1 variants found in 16.4% of phenotypic FSHD patients without D4Z4 repeat contractions, the incidence of FSHD2 is rather high and hence we suggest including sequencing of SMCHD1, haplotyping and methylation analysis in the workflow of molecular FSHD diagnostics.
Collapse
|
22
|
Jones TI, Yan C, Sapp PC, McKenna-Yasek D, Kang PB, Quinn C, Salameh JS, King OD, Jones PL. Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing. Clin Epigenetics 2014; 6:23. [PMID: 25400706 PMCID: PMC4232706 DOI: 10.1186/1868-7083-6-23] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is linked to chromatin relaxation due to epigenetic changes at the 4q35 D4Z4 macrosatellite array. Molecular diagnostic criteria for FSHD are complex and involve analysis of high molecular weight (HMW) genomic DNA isolated from lymphocytes, followed by multiple restriction digestions, pulse-field gel electrophoresis (PFGE), and Southern blotting. A subject is genetically diagnosed as FSHD1 if one of the 4q alleles shows a contraction in the D4Z4 array to below 11 repeats, while maintaining at least 1 repeat, and the contraction is in cis with a disease-permissive A-type subtelomere. FSHD2 is contraction-independent and cannot be diagnosed or excluded by this common genetic diagnostic procedure. However, FSHD1 and FSHD2 are linked by epigenetic deregulation, assayed as DNA hypomethylation, of the D4Z4 array on FSHD-permissive alleles. We have developed a PCR-based assay that identifies the epigenetic signature for both types of FSHD, distinguishing FSHD1 from FSHD2, and can be performed on genomic DNA isolated from blood, saliva, or cultured cells. Results Samples were obtained from healthy controls or patients clinically diagnosed with FSHD, and include both FSHD1 and FSHD2. The genomic DNAs were subjected to bisulfite sequencing analysis for the distal 4q D4Z4 repeat with an A-type subtelomere and the DUX4 5’ promoter region. We compared genomic DNA isolated from saliva and blood from the same individuals and found similar epigenetic signatures. DNA hypomethylation was restricted to the contracted 4qA chromosome in FSHD1 patients while healthy control subjects were hypermethylated. Candidates for FSHD2 showed extreme DNA hypomethylation on the 4qA DUX4 gene body as well as all analyzed DUX4 5’ sequences. Importantly, our assay does not amplify the D4Z4 arrays with non-permissive B-type subtelomeres and accurately excludes the arrays with non-permissive A-type subtelomeres. Conclusions We have developed an assay to identify changes in DNA methylation on the pathogenic distal 4q D4Z4 repeat. We show that the DNA methylation profile of saliva reflects FSHD status. This assay can distinguish FSHD from healthy controls, differentiate FSHD1 from FSHD2, does not require HMW genomic DNA or PFGE, and can be performed on either cultured cells, tissue, blood, or saliva samples. Electronic supplementary material The online version of this article (doi:10.1186/1868-7083-6-23) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takako I Jones
- The Wellstone Program & The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Chi Yan
- The Wellstone Program & The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA ; Key Lab of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 P.R. China
| | - Peter C Sapp
- The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Diane McKenna-Yasek
- The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Peter B Kang
- Department of Pediatrics, Division of Pediatric Neurology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32607 USA
| | - Colin Quinn
- The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA ; Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce St, 3 Gates, Philadelphia, PA 19104 USA
| | - Johnny S Salameh
- The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Oliver D King
- The Wellstone Program & The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA ; The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA ; The Eunice Kennedy Shriver National Institute of Child Health and Human Development Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Peter L Jones
- The Wellstone Program & The Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA ; The Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA ; The Eunice Kennedy Shriver National Institute of Child Health and Human Development Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| |
Collapse
|
23
|
Lemmers RJLF, Goeman JJ, van der Vliet PJ, van Nieuwenhuizen MP, Balog J, Vos-Versteeg M, Camano P, Ramos Arroyo MA, Jerico I, Rogers MT, Miller DG, Upadhyaya M, Verschuuren JJGM, Lopez de Munain Arregui A, van Engelen BGM, Padberg GW, Sacconi S, Tawil R, Tapscott SJ, Bakker B, van der Maarel SM. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2. Hum Mol Genet 2014; 24:659-69. [PMID: 25256356 DOI: 10.1093/hmg/ddu486] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD: MIM#158900) is a common myopathy with marked but largely unexplained clinical inter- and intra-familial variability. It is caused by contractions of the D4Z4 repeat array on chromosome 4 to 1-10 units (FSHD1), or by mutations in the D4Z4-binding chromatin modifier SMCHD1 (FSHD2). Both situations lead to a partial opening of the D4Z4 chromatin structure and transcription of D4Z4-encoded polyadenylated DUX4 mRNA in muscle. We measured D4Z4 CpG methylation in control, FSHD1 and FSHD2 individuals and found a significant correlation with the D4Z4 repeat array size. After correction for repeat array size, we show that the variability in clinical severity in FSHD1 and FSHD2 individuals is dependent on individual differences in susceptibility to D4Z4 hypomethylation. In FSHD1, for individuals with D4Z4 repeat arrays of 1-6 units, the clinical severity mainly depends on the size of the D4Z4 repeat. However, in individuals with arrays of 7-10 units, the clinical severity also depends on other factors that regulate D4Z4 methylation because affected individuals, but not non-penetrant mutation carriers, have a greater reduction of D4Z4 CpG methylation than can be expected based on the size of the pathogenic D4Z4 repeat array. In FSHD2, this epigenetic susceptibility depends on the nature of the SMCHD1 mutation in combination with D4Z4 repeat array size with dominant negative mutations being more deleterious than haploinsufficiency mutations. Our study thus identifies an epigenetic basis for the striking variability in onset and disease progression that is considered a clinical hallmark of FSHD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pilar Camano
- Neurosciences, BioDonostia Health Research Institute, Hospital Donostia, San Sebastián, Spain
| | | | - Ivonne Jerico
- Servicio de Neurologia, Complejo Universitario de Navarra, Pamplona, Spain
| | - Mark T Rogers
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - Daniel G Miller
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Meena Upadhyaya
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | | | | | - Baziel G M van Engelen
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - George W Padberg
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Sabrina Sacconi
- Centre de Reference des Maladies Neuromusculaires, Nice, France
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY, USA and
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | |
Collapse
|
24
|
Zeng W, Chen YY, Newkirk DA, Wu B, Balog J, Kong X, Ball AR, Zanotti S, Tawil R, Hashimoto N, Mortazavi A, van der Maarel SM, Yokomori K. Genetic and epigenetic characteristics of FSHD-associated 4q and 10q D4Z4 that are distinct from non-4q/10q D4Z4 homologs. Hum Mutat 2014; 35:998-1010. [PMID: 24838473 DOI: 10.1002/humu.22593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/06/2014] [Indexed: 12/15/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is one of the most prevalent muscular dystrophies. The majority of FSHD cases are linked to a decreased copy number of D4Z4 macrosatellite repeats on chromosome 4q (FSHD1). Less than 5% of FSHD cases have no repeat contraction (FSHD2), most of which are associated with mutations of SMCHD1. FSHD is associated with the transcriptional derepression of DUX4 encoded within the D4Z4 repeat, and SMCHD1 contributes to its regulation. We previously found that the loss of heterochromatin mark (i.e., histone H3 lysine 9 tri-methylation (H3K9me3)) at D4Z4 is a hallmark of both FSHD1 and FSHD2. However, whether this loss contributes to DUX4 expression was unknown. Furthermore, additional D4Z4 homologs exist on multiple chromosomes, but they are largely uncharacterized and their relationship to 4q/10q D4Z4 was undetermined. We found that the suppression of H3K9me3 results in displacement of SMCHD1 at D4Z4 and increases DUX4 expression in myoblasts. The DUX4 open reading frame (ORF) is disrupted in D4Z4 homologs and their heterochromatin is unchanged in FSHD. The results indicate the significance of D4Z4 heterochromatin in DUX4 gene regulation and reveal the genetic and epigenetic distinction between 4q/10q D4Z4 and the non-4q/10q homologs, highlighting the special role of the 4q/10q D4Z4 chromatin and the DUX4 ORF in FSHD.
Collapse
Affiliation(s)
- Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tawil R, van der Maarel SM, Tapscott SJ. Facioscapulohumeral dystrophy: the path to consensus on pathophysiology. Skelet Muscle 2014; 4:12. [PMID: 24940479 PMCID: PMC4060068 DOI: 10.1186/2044-5040-4-12] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/13/2014] [Indexed: 01/07/2023] Open
Abstract
Although the pathophysiology of facioscapulohumeral dystrophy (FSHD) has been controversial over the last decades, progress in recent years has led to a model that incorporates these decades of findings and is gaining general acceptance in the FSHD research community. Here we review how the contributions from many labs over many years led to an understanding of a fundamentally new mechanism of human disease. FSHD is caused by inefficient repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat array on chromosome 4, resulting in the variegated expression of the DUX4 retrogene, encoding a double-homeobox transcription factor, in skeletal muscle. Normally expressed in the testis and epigenetically repressed in somatic tissues, DUX4 expression in skeletal muscle induces expression of many germline, stem cell, and other genes that might account for the pathophysiology of FSHD. Although some disagreements regarding the details of mechanisms remain in the field, the coalescing agreement on a central model of pathophysiology represents a pivot-point in FSHD research, transitioning the field from discovery-oriented studies to translational studies aimed at developing therapies based on a sound model of disease pathophysiology.
Collapse
Affiliation(s)
- Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Stephen J Tapscott
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
26
|
Himeda CL, Debarnot C, Homma S, Beermann ML, Miller JB, Jones PL, Jones TI. Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Mol Cell Biol 2014; 34:1942-55. [PMID: 24636994 PMCID: PMC4019064 DOI: 10.1128/mcb.00149-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/12/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of an alternative full-length mRNA splice form of DUX4 (DUX4-fl) from the D4Z4 array in skeletal muscle. Here, we describe the identification of two enhancers, DUX4 myogenic enhancer 1 (DME1) and DME2 which activate DUX4-fl expression in skeletal myocytes but not fibroblasts. Analysis of the chromatin revealed histone modifications and RNA polymerase II occupancy consistent with DME1 and DME2 being functional enhancers. Chromosome conformation capture analysis confirmed association of DME1 and DME2 with the DUX4 promoter in vivo. The strong interaction between DME2 and the DUX4 promoter in both FSHD and unaffected primary myocytes was greatly reduced in fibroblasts, suggesting a muscle-specific interaction. Nucleosome occupancy and methylome sequencing analysis indicated that in most FSHD myocytes, both enhancers are associated with nucleosomes but have hypomethylated DNA, consistent with a permissive transcriptional state, sporadic occupancy, and the observed DUX4 expression in rare myonuclei. Our data support a model in which these myogenic enhancers associate with the DUX4 promoter in skeletal myocytes and activate transcription when epigenetically derepressed in FSHD, resulting in the pathological misexpression of DUX4-fl.
Collapse
Affiliation(s)
- Charis L. Himeda
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Céline Debarnot
- Ecole Supérieure de Biotechnologie Strasbourg, Illkirch, France
| | - Sachiko Homma
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mary Lou Beermann
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey B. Miller
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter L. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Takako I. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Schaap M, Lemmers RJLF, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, Baştürk N, de Knijff P, van der Maarel SM. Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions. BMC Genomics 2013; 14:143. [PMID: 23496858 PMCID: PMC3599962 DOI: 10.1186/1471-2164-14-143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/25/2013] [Indexed: 11/27/2022] Open
Abstract
Background Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autosomal and two X chromosomal MSRs among 270 HapMap individuals from Central Europe, Asia and Africa. Copy number variation, stability and genetic heterogeneity of the autosomal macrosatellite repeats RS447 (chromosome 4p), MSR5p (5p), FLJ40296 (13q), RNU2 (17q) and D4Z4 (4q and 10q) and X chromosomal DXZ4 and CT47 were investigated. Results Repeat array size distribution analysis shows that all of these MSRs are highly polymorphic with the most genetic variation among Africans and the least among Asians. A mitotic mutation rate of 0.4-2.2% was observed, exceeding meiotic mutation rates and possibly explaining the large size variability found for these MSRs. By means of a novel Bayesian approach, statistical support for a distinct multimodal rather than a uniform allele size distribution was detected in seven out of eight MSRs, with evidence for equidistant intervals between the modes. Conclusions The multimodal distributions with evidence for equidistant intervals, in combination with the observation of MSR-specific constraints on minimum array size, suggest that MSRs are limited in their configurations and that deviations thereof may cause disease, as is the case for facioscapulohumeral muscular dystrophy. However, at present we cannot exclude that there are mechanistic constraints for MSRs that are not directly disease-related. This study represents the first comprehensive study of MSRs in different human populations by applying novel statistical methods and identifies commonalities and differences in their organization and function in the human genome.
Collapse
Affiliation(s)
- Mireille Schaap
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lemmers RJLF, Tawil R, Petek LM, Balog J, Block GJ, Santen GWE, Amell AM, van der Vliet PJ, Almomani R, Straasheijm KR, Krom YD, Klooster R, Sun Y, den Dunnen JT, Helmer Q, Donlin-Smith CM, Padberg GW, van Engelen BGM, de Greef JC, Aartsma-Rus AM, Frants RR, de Visser M, Desnuelle C, Sacconi S, Filippova GN, Bakker B, Bamshad MJ, Tapscott SJ, Miller DG, van der Maarel SM. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 2012; 44:1370-4. [PMID: 23143600 PMCID: PMC3671095 DOI: 10.1038/ng.2454] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/04/2012] [Indexed: 12/11/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by a contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction-independent FSHD2 are unclear. Here we show that mutations in SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in contraction-independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
van der Maarel SM, Miller DG, Tawil R, Filippova GN, Tapscott SJ. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation. Curr Opin Neurol 2012; 25:614-20. [PMID: 22892954 PMCID: PMC3653067 DOI: 10.1097/wco.0b013e328357f22d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW In recent years, we have seen remarkable progress in our understanding of the disease mechanism underlying facioscapulohumeral muscular dystrophy (FSHD). The purpose of this review is to provide a comprehensive overview of our current understanding of the disease mechanism and to discuss the observations supporting the possibility of a developmental defect in this disorder. RECENT FINDINGS In the majority of cases, FSHD is caused by contraction of the D4Z4 repeat array (FSHD1). This results in local chromatin relaxation and stable expression of the DUX4 retrogene in skeletal muscle, but only when a polymorphic DUX4 polyadenylation signal is present. In some cases (FSHD2), D4Z4 chromatin relaxation and stable DUX4 expression occur in the absence of D4Z4 array contraction. DUX4 is a germline transcription factor and its expression in skeletal muscle leads to activation of early stem cell and germline programs and transcriptional activation of retroelements. SUMMARY Recent studies have provided a plausible disease mechanism for FSHD in which FSHD results from inappropriate expression of the germline transcription factor DUX4. The genes regulated by DUX4 suggest several mechanisms of muscle damage, and provide potential biomarkers and therapeutic targets that should be investigated in future studies.
Collapse
|
30
|
Evolution of DUX gene macrosatellites in placental mammals. Chromosoma 2012; 121:489-97. [PMID: 22903800 DOI: 10.1007/s00412-012-0380-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 01/21/2023]
Abstract
Macrosatellites are large polymorphic tandem arrays. The human subtelomeric macrosatellite D4Z4 has 11-150 repeats, each containing a copy of the intronless DUX4 gene. DUX4 is linked to facioscapulohumeral muscular dystrophy, but its normal function is unknown. The DUX gene family includes DUX4, the intronless Dux macrosatellites in rat and mouse, as well as several intron-containing members (DUXA, DUXB, Duxbl, and DUXC). Here, we report that the genomic organization (though not the syntenic location) of primate DUX4 is conserved in the Afrotheria. In primates and Afrotheria, DUX4 arose by retrotransposition of an ancestral intron-containing DUXC, which is itself not found in these species. Surprisingly, we discovered a similar macrosatellite organization for DUXC in cow and other Laurasiatheria (dog, alpaca, dolphin, pig, and horse), and in Xenarthra (sloth). Therefore, DUX4 and Dux are not the only DUX gene macrosatellites. Our data suggest a new retrotransposition-displacement model for the evolution of intronless DUX macrosatellites.
Collapse
|
31
|
Lanzuolo C. Epigenetic alterations in muscular disorders. Comp Funct Genomics 2012; 2012:256892. [PMID: 22761545 PMCID: PMC3385594 DOI: 10.1155/2012/256892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
32
|
Recommendations for the management of facioscapulohumeral muscular dystrophy in 2011. Rev Neurol (Paris) 2012; 168:910-8. [PMID: 22551571 DOI: 10.1016/j.neurol.2011.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/09/2011] [Accepted: 11/29/2011] [Indexed: 12/19/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disease, characterized by an autosomal dominant mode of inheritance, facial involvement, and selectivity and asymmetry of muscle involvement. In general, FSHD typically presents before age 20 years. Usually, FSHD muscle involvement starts in the face and then progresses to the shoulder girdle, the humeral muscles and the abdominal muscles, and then the anterolateral compartment of the leg. Disease severity is highly variable and progression is very slow. About 20% of FSHD patients become wheelchair-bound. Lifespan is not shortened. The diagnosis of FSHD is based on a genetic test by which a deletion of 3.3kb DNA repeats (named D4Z4 and mapping to the subtelomeric region of chromosome 4q35) is identified. The progressive pattern of FSHD requires that the severity of symptoms as well as their physical, social and psychological impact be evaluated on a regular basis. A yearly assessment is recommended. Multidisciplinary management of FSHD--consisting of a combination of genetic counselling, functional assessment, an assessment by a physical therapist, prescription of symptomatic therapies and prevention of known complications of this disease--is required. Prescription of physical therapy sessions and orthopedic appliances are to be adapted to the patient's deficiencies and contractures.
Collapse
|
33
|
Jordan B, Müller-Reible C, Zierz S. [Facioscapulohumeral muscular dystrophy. Clinical picture, atypical forms, diagnostics, genetics]. DER NERVENARZT 2012; 82:712-22. [PMID: 21567298 DOI: 10.1007/s00115-010-2968-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The classic phenotype of the facioscapulohumeral muscular dystrophy (FSHD) includes an initially restricted pattern of asymmetric weakness of facial and shoulder girdle muscles. Disease progression is usually slow and typically accompanied by foot extensor muscle weakness and pelvic girdle weakness. Atypical patterns of FSHD that include isolated camptocormia and facial muscle sparing exceed current diagnostic criteria. No causal genetic lesion in FSHD has been identified yet. In the vast majority of cases, FSHD results from a heterozygous partial deletion of a critical number of repetitive elements (D4Z4) on chromosome 4q35 (4qA allele). Molecular diagnostic testing is appropriate to confirm the diagnosis of FSHD without need for muscle biopsy. Penetrance of this dominantly inherited disorder is high, exhibiting a great phenotypic variability in clinical pattern and disease progression even among affected members of the same family.
Collapse
Affiliation(s)
- B Jordan
- Klinik für Neurologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale.
| | | | | |
Collapse
|
34
|
Leidenroth A, Sorte HS, Gilfillan G, Ehrlich M, Lyle R, Hewitt JE. Diagnosis by sequencing: correction of misdiagnosis from FSHD2 to LGMD2A by whole-exome analysis. Eur J Hum Genet 2012; 20:999-1003. [PMID: 22378277 DOI: 10.1038/ejhg.2012.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We studied and validated facioscapulohumeral muscular dystrophy (FSHD) samples from patients without a D4Z4 contraction (FSHD2 or 'phenotypic FSHD'). For this, we developed non-radioactive protocols to test D4Z4 allele constitution and DNA methylation, and applied these to samples from the Coriell Institute Cell Repository. The D4Z4 sizing showed two related subjects to have classic chromosome 4 contraction-dependent FSHD1. A third sample (GM17726) did not have a short chromosome 4 fragment, and had been assigned as non-4q FSHD (FSHD2). We tested D4Z4 haplotype and methylation for this individual but found both to be inconsistent with this diagnosis. Using exome sequencing, we identified two known pathogenic mutations in CAPN3 (Arg490Gln and Thr184Argfs(*)36), indicating a case of LGMD2A rather than FSHD. Our study shows how a wrong diagnosis can easily be corrected by whole-exome sequencing by constraining the variant analysis to candidate genes after the data have been generated. This new way of 'diagnosis by sequencing' is likely to become common place in genetic diagnostic laboratories. We also publish a digoxigenin-labeled Southern protocol to test D4Z4 methylation. Our data supports hypomethylation as a good epigenetic predictor for FSHD2. The non-radioactive protocol will help to make this assay more accessible to clinical diagnostic laboratories and the wider FSHD research community.
Collapse
Affiliation(s)
- Andreas Leidenroth
- Centre for Genetics and Genomics, School of Biology, Queen's Medical Centre, The University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
35
|
Nguyen K, Walrafen P, Bernard R, Attarian S, Chaix C, Vovan C, Renard E, Dufrane N, Pouget J, Vannier A, Bensimon A, Lévy N. Molecular combing reveals allelic combinations in facioscapulohumeral dystrophy. Ann Neurol 2012; 70:627-33. [PMID: 22028222 DOI: 10.1002/ana.22513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The genetic variation underlying facioscapulohumeral muscular dystrophy (FSHD), 1 of the most common hereditary neuromuscular disorders, is complex, and associated with the contraction of a repeat array (D4Z4) at the subtelomeric end of chromosome 4q. Nonpathogenic variants of 4q and the presence of a homologous array on chromosome 10q make FSHD diagnosis extremely challenging, at least in individuals with nonstandard D4Z4 arrays. We aimed to improve FSHD molecular analysis by proposing an alternative technique to the Southern blot. METHODS We applied molecular combing (MC) to directly visualize allelic combinations associated with FSHD. RESULTS MC enabled the accurate diagnosis of 32 FSHD patients. Unreported haplotypes and rearrangements, as well as somatic mosaicism, which is common in the 10 to 30% of cases that are sporadic, were detectable by MC. INTERPRETATION MC enables the detailed exploration of the FSHD locus and accurate diagnosis of FSHD, the first Mendelian disease to benefit from this technique. MC is also likely to be applicable to other copy number-variant or repeat expansion-associated human diseases.
Collapse
Affiliation(s)
- Karine Nguyen
- Assistance Publique-Hôpitaux de Marseille, Department of Medical Genetics, Timone Children's Hospital, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lemmers RJLF, O'Shea S, Padberg GW, Lunt PW, van der Maarel SM. Best practice guidelines on genetic diagnostics of Facioscapulohumeral muscular dystrophy: workshop 9th June 2010, LUMC, Leiden, The Netherlands. Neuromuscul Disord 2011; 22:463-70. [PMID: 22177830 DOI: 10.1016/j.nmd.2011.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/16/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Richards M, Coppée F, Thomas N, Belayew A, Upadhyaya M. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2011; 131:325-40. [PMID: 21984394 DOI: 10.1007/s00439-011-1100-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/26/2011] [Indexed: 01/02/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common muscular dystrophy after the dystrophinopathies and myotonic dystrophy and is associated with a typical pattern of muscle weakness. Most patients with FSHD carry a large deletion in the polymorphic D4Z4 macrosatellite repeat array at 4q35 and present with 1-10 repeats whereas non-affected individuals possess 11-150 repeats. An almost identical repeat array is present at 10q26 and the high sequence identity between these two arrays can cause difficulties in molecular diagnosis. Each 3.3-kb D4Z4 unit contains a DUX4 (double homeobox 4) gene that, among others, is activated upon contraction of the 4q35 repeat array due to the induction of chromatin remodelling of the 4qter region. A number of 4q subtelomeric sequence variants are now recognised, although FSHD only occurs in association with three 'permissive' haplotypes, each of which is associated with a polyadenylation signal located immediately distal of the last D4Z4 unit. The resulting poly-A tail appears to stabilise DUX4 mRNAs transcribed from this most distal D4Z4 unit in FSHD muscle cells. Synthesis of both the DUX4 transcripts and protein in FSHD muscle cells induces significant cell toxicity. DUX4 is a transcription factor that may target several genes which results in a deregulation cascade which inhibits myogenesis, sensitises cells to oxidative stress and induces muscle atrophy, thus recapitulating many of the key molecular features of FSHD.
Collapse
Affiliation(s)
- Mark Richards
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | | | | | |
Collapse
|
38
|
|
39
|
van der Maarel SM, Tawil R, Tapscott SJ. Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 2011; 17:252-8. [PMID: 21288772 PMCID: PMC3092836 DOI: 10.1016/j.molmed.2011.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 01/10/2023]
Abstract
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) has an unusual pathogenic mechanism. FSHD is caused by deletion of a subset of D4Z4 macrosatellite repeat units in the subtelomere of chromosome 4q. Recent studies provide compelling evidence that a retrotransposed gene in the D4Z4 repeat, DUX4, is expressed in the human germline and then epigenetically silenced in somatic tissues. In FSHD, the combination of inefficient chromatin silencing of the D4Z4 repeat and polymorphisms on the FSHD-permissive alleles that stabilize the DUX4 mRNAs emanating from the repeat result in inappropriate DUX4 protein expression in muscle cells. FSHD is thereby the first example of a human disease caused by the inefficient repression of a retrogene in a macrosatellite repeat array.
Collapse
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center, Department of Human Genetics, Albinusdreef 2, 2333 ZA, Leiden, Netherlands. Phone: +31 71 526 9480, Fax: +31 71 526 8285
| | - Rabi Tawil
- University of Rochester Medical Center, Department of Neurology, POBox 673, 601 Elmwood Avenue, Rochester, NY 14642 USA. Phone: 1-585-275-6372, FAX: 1-585-273-1255
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA. Phone: 1-206-667-4499, FAX 1-206-667-6524
| |
Collapse
|
40
|
Orrell RW. Facioscapulohumeral dystrophy and scapuloperoneal syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:167-80. [PMID: 21496633 DOI: 10.1016/b978-0-08-045031-5.00013-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is the third most common muscular dystrophy. It is named for its characteristic involvement of the muscles of the face and upper arm. It is present worldwide, with a prevalence of around 4 per 100000 and an incidence of about 1 in 20000. Overall lifespan is not affected significantly. The scapuloperoneal syndrome is a rarer presentation that may cause some confusion. FSHD is an autosomal dominant condition. The molecular genetics of FSHD are complex, with current understanding focusing on epigenetic effects related to contraction-dependent (FSHD1) and contraction-independent (FSHD2) effects of a hypomethylated repeat sequence (D4Z4), in the presence of a specific 4qA161 phenotype. Molecular genetic diagnosis is available based on these findings, but with some complexities which may lead to false-negative results on routine laboratory investigation. No medication has been demonstrated to alter the clinical course of the disease significantly. A range of supportive measures may be applied. This chapter reviews the epidemiology, pathogenesis, genetics, clinical features, investigation, prognosis, and management of patients with FSHD and the scapuloperoneal syndrome.
Collapse
Affiliation(s)
- Richard W Orrell
- University Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
41
|
Tsumagari K, Chen D, Hackman JR, Bossler AD, Ehrlich M. FSH dystrophy and a subtelomeric 4q haplotype: a new assay and associations with disease. J Med Genet 2010; 47:745-51. [PMID: 20710047 DOI: 10.1136/jmg.2009.076703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease associated with contraction of arrays of tandem 3.3-kb units (D4Z4) on subtelomeric 4q. Disease-linked arrays usually have fewer than 11 repeat units. Equally short D4Z4 arrays at subtelomeric 10q are not linked to FSHD. The newly described 4qA161 haplotype, which is more prevalent in pathogenic 4q alleles, involves sequences in and near D4Z4. METHODS We developed two new assays for 4qA161, which are based upon direct sequencing of PCR products or detecting restriction fragment length polymorphisms. They were used to analyse single nucleotide polymorphisms (SNPs) indicative of 4q161 alleles. RESULTS All (35/35) FSHD patients had one or two 4qA161 alleles (60% or 40%, respectively). In contrast, 46% (21/46) of control individuals had no 4qA161 allele (p<10(-4)), and 26% had homozygous 4qB163 alleles. CONCLUSIONS Our results from a heterogeneous population are consistent with the previously described association of the 4qA161 haplotype with FSHD, but a causal association with pathogenesis is uncertain. In addition, we found that haplotype analysis is complicated by the presence of minor 10q alleles. Nonetheless, our sequencing assay for the 4qA161allele can enhance molecular diagnosis of FSHD, including prenatal diagnosis, and is simpler to perform than the previously described assay.
Collapse
Affiliation(s)
- K Tsumagari
- Biochemistry Department, Tulane Medical School, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
42
|
Lemmers RJLF, van der Vliet PJ, van der Gaag KJ, Zuniga S, Frants RR, de Knijff P, van der Maarel SM. Worldwide population analysis of the 4q and 10q subtelomeres identifies only four discrete interchromosomal sequence transfers in human evolution. Am J Hum Genet 2010; 86:364-77. [PMID: 20206332 DOI: 10.1016/j.ajhg.2010.01.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/07/2010] [Accepted: 01/22/2010] [Indexed: 01/01/2023] Open
Abstract
Subtelomeres are dynamic structures composed of blocks of homologous DNA sequences. These so-called duplicons are dispersed over many chromosome ends. We studied the human 4q and 10q subtelomeres, which contain the polymorphic macrosatellite repeat D4Z4 and which share high sequence similarity over a region of, on average, >200 kb. Sequence analysis of four polymorphic markers in the African, European, and Asian HAPMAP panels revealed 17 subtelomeric 4q and eight subtelomeric 10qter haplotypes. Haplotypes that are composed of a mixture of 4q and 10q sequences were detected at frequencies >10% in all three populations, seemingly supporting a mechanism of ongoing interchromosomal exchanges between these chromosomes. We constructed an evolutionary network of most haplotypes and identified the 4q haplotype ancestral to all 4q and 10q haplotypes. According to the network, all subtelomeres originate from only four discrete sequence-transfer events during human evolution, and haplotypes with mixtures of 4q- and 10q-specific sequences represent intermediate structures in the transition from 4q to 10q subtelomeres. Haplotype distribution studies on a large number of globally dispersed human DNA samples from the HGDP-CEPH panel supported our findings and show that all haplotypes were present before human migration out of Africa. D4Z4 repeat array contractions on the 4A161 haplotype cause Facioscapulohumeral muscular dystrophy (FSHD), whereas contractions on most other haplotypes are nonpathogenic. We propose that the limited occurrence of interchromosomal sequence transfers results in an accumulation of haplotype-specific polymorphisms that can explain the unique association of FSHD with D4Z4 contractions in a single 4q subtelomere.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 4/genetics
- DNA/genetics
- DNA Primers/genetics
- Databases, Nucleic Acid
- Evolution, Molecular
- Genetics, Population
- Haplotypes
- Humans
- Molecular Sequence Data
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
- Telomere/genetics
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
de Greef JC, Lemmers RJLF, van Engelen BGM, Sacconi S, Venance SL, Frants RR, Tawil R, van der Maarel SM. Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat 2009; 30:1449-59. [PMID: 19728363 DOI: 10.1002/humu.21091] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), caused by partial deletion of the D4Z4 macrosatellite repeat on chromosome 4q, has a complex genetic and epigenetic etiology. To develop FSHD, D4Z4 contraction needs to occur on a specific genetic background. Only contractions associated with the 4qA161 haplotype cause FSHD. In addition, contraction of the D4Z4 repeat in FSHD patients is associated with significant D4Z4 hypomethylation. To date, however, the methylation status of contracted repeats on nonpathogenic haplotypes has not been studied. We have performed a detailed methylation study of the D4Z4 repeat on chromosome 4q and on a highly homologous repeat on chromosome 10q. We show that patients with a D4Z4 deletion (FSHD1) have D4Z4-restricted hypomethylation. Importantly, controls with a D4Z4 contraction on a nonpathogenic chromosome 4q haplotype or on chromosome 10q also demonstrate hypomethylation. In 15 FSHD families without D4Z4 contractions but with at least one 4qA161 haplotype (FSHD2), we observed D4Z4-restricted hypomethylation on chromosomes 4q and 10q. This finding implies that a genetic defect resulting in D4Z4 hypomethylation underlies FSHD2. In conclusion, we describe two ways to develop FSHD: (1) contraction-dependent or (2) contraction-independent D4Z4 hypomethylation on the 4qA161 subtelomere.
Collapse
Affiliation(s)
- Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Figueroa JJ, Chapin JE. Isolated facial diplegia and very late-onset myopathy in two siblings: atypical presentations of facioscapulohumeral dystrophy. J Neurol 2009; 257:444-6. [PMID: 19826857 DOI: 10.1007/s00415-009-5346-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 11/28/2022]
Abstract
We report two elderly siblings with atypical myopathic weakness due to facioscapulohumeral dystrophy (FSHD). The proband presented with isolated facial diplegia, and her brother developed late onset facial and limb-girdle weakness. Both siblings had a 4q35 deletion with the same residual fragment size (25 kb) confirming FSHD. This report highlights the clinical heterogeneity and intrafamily variability of FSHD.
Collapse
Affiliation(s)
- Juan J Figueroa
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| | | |
Collapse
|
45
|
Love JA, Benson J. Community use of a pushrim activated power-assisted wheelchair by an individual with facioscapulohumeral muscular dystrophy. Physiother Theory Pract 2009; 22:207-18. [PMID: 16920679 DOI: 10.1080/09593980600822784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The purpose of this case study was to report data from a clinical evaluation of an individual with fascioscapulohumeral muscular dystrophy (FSHMD) while using a manual wheelchair versus the same wheelchair fitted with pushrim activated power-assisted wheelchair hubs (PAPAW). An individual with FSHMD was tested for change in heart rate (HR), rate of perceived exertion (RPE), propulsion speed (PS), time to completion (TC), and qualitative observation in a community-based environment. A modified Physiological Cost Index (mPCI) was calculated post hoc. Results indicate HR and mPCI for the PAPAW trials were lower; RPE was "Hard" for manual wheelchair propulsion and "Fairly or Very Light" for the PAPAW trials; PS was twice as fast in both conditions using the PAPAW; and TC was 53% faster with PAPAW than in the manual wheelchair. Qualitatively, the manual propulsion conditions had exaggerated trunk and hip flexion with simultaneous scapula elevation and upward rotation to initiate downward force on the hand rim more so than the PAPAW conditions. The data suggest that propulsion of a wheelchair enhanced by PAPAW is more energy efficient, biomechanically advantageous, and more timesaving than a manual wheelchair for the tested individual with FSHMD in his environment.
Collapse
Affiliation(s)
- John A Love
- Health Science and Physical Therapy Department, Nazareth College of Rochester, Rochester, NY 14618, USA.
| | | |
Collapse
|
46
|
Zeng W, de Greef JC, Chen YY, Chien R, Kong X, Gregson HC, Winokur ST, Pyle A, Robertson KD, Schmiesing JA, Kimonis VE, Balog J, Frants RR, Ball AR, Lock LF, Donovan PJ, van der Maarel SM, Yokomori K. Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 2009; 5:e1000559. [PMID: 19593370 PMCID: PMC2700282 DOI: 10.1371/journal.pgen.1000559] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/12/2009] [Indexed: 12/11/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.
Collapse
Affiliation(s)
- Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Jessica C. de Greef
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Heather C. Gregson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Sara T. Winokur
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - April Pyle
- Institute for Stem Cell Biology and Medicine, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Keith D. Robertson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - John A. Schmiesing
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Medical Genetics and Metabolism, Department of Pediatrics, University of California Irvine Medical Center, Orange, California, United States of America
| | - Judit Balog
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Rune R. Frants
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Leslie F. Lock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Peter J. Donovan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | | | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| |
Collapse
|
47
|
Schmidt J, Kirsch S, Rappold GA, Schempp W. Complex evolution of a Y-chromosomal double homeobox 4 (DUX4)-related gene family in hominoids. PLoS One 2009; 4:e5288. [PMID: 19404400 PMCID: PMC2671837 DOI: 10.1371/journal.pone.0005288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/24/2009] [Indexed: 12/21/2022] Open
Abstract
The human Y chromosome carries four human Y-chromosomal euchromatin/heterochromatin transition regions, all of which are characterized by the presence of interchromosomal segmental duplications. The Yq11.1/Yq11.21 transition region harbours a peculiar segment composed of an imperfectly organized tandem-repeat structure encoding four members of the double homeobox (DUX) gene family. By comparative fluorescence in situ hybridization (FISH) analysis we have documented the primary appearance of Y-chromosomal DUX genes (DUXY) on the gibbon Y chromosome. The major amplification and dispersal of DUXY paralogs occurred after the gibbon and hominid lineages had diverged. Orthologous DUXY loci of human and chimpanzee show a highly similar structural organization. Sequence alignment survey, phylogenetic reconstruction and recombination detection analyses of human and chimpanzee DUXY genes revealed the existence of all copies in a common ancestor. Comparative analysis of the circumjacent beta-satellites indicated that DUXY genes and beta-satellites evolved in concert. However, evolutionary forces acting on DUXY genes may have induced amino acid sequence differences in the orthologous chimpanzee and human DUXY open reading frames (ORFs). The acquisition of complete ORFs in human copies might relate to evolutionary advantageous functions indicating neo-functionalization. We propose an evolutionary scenario in which an ancestral tandem array DUX gene cassette transposed to the hominoid Y chromosome followed by lineage-specific chromosomal rearrangements paved the way for a species-specific evolution of the Y-chromosomal members of a large highly diverged homeobox gene family.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Stefan Kirsch
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Gudrun A. Rappold
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
48
|
de Greef JC, Frants RR, van der Maarel SM. Epigenetic mechanisms of facioscapulohumeral muscular dystrophy. Mutat Res 2008; 647:94-102. [PMID: 18723032 PMCID: PMC2650037 DOI: 10.1016/j.mrfmmm.2008.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 04/08/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) seems to be caused by a complex epigenetic disease mechanism as a result of contraction of the polymorphic macrosatellite repeat D4Z4 on chromosome 4qter. Currently, the exact mechanism causing the FSHD phenotype is still not elucidated. In this review, we discuss the genetic and epigenetic changes observed in patients with FSHD and the possible disease mechanisms that may be associated with FSHD pathogenesis.
Collapse
Affiliation(s)
- Jessica C. de Greef
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Silvère M. van der Maarel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Address correspondence and reprint requests to: Dr. S.M. van der Maarel, Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Bldg. 2, room S-03-042, Postal zone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
49
|
Ki CS, Lee ST, Kim KS, Kim JW, Hong YH, Sung JJ, Park KS, Lee KW. Clinical and genetic analysis of Korean patients with facioscapulohumeral muscular dystrophy. J Korean Med Sci 2008; 23:959-63. [PMID: 19119436 PMCID: PMC2610659 DOI: 10.3346/jkms.2008.23.6.959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 02/16/2008] [Indexed: 11/27/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominantly inherited muscular disorder, which is characterized by weakness of facial, shoulder and hip girdle, humeral, and anterior distal leg muscles. The FSHD gene has been mapped to 4q35 and a deletion of integral copies of a 3.3-kb DNA repeat motif named D4Z4 was known to be the genetic background of the disorder. Although FSHD is the second most common muscular dystrophy in adulthood, there were few reports on the genetically confirmed patients in Korea. Recently, we experienced four Korean patients with clinical features resembling FSHD. In order to confirm the diagnosis, conventional Southern blot (SB) analysis by using double digestion with EcoRI and BlnI and hybridization with p13E-11 probe was performed in three patients and newly developed long polymerase chain reaction (PCR) method was used for one patient because genomic DNA was not enough for conventional SB for this patient. All patients were demonstrated to have shortened D4Z4 repeats that were consistent with FSHD. Therefore, we could confirm the diagnosis of FSHD in four Korean patients and appropriate genetic counseling was done for the patients and their families. It is of note that long-PCR method could be a good alternative for conventional SB when D4Z4 repeats were less than 5.
Collapse
Affiliation(s)
- Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Sook Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Seok Park
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang-Woo Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Korngut L, Siu VM, Venance SL, Levin S, Ray P, Lemmers RJ, Keith J, Campbell C. Phenotype of combined Duchenne and facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2008; 18:579-82. [DOI: 10.1016/j.nmd.2008.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 01/21/2008] [Accepted: 03/14/2008] [Indexed: 10/21/2022]
|