1
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
3
|
Kim JE, Lee DS, Kim TH, Park H, Kang TC. Distinct Roles of CK2- and AKT-Mediated NF-κB Phosphorylations in Clasmatodendrosis (Autophagic Astroglial Death) within the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2023; 12:antiox12051020. [PMID: 37237886 DOI: 10.3390/antiox12051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The downregulation of glutathione peroxidase-1 (GPx1) plays a role in clasmatodendrosis (an autophagic astroglial death) in the hippocampus of chronic epilepsy rats. Furthermore, N-acetylcysteine (NAC, a GSH precursor) restores GPx1 expression in clasmatodendritic astrocytes and alleviates this autophagic astroglial death, independent of nuclear factor erythroid-2-related factor 2 (Nrf2) activity. However, the regulatory signal pathways of these phenomena have not been fully explored. In the present study, NAC attenuated clasmatodendrosis by alleviating GPx1 downregulation, casein kinase 2 (CK2)-mediated nuclear factor-κB (NF-κB) serine (S) 529 and AKT-mediated NF-κB S536 phosphorylations. 2-[4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazole-1-yl]acetic acid (TMCB; a selective CK2 inhibitor) relieved clasmatodendritic degeneration and GPx1 downregulation concomitant with the decreased NF-κB S529 and AKT S473 phosphorylations. In contrast, AKT inhibition by 3-chloroacetyl-indole (3CAI) ameliorated clasmatodendrosis and NF-κB S536 phosphorylation, while it did not affect GPx1 downregulation and CK2 tyrosine (Y) 255 and NF-κB S529 phosphorylations. Therefore, these findings suggest that seizure-induced oxidative stress may diminish GPx1 expression by increasing CK2-mediated NF-κB S529 phosphorylation, which would subsequently enhance AKT-mediated NF-κB S536 phosphorylation leading to autophagic astroglial degeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
4
|
Yu D, Liang N, Zebarth J, Shen Q, Ozzoude M, Goubran M, Rabin JS, Ramirez J, Scott CJM, Gao F, Bartha R, Symons S, Haddad SMH, Berezuk C, Tan B, Kwan D, Hegele RA, Dilliott AA, Nanayakkara ND, Binns MA, Beaton D, Arnott SR, Lawrence‐Dewar JM, Hassan A, Dowlatshahi D, Mandzia J, Sahlas D, Casaubon L, Saposnik G, Otoki Y, Lanctôt KL, Masellis M, Black SE, Swartz RH, Taha AY, Swardfager W. Soluble Epoxide Hydrolase Derived Linoleic Acid Oxylipins, Small Vessel Disease Markers, and Neurodegeneration in Stroke. J Am Heart Assoc 2022; 12:e026901. [PMID: 36583428 PMCID: PMC9973594 DOI: 10.1161/jaha.122.026901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Cerebral small vessel disease is associated with higher ratios of soluble-epoxide hydrolase derived linoleic acid diols (12,13-dihydroxyoctadecenoic acid [DiHOME] and 9,10-DiHOME) to their parent epoxides (12(13)-epoxyoctadecenoic acid [EpOME] and 9(10)-EpOME); however, the relationship has not yet been examined in stroke. Methods and Results Participants with mild to moderate small vessel stroke or large vessel stroke were selected based on clinical and imaging criteria. Metabolites were quantified by ultra-high-performance liquid chromatography-mass spectrometry. Volumes of stroke, lacunes, white matter hyperintensities, magnetic resonance imaging visible perivascular spaces, and free water diffusion were quantified from structural and diffusion magnetic resonance imaging (3 Tesla). Adjusted linear regression models were used for analysis. Compared with participants with large vessel stroke (n=30), participants with small vessel stroke (n=50) had a higher 12,13-DiHOME/12(13)-EpOME ratio (β=0.251, P=0.023). The 12,13-DiHOME/12(13)-EpOME ratio was associated with more lacunes (β=0.266, P=0.028) but not with large vessel stroke volumes. Ratios of 12,13-DiHOME/12(13)-EpOME and 9,10-DiHOME/9(10)-EpOME were associated with greater volumes of white matter hyperintensities (β=0.364, P<0.001; β=0.362, P<0.001) and white matter MRI-visible perivascular spaces (β=0.302, P=0.011; β=0.314, P=0.006). In small vessel stroke, the 12,13-DiHOME/12(13)-EpOME ratio was associated with higher white matter free water diffusion (β=0.439, P=0.016), which was specific to the temporal lobe in exploratory regional analyses. The 9,10-DiHOME/9(10)-EpOME ratio was associated with temporal lobe atrophy (β=-0.277, P=0.031). Conclusions Linoleic acid markers of cytochrome P450/soluble-epoxide hydrolase activity were associated with small versus large vessel stroke, with small vessel disease markers consistent with blood brain barrier and neurovascular-glial disruption, and temporal lobe atrophy. The findings may indicate a novel modifiable risk factor for small vessel disease and related neurodegeneration.
Collapse
Affiliation(s)
- Di Yu
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
| | - Nuanyi Liang
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCA
| | - Julia Zebarth
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
| | - Qing Shen
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCA
| | - Miracle Ozzoude
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Maged Goubran
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoCanada,Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Jennifer S. Rabin
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Rehabilitation Sciences InstituteUniversity of TorontoTorontoCanada
| | - Joel Ramirez
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Christopher J. M. Scott
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Fuqiang Gao
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Robert Bartha
- Department of Medical BiophysicsWestern UniversityLondonCanada,Center for Functional and Metabolic Mapping, Robarts Research InstituteWestern UniversityLondonCanada
| | - Sean Symons
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | | | - Courtney Berezuk
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada
| | - Donna Kwan
- Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada
| | | | | | | | - Malcolm A. Binns
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada,Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
| | - Derek Beaton
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada
| | - Stephen R. Arnott
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada
| | - Jane M. Lawrence‐Dewar
- Thunder Bay Regional Health Research InstituteNorthern Ontario School of Medicine UniversityThunder BayCanada
| | - Ayman Hassan
- Thunder Bay Regional Health Research InstituteNorthern Ontario School of Medicine UniversityThunder BayCanada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), Ottawa Hospital Research InstituteUniversity of OttawaOttawaCanada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
| | - Demetrios Sahlas
- Division of Neurology, Department of Medicine, Faculty of Health SciencesMcMaster UniversityHamiltonCanada
| | - Leanne Casaubon
- Krembil Research InstituteUniversity Health NetworkTorontoCanada
| | - Gustavo Saposnik
- Stroke Outcomes and Decision Neuroscience Research Unit, Division of Neurology, St. Michael’s HospitalUniversity of TorontoTorontoCanada
| | - Yurika Otoki
- Division of Agricultural Chemistry, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Krista L. Lanctôt
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada,Department of Psychiatry, Faculty of MedicineUniversity of TorontoTorontoCanada,Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Mario Masellis
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Department of Neurology, Faculty of MedicineUniversity of TorontoTorontoCanada
| | - Sandra E. Black
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Department of Neurology, Faculty of MedicineUniversity of TorontoTorontoCanada
| | - Richard H. Swartz
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Department of Neurology, Faculty of MedicineUniversity of TorontoTorontoCanada
| | - Ameer Y. Taha
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCA
| | - Walter Swardfager
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada,Toronto Rehabilitation InstituteUniversity Health NetworkTorontoCanada
| | | |
Collapse
|
5
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
6
|
CDDO-Me Attenuates Clasmatodendrosis in CA1 Astrocyte by Inhibiting HSP25-AKT Mediated DRP1-S637 Phosphorylation in Chronic Epilepsy Rats. Int J Mol Sci 2022; 23:ijms23094569. [PMID: 35562960 PMCID: PMC9105539 DOI: 10.3390/ijms23094569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Clasmatodendrosis is one of the irreversible astroglial degeneration, which is involved in seizure duration and its progression in the epileptic hippocampus. Although sustained heat shock protein 25 (HSP25) induction leads to this autophagic astroglial death, dysregulation of mitochondrial dynamics (aberrant mitochondrial elongation) is also involved in the pathogenesis in clasmatodendrosis. However, the underlying molecular mechanisms of accumulation of elongated mitochondria in clasmatodendritic astrocytes are elusive. In the present study, we found that clasmatodendritic astrocytes showed up-regulations of HSP25 expression, AKT serine (S) 473 and dynamin-related protein 1 (DRP1) S637 phosphorylations in the hippocampus of chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) abrogated abnormal mitochondrial elongation by reducing HSP25 upregulation, AKT S473- and DRP1 S637 phosphorylations. Furthermore, HSP25 siRNA and 3-chloroacetyl-indole (3CAI, an AKT inhibitor) abolished AKT-DRP1-mediated mitochondrial elongation and attenuated clasmatodendrosis in CA1 astrocytes. These findings indicate that HSP25-AKT-mediated DRP1 S637 hyper-phosphorylation may lead to aberrant mitochondrial elongation, which may result in autophagic astroglial degeneration. Therefore, our findings suggest that the dysregulation of HSP25-AKT-DRP1-mediated mitochondrial dynamics may play an important role in clasmatodendrosis, which would have implications for the development of novel therapies against various neurological diseases related to astroglial degeneration.
Collapse
|
7
|
Verkhratsky A, Li B, Scuderi C, Parpura V. Principles of Astrogliopathology. ADVANCES IN NEUROBIOLOGY 2021; 26:55-73. [PMID: 34888830 DOI: 10.1007/978-3-030-77375-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of astrocytes in the nervous system pathology was early on embraced by neuroscientists at end of the nineteenth and the beginning of the twentieth century, only to be pushed aside by neurone-centric dogmas during most of the twentieth century. However, the last decade of the twentieth century and the twenty-first century have brought the astroglial "renaissance", which has put astroglial cells as key players in pathophysiology of most if not all disorders of the nervous system and has regarded astroglia as a fertile ground for therapeutic intervention.Astrocytic contribution to neuropathology can be primary, whereby cell-autonomous changes, such as mutations in gene encoding for glial fibrillary acidic protein, can drive the pathologic progression, in this example, Alexander disease. They can also be secondary, when astrocytes respond to a variety of insults to the nervous tissue. Regardless of their origin, being cell-autonomous or not, changes in astroglia that occur in pathology, that is, astrogliopathology, can be contemporary and arbitrary classified into four forms: (i) reactive astrogliosis, (ii) astrocytic atrophy with loss of function, (iii) pathological remodelling of astrocytes and (iv) astrodegeneration morphologically manifested as clasmatodendrosis. Inevitably, as with any other classification, this classification of astrogliopathology awaits its revision that shall be rooted in new discoveries and concepts.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Baoman Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Abstract
Clasmatodendrosis derives from the Greek for fragment (klasma), tree (dendron), and condition (- osis). Cajal first used the term in 1913: he observed disintegration of the distal cell processes of astrocytes, along with a fragmentation or beading of proximal processes closer to the astrocyte cell body. In contemporary clinical and experimental reports, clasmatodendrosis has been observed in models of cerebral ischemia and seizures (including status epilepticus), in elderly brains, in white matter disease, in hippocampal models and cell cultures associated with amyloid plaques, in head trauma, toxic exposures, demyelinating diseases, encephalitides and infection-associated encephalopathies, and in the treatment of cancer using immune effector cells. We examine evidence to support a claim that clasmatodendrotic astrocyte cell processes overtly bead (truncate) as a morphological sign of ongoing damage premortem. In grey and white matter and often in relationship to vascular lumina, beading becomes apparent with immunohistochemical staining of glial fibrillary acidic protein when specimens are examined at reasonably high magnification, but demonstration of distal astrocytic loss of processes may require additional marker study and imaging. Proposed mechanisms for clasmatodendrotic change have examined hypoxic-ischemic, osmotic-demyelinating, and autophagic models. In these models as well as in neuropathological reports, parenchymal swelling, vessel-wall leakage, or disturbed clearance of toxins can occur in association with clasmatodendrosis. Clasmatodendrotic features may serve as a marker for gliovascular dysregulation either acutely or chronically. We review correlative evidence for blood-brain barrier (BBB) dysfunction associated with astrocytic structural change, with attention to interactions between endothelial cells, pericytes, and astrocytic endfeet.
Collapse
|
9
|
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front Aging Neurosci 2021; 13:651973. [PMID: 33889084 PMCID: PMC8055856 DOI: 10.3389/fnagi.2021.651973] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation. Becoming reactive, astrocytes and microglia undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions, such as A1 and A2 astrocytes, and M1 and M2 microglia. This classification of microglia and astrocytes in two different, all-or-none states seems too simplistic, and does not correspond to the diverse variety of phenotypes so far found in the brain. Different interactions occur among the many cell populations of the central nervous system in health and disease conditions. Such interactions give rise to networks of morphological and functional reciprocal reliance and dependency. Alterations affecting one cell population reverberate to the others, favoring or dysregulating their activities. In the last part of this review, we present the modifications of the interplay between neurons and glia in rat models of brain aging and acute inflammation, focusing on the differences between CA1 and CA3 areas of the hippocampus, one of the brain regions most susceptible to different insults. With triple labeling fluorescent immunohistochemistry and confocal microscopy (TIC), it is possible to evaluate and compare quantitatively the morphological and functional alterations of the components of the neuron-astrocyte-microglia triad. In the contiguous and interconnected regions of rat hippocampus, CA1 and CA3 Stratum Radiatum, astrocytes and microglia show a different, finely regulated, and region-specific reactivity, demonstrating that glia responses vary in a significant manner from area to area. It will be of great interest to verify whether these differential reactivities of glia explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli.
Collapse
Affiliation(s)
- Daniele Lana
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Anatomopatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Maria Grazia Giovannini
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Lana D, Ugolini F, Giovannini MG. Space-Dependent Glia-Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. Int J Mol Sci 2020; 21:E9441. [PMID: 33322419 PMCID: PMC7763751 DOI: 10.3390/ijms21249441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
This review is focused on the description and discussion of the alterations of astrocytes and microglia interplay in models of Alzheimer's disease (AD). AD is an age-related neurodegenerative pathology with a slowly progressive and irreversible decline of cognitive functions. One of AD's histopathological hallmarks is the deposition of amyloid beta (Aβ) plaques in the brain. Long regarded as a non-specific, mere consequence of AD pathology, activation of microglia and astrocytes is now considered a key factor in both initiation and progression of the disease, and suppression of astrogliosis exacerbates neuropathology. Reactive astrocytes and microglia overexpress many cytokines, chemokines, and signaling molecules that activate or damage neighboring cells and their mutual interplay can result in virtuous/vicious cycles which differ in different brain regions. Heterogeneity of glia, either between or within a particular brain region, is likely to be relevant in healthy conditions and disease processes. Differential crosstalk between astrocytes and microglia in CA1 and CA3 areas of the hippocampus can be responsible for the differential sensitivity of the two areas to insults. Understanding the spatial differences and roles of glia will allow us to assess how these interactions can influence the state and progression of the disease, and will be critical for identifying therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
11
|
Lana D, Ugolini F, Giovannini MG. An Overview on the Differential Interplay Among Neurons-Astrocytes-Microglia in CA1 and CA3 Hippocampus in Hypoxia/Ischemia. Front Cell Neurosci 2020; 14:585833. [PMID: 33262692 PMCID: PMC7686560 DOI: 10.3389/fncel.2020.585833] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons have been long regarded as the basic functional cells of the brain, whereas astrocytes and microglia have been regarded only as elements of support. However, proper intercommunication among neurons-astrocytes-microglia is of fundamental importance for the functional organization of the brain. Perturbation in the regulation of brain energy metabolism not only in neurons but also in astrocytes and microglia may be one of the pathophysiological mechanisms of neurodegeneration, especially in hypoxia/ischemia. Glial activation has long been considered detrimental for survival of neurons, but recently it appears that glial responses to an insult are not equal but vary in different brain areas. In this review, we first take into consideration the modifications of the vascular unit of the glymphatic system and glial metabolism in hypoxic conditions. Using the method of triple-labeling fluorescent immunohistochemistry coupled with confocal microscopy (TIC), we recently studied the interplay among neurons, astrocytes, and microglia in chronic brain hypoperfusion. We evaluated the quantitative and morpho-functional alterations of the neuron-astrocyte-microglia triads comparing the hippocampal CA1 area, more vulnerable to ischemia, to the CA3 area, less vulnerable. In these contiguous and interconnected areas, in the same experimental hypoxic conditions, astrocytes and microglia show differential, finely regulated, region-specific reactivities. In both areas, astrocytes and microglia form triad clusters with apoptotic, degenerating neurons. In the neuron-astrocyte-microglia triads, the cell body of a damaged neuron is infiltrated and bisected by branches of astrocyte that create a microscar around it while a microglial cell phagocytoses the damaged neuron. These coordinated actions are consistent with the scavenging and protective activities of microglia. In hypoxia, the neuron-astrocyte-microglia triads are more numerous in CA3 than in CA1, further indicating their protective effects. These data, taken from contiguous and interconnected hippocampal areas, demonstrate that glial response to the same hypoxic insult is not equal but varies significantly. Understanding the differences of glial reactivity is of great interest to explain the differential susceptibility of hippocampal areas to hypoxia/ischemia. Further studies may evidence the differential reactivity of glia in different brain areas, explaining the higher or lower sensitivity of these areas to different insults and whether glia may represent a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Florence, Italy
| | - Maria G Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 2020; 473:753-774. [PMID: 32979108 DOI: 10.1007/s00424-020-02465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110, Brazil
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997. .,Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
13
|
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation 2020; 17:115. [PMID: 32290848 PMCID: PMC7158022 DOI: 10.1186/s12974-020-01800-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older-age individuals are at the highest risk for disability from a traumatic brain injury (TBI). Astrocytes are the most numerous glia in the brain, necessary for brain function, yet there is little known about unique responses of astrocytes in the aged-brain following TBI. METHODS Our approach examined astrocytes in young adult, 4-month-old, versus aged, 18-month-old mice, at 1, 3, and 7 days post-TBI. We selected these time points to span the critical period in the transition from acute injury to presumably irreversible tissue damage and disability. Two approaches were used to define the astrocyte contribution to TBI by age interaction: (1) tissue histology and morphological phenotyping, and (2) transcriptomics on enriched astrocytes from the injured brain. RESULTS Aging was found to have a profound effect on the TBI-induced loss of astrocyte function needed for maintaining water transport and edema-namely, aquaporin-4. The aged brain also demonstrated a progressive exacerbation of astrogliosis as a function of time after injury. Moreover, clasmatodendrosis, an underrecognized astrogliopathy, was found to be significantly increased in the aged brain, but not in the young brain. As a function of TBI, we observed a transitory refraction in the number of these astrocytes, which rebounded by 7 days post-injury in the aged brain. Transcriptomic data demonstrated disproportionate changes in genes attributed to reactive astrocytes, inflammatory response, complement pathway, and synaptic support in aged mice following TBI compared to young mice. Additionally, our data highlight that TBI did not evoke a clear alignment with the previously defined "A1/A2" dichotomy of reactive astrogliosis. CONCLUSIONS Overall, our findings point toward a progressive phenotype of aged astrocytes following TBI that we hypothesize to be maladaptive, shedding new insights into potentially modifiable astrocyte-specific mechanisms that may underlie increased fragility of the aged brain to trauma.
Collapse
Affiliation(s)
- Alexandria N Early
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy A Gorman
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
Park S, Lee JY, You S, Song G, Lim W. Neurotoxic effects of aflatoxin B1 on human astrocytes in vitro and on glial cell development in zebrafish in vivo. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121639. [PMID: 31787402 DOI: 10.1016/j.jhazmat.2019.121639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 is one of the well-known mycotoxins and mainly found in contaminated animal feed and various agricultural products inducing acute and chronic toxicology, tumor, and abnormal neural development. However, the effects of aflatoxin B1 on the human brain, especially on astrocytes, have not been studied in depth. In the present study, we studied the neurotoxic effects of aflatoxin B1, in vitro and in vivo. Aflatoxin B1 decreased the proliferation and stopped cell cycle progression at the sub G0/G1 stage with an increase in BAX, BAK, and cytochrome c proteins in human astrocytes. In addition, it increased the mitochondrial depolarization, oxidative stress, and calcium influx in both the cytosol and mitochondria. Surprisingly, inhibition of calcium overload in the cytosol and mitochondria, using calcium chelators and an inhibitor, partially rescued the proliferation of aflatoxin B1-treated astrocytes. Based on the toxicity assays using zebrafish models, aflatoxin B1 decreased the embryo survival rate with physiological changes and an increase in the caspase and tp53 genes. It also decreased the expression of gfap, mbp, and olig2 in the transgenic zebrafish embryo's brain and axon. Our results revealed the specific mechanism of the neurotoxic effects of aflatoxin B1 on human astrocytes and zebrafish glial cells.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
15
|
Hase Y, Chen A, Bates LL, Craggs LJL, Yamamoto Y, Gemmell E, Oakley AE, Korolchuk VI, Kalaria RN. Severe white matter astrocytopathy in CADASIL. Brain Pathol 2019; 28:832-843. [PMID: 29757481 DOI: 10.1111/bpa.12621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by strategic white matter (WM) hyperintensities on MRI. Pathological features include WM degeneration, arteriolosclerosis, lacunar infarcts, and the deposition of granular osmiophilic material. Based on the hypothesis that the gliovascular unit is compromised, we assessed the nature of astrocyte damage in the deep WM of CADASIL subjects. METHODS We evaluated post-mortem brains from CADASIL, cerebral small vessel disease, similar age cognitively normal and older control subjects. Standard immunohistochemical, immunofluorescent, and unbiased stereological methods were used to evaluate the distribution of astrocytes, microvessels, and autophagy markers in five different brain regions. RESULTS Compared to the controls, the deep WM of CADASIL subjects overall showed increased numbers of glial fibrillary acidic protein (GFAP)-positive clasmatodendritic astrocytes (P=0.037) and a decrease in the percentage of normal appearing astrocytes (P=0.025). In accord with confluent WM hyperintensities, the anterior temporal pole contained abundant clasmatodendritic astrocytes with displaced aquaporin 4 immunoreactivity. Remarkably, we also found strong evidence for the immunolocalization of autophagy markers including microtubule-associated protein 1, light chain 3 (LC3), and sequestosome 1/p62 and Caspase-3 in GFAP-positive clasmatodendritic cells, particularly within perivascular regions of the deep WM. LC3 was co-localized in more than 90% of the GFAP-positive clasmatodendrocytes. CONCLUSIONS Our novel findings show astrocytes undergo autophagy-like cell death in CADASIL, with the anterior temporal pole being highly vulnerable. We propose astrocytes transform from normal appearing type A to hypertrophic type B and eventually to clasmatodendritic type C cells. These observations also suggest the gliovascular unit of the deep WM is severely impaired in CADASIL.
Collapse
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Aiqing Chen
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Letitia L Bates
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Lucinda J L Craggs
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Yumi Yamamoto
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Elizabeth Gemmell
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Arthur E Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK.,Institute for Ageing, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK.,Institute for Ageing, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Kurata H, Saito K, Kawashima F, Ikenari T, Oguri M, Saito Y, Maegaki Y, Mori T. Developing a mouse model of acute encephalopathy using low-dose lipopolysaccharide injection and hyperthermia treatment. Exp Biol Med (Maywood) 2019; 244:743-751. [PMID: 31046452 DOI: 10.1177/1535370219846497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPACT STATEMENT Acute encephalopathy (AE), mainly reported in East Asia, is classified into four categories based on clinical and neuropathological findings. Among them, AE caused by cytokine storm is known as the severest clinical entity that causes cerebral edema with poor prognosis. Because suitable and convenient model animal of AE had not been developed, the treatment of patients with AE is not established. In the present study, we established a simple and convenient protocol to mimic AE due to cytokine storm. Our model animal should be useful to elucidate the pathogenesis of AE.
Collapse
Affiliation(s)
- Hirofumi Kurata
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.,2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan.,3 Department of Pediatrics, National Hospital Organization, Kumamoto Saishunso National Hospital, Koshi, 861-1196, Japan
| | - Kengo Saito
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Fumiaki Kawashima
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Takuya Ikenari
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Masayoshi Oguri
- 4 Department of Pathobiological Science and Technology, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshiaki Saito
- 2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Maegaki
- 2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan
| | - Tetsuji Mori
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
17
|
Tachibana M, Mohri I, Hirata I, Kuwada A, Kimura-Ohba S, Kagitani-Shimono K, Fushimi H, Inoue T, Shiomi M, Kakuta Y, Takeuchi M, Murayama S, Nakayama M, Ozono K, Taniike M. Clasmatodendrosis is associated with dendritic spines and does not represent autophagic astrocyte death in influenza-associated encephalopathy. Brain Dev 2019; 41:85-95. [PMID: 30057207 DOI: 10.1016/j.braindev.2018.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Influenza-associated encephalopathy (IAE) is one of the most serious CNS complications of an influenza virus infection, with unclear pathophysiology. Clasmatodendrosis is a complex of morphological changes in astrocytes characterized by fragmentation of the distal processes and swollen cell bodies. Although pathologists in Japan have long been aware of the presence of clasmatodendrosis in IAE brains, no details of the phenomenon have been published to date. We aimed to confirm the existence, and characterize the spatial distribution of clasmatodendrosis in postmortem IAE brains. METHODS Autopsied brains from 7 patients with IAE and 8 non-IAE subjects were examined immunohistochemically. In addition, immunofluorescent staining and electron microscopy were performed. RESULTS Clasmatodendrosis was present in all examined regions of the IAE brains, but none of the control brains. Fragmented processes of astrocytes in IAE brains were closely adjacent to synapses on the dendritic spines, with the fragmentation especially prominent in the cerebellar molecular layer. In addition, the clasmatodendrotic astrocytes were negative for autophagy markers. Furthermore, whereas aquaporin 4 was predominantly detected in the perivascular endfeet of astrocytes in the control brains, its primary localization site shifted to the fragmented perisynaptic processes in the IAE brains. CONCLUSION Clasmatodendrosis was distributed diffusely in the IAE brains in close association with synapses, and was not caused by astrocyte autophagy. Clasmatodendrosis may be a suggestive pathological feature of IAE.
Collapse
Affiliation(s)
- Masaya Tachibana
- Department of Child Development, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikuko Mohri
- Department of Child Development, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikuko Hirata
- Department of Child Development, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ayano Kuwada
- Department of Child Development, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shihoko Kimura-Ohba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroaki Fushimi
- Department of Pathology, Osaka General Medical Center, Osaka, Japan
| | - Takeshi Inoue
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Masashi Shiomi
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Yukio Kakuta
- Department of Pathology, Japan Organization of Occupational Health and Safety, Yokohama Rosai Hospital, Yokohama, Kanagawa, Japan
| | - Makoto Takeuchi
- Division of Clinical Laboratory Medicine and Anatomic Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | | | - Masahiro Nakayama
- Division of Clinical Laboratory Medicine and Anatomic Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masako Taniike
- Department of Child Development, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
18
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
19
|
Lang B, Kindy MS, Kozel FA, Schultz SK, Taheri S. Multi-Parametric Classification of Vascular Cognitive Impairment and Dementia: The Impact of Diverse Cerebrovascular Injury Biomarkers. J Alzheimers Dis 2018; 62:39-60. [DOI: 10.3233/jad-170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittany Lang
- Clinical Psychology Program, University of South Florida, Tampa, FL, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- James A. Haley VA Medical Center, Tampa, FL, USA
| | - F. Andrew Kozel
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Susan K. Schultz
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
20
|
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018; 144:617-633. [DOI: 10.1111/jnc.14271] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| | - Karen Horsburgh
- Centre for Neuroregeneration; University of Edinburgh; Edinburgh UK
| | - Masafumi Ihara
- Department of Neurology; National Cerebral and Cardiovascular Center; Suita Osaka Japan
| | - Raj N. Kalaria
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
21
|
Keith J, Gao FQ, Noor R, Kiss A, Balasubramaniam G, Au K, Rogaeva E, Masellis M, Black SE. Collagenosis of the Deep Medullary Veins: An Underrecognized Pathologic Correlate of White Matter Hyperintensities and Periventricular Infarction? J Neuropathol Exp Neurol 2017; 76:299-312. [PMID: 28431180 DOI: 10.1093/jnen/nlx009] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMH) are prevalent. Although arteriolar disease has been implicated in their pathogenesis, venous pathology warrants consideration. We investigated relationships of WMH with histologic venous, arteriolar and white matter abnormalities and correlated findings with premortem neuroimaging. Three regions of periventricular white matter were sampled from archived autopsy brains of 24 pathologically confirmed Alzheimer disease (AD) and 18 age-matched nonAD patients. Using trichrome staining, venous collagenosis (VC) of periventricular veins (<150 µm in diameter) was scored for severity of wall thickening and occlusion; percent stenosis by collagenosis of large caliber (>200 µm) veins (laVS) was measured. Correlations were made between WMH in premortem neuroimaging and vascular and white matter pathology. We found greater VC (U(114) = 2092.5, p = 0.005 and U(114) = 2121.5, p = 0.002 for small and medium caliber veins, respectively) and greater laVS (t(110) = 3.46, p = 0.001) in patients with higher WMH scores; WMH scores correlated with VC (rs(114) = 0.27, p = 0.004) and laVS (rs(110) = 0.38, p < 0.001). By multiple linear regression analysis, the strongest predictor of WMH score was laVS (β = 0.338, p < 0.0001). VC was frequent in patients with periventricular infarcts identified on imaging. We conclude that periventricular VC is associated with WMH in both AD and nonAD patients and the potential roles of VC in WMH pathogenesis merit further study.
Collapse
Affiliation(s)
- Julia Keith
- Department of Anatomic Pathology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Fu-Qiang Gao
- L.C. Campbell Cognitive Neurology Unit, Heart and Stroke Foundation Center for Stroke Recovery, Sunnybrook Health Science Center, University of Toronto, Toronto, Canada
| | - Raza Noor
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- Evaluative Clinical Sciences, Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gayathiri Balasubramaniam
- Department of Anatomic Pathology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Kelvin Au
- Department of Anatomic Pathology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- L.C. Campbell Cognitive Neurology Unit, Heart and Stroke Foundation Center for Stroke Recovery, Sunnybrook Health Science Center, University of Toronto, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Unit, Heart and Stroke Foundation Center for Stroke Recovery, Sunnybrook Health Science Center, University of Toronto, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Ishii T, Takanashi Y, Sugita K, Miyazawa M, Yanagihara R, Yasuda K, Onouchi H, Kawabe N, Nakata M, Yamamoto Y, Hartman PS, Ishii N. Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. Aging Cell 2017; 16:39-51. [PMID: 27623715 PMCID: PMC5242301 DOI: 10.1111/acel.12523] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/28/2022] Open
Abstract
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Institute of Medical Sciences; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Yumi Takanashi
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Koichi Sugita
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Masaki Miyazawa
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Rintaro Yanagihara
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Kayo Yasuda
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Hiromi Onouchi
- Department of Ophthalmology; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Noboru Kawabe
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Munehiro Nakata
- Department of Applied Biochemistry; Tokai University School of Engineering; 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Phil S. Hartman
- Department of Biology; Texas Christian University; Fort Worth TX 76129 USA
| | - Naoaki Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| |
Collapse
|
23
|
Lana D, Iovino L, Nosi D, Wenk GL, Giovannini MG. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats. Exp Gerontol 2016; 83:71-88. [PMID: 27466072 DOI: 10.1016/j.exger.2016.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Ludovica Iovino
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, OH, USA..
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
24
|
Daschil N, Humpel C. Green-Fluorescent Protein(+) Astrocytes Attach to Beta-Amyloid Plaques in an Alzheimer Mouse Model and Are Sensitive for Clasmatodendrosis. Front Aging Neurosci 2016; 8:75. [PMID: 27092076 PMCID: PMC4825400 DOI: 10.3389/fnagi.2016.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by beta-amyloid (Aβ) plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP). In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP) with the Swedish-Dutch-Iowa mutations (APP-SweDI) with mice expressing green fluorescent protein (GFP) under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic finely branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 μm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis). In summary, our data show that GFP(+) reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.
Collapse
Affiliation(s)
- Nina Daschil
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry, Psychosomatics and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry, Psychosomatics and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
25
|
Mercatelli R, Lana D, Bucciantini M, Giovannini MG, Cerbai F, Quercioli F, Zecchi-Orlandini S, Delfino G, Wenk GL, Nosi D. Clasmatodendrosis and β-amyloidosis in aging hippocampus. FASEB J 2015; 30:1480-91. [PMID: 26722005 DOI: 10.1096/fj.15-275503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/08/2015] [Indexed: 01/25/2023]
Abstract
Alterations of the tightly interwoven neuron/astrocyte interactions are frequent traits of aging, but also favor neurodegenerative diseases, such as Alzheimer disease (AD). These alterations reflect impairments of the innate responses to inflammation-related processes, such as β-amyloid (Aβ) burdening. Multidisciplinary studies, spanning from the tissue to the molecular level, are needed to assess how neuron/astrocyte interactions are influenced by aging. Our study addressed this requirement by joining fluorescence-lifetime imaging microscopy/phasor multiphoton analysis with confocal microscopy, implemented with a novel method to separate spectrally overlapped immunofluorescence and Aβ autofluorescence. By comparing data from young control rats, chronically inflamed rats, and old rats, we identified age-specific alterations of neuron/astrocyte interactions in the hippocampus. We found a correlation between Aβ aggregation (+300 and +800% of aggregated Aβ peptide in chronically inflamed and oldvs.control rats, respectively) and fragmentation (clasmatodendrosis) of astrocyte projections (APJs) (+250 and +1300% of APJ fragments in chronically inflamed and oldvs.control rats, respectively). Clasmatodendrosis, in aged rats, associates with impairment of astrocyte-mediated Aβ clearance (-45% of Aβ deposits on APJs, and +33% of Aβ deposits on neurons in oldvs.chronically inflamed rats). Furthermore, APJ fragments colocalize with Aβ deposits and are involved in novel Aβ-mediated adhesions between neurons. These data define the effects of Aβ deposition on astrocyte/neuron interactions as a key topic in AD biology.-Mercatelli, R., Lana, D., Bucciantini, M., Giovannini, M. G., Cerbai, F., Quercioli, F., Zecchi-Orlandini, S., Delfino, G., Wenk, G. L., Nos, D. Clasmatodendrosis and β-amyloidosis in aging hippocampus.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Daniele Lana
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Monica Bucciantini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Maria Grazia Giovannini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Francesca Cerbai
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Franco Quercioli
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sandra Zecchi-Orlandini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Delfino
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Gary L Wenk
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Daniele Nosi
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Chen A, Akinyemi RO, Hase Y, Firbank MJ, Ndung'u MN, Foster V, Craggs LJL, Washida K, Okamoto Y, Thomas AJ, Polvikoski TM, Allan LM, Oakley AE, O'Brien JT, Horsburgh K, Ihara M, Kalaria RN. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain 2015; 139:242-58. [PMID: 26667280 PMCID: PMC4905522 DOI: 10.1093/brain/awv328] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/29/2015] [Indexed: 01/16/2023] Open
Abstract
White matter hyperintensities as seen on brain T
2
-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (
P =
0.026) and by 11-fold in older controls versus young controls (
P <
0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with disrupted end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or blood–brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post-mortem brains from adult baboons with cerebral hypoperfusive injury, induced by occlusion of three major vessels supplying blood to the brain. Analysis of the frontal white matter in perfused brains from the animals surviving 1–28 days after occlusion revealed that the highest intensity of fibrinogen immunoreactivity was at 14 days. At this survival time point, we also noted strikingly similar redistribution of AQP4 and GFAP+ astrocytes transformed into clasmatodendrocytes. Our findings suggest novel associations between irreversible astrocyte injury and disruption of gliovascular interactions at the blood–brain barrier in the frontal white matter and cognitive impairment in elderly post-stroke survivors. We propose that clasmatodendrosis is another pathological substrate, linked to white matter hyperintensities and frontal white matter changes, which may contribute to post-stroke or small vessel disease dementia.
Collapse
Affiliation(s)
- Aiqing Chen
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Rufus O Akinyemi
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Yoshiki Hase
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Michael J Firbank
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | | | - Vincent Foster
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Lucy J L Craggs
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Kazuo Washida
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Yoko Okamoto
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Alan J Thomas
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Tuomo M Polvikoski
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Louise M Allan
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Arthur E Oakley
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - John T O'Brien
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Karen Horsburgh
- 3 Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Masafumi Ihara
- 4 Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Raj N Kalaria
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| |
Collapse
|
27
|
Ramirez J, Gibson E, Quddus A, Lobaugh NJ, Feinstein A, Levine B, Scott CJM, Levy-Cooperman N, Gao FQ, Black SE. Lesion Explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue. Neuroimage 2010; 54:963-73. [PMID: 20849961 DOI: 10.1016/j.neuroimage.2010.09.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 12/16/2022] Open
Abstract
Subcortical hyperintensities (SH) are a commonly observed phenomenon on MRI of the aging brain (Kertesz et al., 1988). Conflicting behavioral, cognitive and pathological associations reported in the literature underline the need to develop an intracranial volumetric analysis technique to elucidate pathophysiological origins of SH in Alzheimer's disease (AD), vascular cognitive impairment (VCI) and normal aging (De Leeuw et al., 2001; Mayer and Kier, 1991; Pantoni and Garcia, 1997; Sachdev et al., 2008). The challenge is to develop processing tools that effectively and reliably quantify subcortical small vessel disease in the context of brain tissue compartments. Segmentation and brain region parcellation should account for SH subtypes which are often classified as: periventricular (pvSH) and deep white (dwSH), incidental white matter disease or lacunar infarcts and Virchow-Robin spaces. Lesion Explorer (LE) was developed as the final component of a comprehensive volumetric segmentation and parcellation image processing stream built upon previously published methods (Dade et al., 2004; Kovacevic et al., 2002). Inter-rater and inter-method reliability was accomplished both globally and regionally. Volumetric analysis showed high inter-rater reliability both globally (ICC=.99) and regionally (ICC=.98). Pixel-wise spatial congruence was also high (SI=.97). Whole brain pvSH volumes yielded high inter-rater reliability (ICC=.99). Volumetric analysis against an alternative kNN segmentation revealed high inter-method reliability (ICC=.97). Comparison with visual rating scales showed high significant correlations (ARWMC: r=.86; CHIPS: r=.87). The pipeline yields a comprehensive and reliable individualized volumetric profile for subcortical vasculopathy that includes regionalized (26 brain regions) measures for: GM, WM, sCSF, vCSF, lacunar and non-lacunar pvSH and dwSH.
Collapse
Affiliation(s)
- J Ramirez
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Santos M, Gold G, Kövari E, Herrmann FR, Bozikas VP, Bouras C, Giannakopoulos P. Differential impact of lacunes and microvascular lesions on poststroke depression. Stroke 2009; 40:3557-62. [PMID: 19696424 DOI: 10.1161/strokeaha.109.548545] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have postulated that poststroke depression (PSD) might be related to cumulative vascular brain pathology rather than to the location and severity of a single macroinfarct. We performed a detailed analysis of all types of microvascular lesions and lacunes in 41 prospectively documented and consecutively autopsied stroke cases. METHODS Only cases with first-onset depression <2 years after stroke were considered as PSD in the present series. Diagnosis of depression was established prospectively using DSM-IV criteria for major depression. Neuropathological evaluation included bilateral semiquantitative assessment of microvascular ischemic pathology and lacunes; statistical analysis included Fisher exact test, Mann-Whitney U test, and regression models. RESULTS Macroinfarct site was not related to the occurrence of PSD for any of the locations studied. Thalamic and basal ganglia lacunes occurred significantly more often in PSD cases. Higher lacune scores in basal ganglia, thalamus, and deep white matter were associated with an increased PSD risk. In contrast, microinfarct and diffuse or periventricular demyelination scores were not increased in PSD. The combined lacune score (thalamic plus basal ganglia plus deep white matter) explained 25% of the variability of PSD occurrence. CONCLUSIONS The cumulative vascular burden resulting from chronic accumulation of lacunar infarcts within the thalamus, basal ganglia, and deep white matter may be more important than single infarcts in the prediction of PSD.
Collapse
Affiliation(s)
- Micaela Santos
- Department of Psychiatry, University Hospitals and Faculty of Medicine of Geneva, Belle-Idée, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Most strokes are covert and observed incidentally on brain scans, but their presence increases risk of overt stroke and dementia. Amyloid angiopathy, associated with Alzheimer Disease (AD) causes stroke, and when even small strokes coexist with AD, they lower the threshold for dementia. Diffuse ischemic white matter disease impairs executive functioning, information processing speed, and gait. Neuroimaging techniques, such as tissue segmentation, Diffusion Tensor Imaging, MR Spectroscopy, functional MRI and amyloid PET, probe microstructural integrity, molecular biology, and activation patterns, providing new insights into brain-behavior relationships. MR-pathological studies of periventricular hyperintensity (leukoaraiosis) in aging and dementia reveal arteriolar tortuosity, reduced vessel density, and occlusive venous collagenosis which causes venous insufficiency and vasogenic edema. Activated microglia, oligodendroglial apoptosis, clasmatodendritic astrocytosis, and upregulated hypoxia-markers are seen on immunohistochemistry. Further research is needed to understand and treat this chronic subcortical vascular disease, which is epidemic in our aging population.
Collapse
Affiliation(s)
- Sandra Black
- From the Heart and Stroke Foundation Centre for Stroke Recovery and Departments of Medicine (Neurology) and Neuropathology, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - FuQiang Gao
- From the Heart and Stroke Foundation Centre for Stroke Recovery and Departments of Medicine (Neurology) and Neuropathology, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Juan Bilbao
- From the Heart and Stroke Foundation Centre for Stroke Recovery and Departments of Medicine (Neurology) and Neuropathology, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| |
Collapse
|
30
|
Chapter 2 Subcortical Ischemic Cerebrovascular Dementia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 84:21-33. [DOI: 10.1016/s0074-7742(09)00402-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Levy-Cooperman N, Ramirez J, Lobaugh NJ, Black SE. Misclassified Tissue Volumes in Alzheimer Disease Patients With White Matter Hyperintensities. Stroke 2008; 39:1134-41. [DOI: 10.1161/strokeaha.107.498196] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
MRI-based quantification of gray and white matter volume is common in studies involving elderly patient populations. The aim of the present study was to describe the effects of not accounting for subcortical white matter hyperintensities (WMH) on tissue volumes in Alzheimer Disease patients with varying degrees of WMH (mild: n=19, moderate: n=22, severe: n=18).
Methods—
An automated tissue segmentation protocol that was optimized for an elderly population, a brain regional parcellation procedure, and a lesion segmentation protocol were applied to measure tissue volumes (whole brain and regional lobar volumes) with and without lesion segmentation to quantify the volume of misclassified tissue.
Results—
After application of the tissue segmentation protocol and lesion analysis, mean total percentage misclassified volume across all subjects was 2% (17.9 cm
3
) of whole brain volume (corrected for total intracranial capacity). Mean percentage of misclassified tissue volumes for the severe group was 4.8% of whole brain, which translates to a mean volume 42.2 cm
3
. Gray matter volume was most overestimated in the severe group, where 6.4% of the total gray matter volume was derived from misclassified WMH. The regional analysis showed that frontal (41%, 7.4 cm
3
) and inferior parietal (18%, 3.25 cm
3
) lobes were most affected by tissue misclassification.
Conclusion—
MRI-based volumetric studies of Alzheimer Disease that do not account for WMH can expect an erroneous inflation of gray or white matter volumes, especially in the frontal and inferior parietal regions. To avoid this source of error, MRI-based volumetric studies in patient populations susceptible to hyperintensities should include a WMH segmentation protocol.
Collapse
Affiliation(s)
- Naama Levy-Cooperman
- From the L.C. Campbell Cognitive Neurology Research Unit (N.L.-C., J.R., N.J.L., S.E.B.), Heart and Stroke Foundation Centre for Stroke Recovery (N.J.L., S.E.B.), Sunnybrook Health Sciences Centre, Division of Neurology (N.J.L., S.E.B.), Department of Medicine, and the Institute of Medical Science (N.L.-C., J.R., N.J.L., S.E.B.), University of Toronto, Ontario, Canada
| | - Joel Ramirez
- From the L.C. Campbell Cognitive Neurology Research Unit (N.L.-C., J.R., N.J.L., S.E.B.), Heart and Stroke Foundation Centre for Stroke Recovery (N.J.L., S.E.B.), Sunnybrook Health Sciences Centre, Division of Neurology (N.J.L., S.E.B.), Department of Medicine, and the Institute of Medical Science (N.L.-C., J.R., N.J.L., S.E.B.), University of Toronto, Ontario, Canada
| | - Nancy J. Lobaugh
- From the L.C. Campbell Cognitive Neurology Research Unit (N.L.-C., J.R., N.J.L., S.E.B.), Heart and Stroke Foundation Centre for Stroke Recovery (N.J.L., S.E.B.), Sunnybrook Health Sciences Centre, Division of Neurology (N.J.L., S.E.B.), Department of Medicine, and the Institute of Medical Science (N.L.-C., J.R., N.J.L., S.E.B.), University of Toronto, Ontario, Canada
| | - Sandra E. Black
- From the L.C. Campbell Cognitive Neurology Research Unit (N.L.-C., J.R., N.J.L., S.E.B.), Heart and Stroke Foundation Centre for Stroke Recovery (N.J.L., S.E.B.), Sunnybrook Health Sciences Centre, Division of Neurology (N.J.L., S.E.B.), Department of Medicine, and the Institute of Medical Science (N.L.-C., J.R., N.J.L., S.E.B.), University of Toronto, Ontario, Canada
| |
Collapse
|
32
|
Swartz RH, Stuss DT, Gao F, Black SE. Independent Cognitive Effects of Atrophy and Diffuse Subcortical and Thalamico-Cortical Cerebrovascular Disease in Dementia. Stroke 2008; 39:822-30. [DOI: 10.1161/strokeaha.107.491936] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Brain atrophy, cortical infarction, and subcortical ischemic vasculopathy have all been associated with cognitive dysfunction. The interrelationships between these pathologies and their independent contributions to cognitive function remain unclear. Despite the high frequency of Alzheimer disease (AD) in those with clinically diagnosed vascular dementia, and the frequent findings of vascular disease in those with clinically diagnosed AD, many studies of brain-behavior relationships in dementia consider these populations separately. The present study sought to identify the correlates of independent domains of cognitive impairment in an unselected sample across a large range of severity and overlap of AD and VaD.
Methods—
Two hundred five individuals from the Sunnybrook Dementia Study recruited from a university Memory clinic had detailed neuropsychological testing and MRI quantification using a multi-step postprocessing algorithm. A factor analysis of the cognitive protocol yielded a 3-factor solution, provisionally labeled: (1) short-term memory and language, (2) attention and working memory, and (3) mental flexibility.
Results—
A factor analysis of brain measures identified 3 independent factors with measures of (1) brain atrophy, (2) subcortical vascular disease, and (3) strategic infarcts (anterior-medial thalamus and cortical infarcts). After accounting for the effects of age and education, measures of brain atrophy were the strongest correlates of all cognitive domains. Small vessel disease was independently associated with general severity, impaired short-term memory/language, and reduced mental flexibility, but not with poor working memory, presumably through disruption of frontal-subcortical connections. In contrast, strategic infarcts to anterior-medial thalamus and cortical gray matter were associated with poor short-term and working memory, but not with impairments in mental flexibility or global severity measures.
Conclusions—
These data support the hypothesis that the thalamico-cortical network subserves both short-term and working memory. The findings also suggest that each type of pathology (atrophy, small vessel disease, and strategic infarcts) contribute independently to the pattern of cognitive disabilities associated with dementia. Particular attention to cerebrovascular disease in deep white or gray matter structures of the thalamico-cortical system is certainly warranted.
Collapse
Affiliation(s)
- Richard H. Swartz
- From the Institute of Medical Science (R.H.S., S.E.B.), Department of Medicine (Division of Neurology) and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (R.H.S., D.T.S., S.E.B.); the Rotman Research Institute at Baycrest (D.T.S., S.E.B.); and the Heart and Stroke Foundation Centre for Stroke Recovery (R.H.S., D.T.S., F.G., S.E.B.), University of Toronto, Ontario, Canada
| | - Donald T. Stuss
- From the Institute of Medical Science (R.H.S., S.E.B.), Department of Medicine (Division of Neurology) and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (R.H.S., D.T.S., S.E.B.); the Rotman Research Institute at Baycrest (D.T.S., S.E.B.); and the Heart and Stroke Foundation Centre for Stroke Recovery (R.H.S., D.T.S., F.G., S.E.B.), University of Toronto, Ontario, Canada
| | - Fuqiang Gao
- From the Institute of Medical Science (R.H.S., S.E.B.), Department of Medicine (Division of Neurology) and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (R.H.S., D.T.S., S.E.B.); the Rotman Research Institute at Baycrest (D.T.S., S.E.B.); and the Heart and Stroke Foundation Centre for Stroke Recovery (R.H.S., D.T.S., F.G., S.E.B.), University of Toronto, Ontario, Canada
| | - Sandra E. Black
- From the Institute of Medical Science (R.H.S., S.E.B.), Department of Medicine (Division of Neurology) and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (R.H.S., D.T.S., S.E.B.); the Rotman Research Institute at Baycrest (D.T.S., S.E.B.); and the Heart and Stroke Foundation Centre for Stroke Recovery (R.H.S., D.T.S., F.G., S.E.B.), University of Toronto, Ontario, Canada
| |
Collapse
|
33
|
Levy-Cooperman N, Lobaugh NJ, Caldwell C, Gao F, Black SE. Subcortical hyperintensities in Alzheimer's disease: no clear relationship with executive function and frontal perfusion on SPECT. Dement Geriatr Cogn Disord 2008; 24:380-8. [PMID: 17934273 DOI: 10.1159/000109570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To investigate relationships between subcortical hyperintensities (SH), frontal perfusion and executive function (EF) in a sample of Alzheimer's disease (AD) patients with varying severities of SH. METHODS A sample of 63 AD patients underwent brain imaging with magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) scans. Severity of SH was assessed using a standardized visual rating scale on MRI. Patients were classified into severe (n=20), moderate (n=23) or no SH (n=20) groups. Four frontal SPECT regions of interest (anterior cingulate cortex, dorsolateral prefrontal cortex) and neuropsychological assessment of EF were analyzed. RESULTS Overall, no significant relationships were found between severity of SH and measures of SPECT perfusion or EF, except for one subsection of the Dementia Rating Scale, with severe SH scoring slightly worse than the other two groups. CONCLUSION These findings support previous studies which suggest minimal adverse effects of SH on brain function and cognition. Global severity of SH on MRI in AD was not associated with decline in frontal perfusion and only mildly related to a decline in a specific EF task. More accurate measures of SH volume, not just global severity of SH, may be necessary to capture such complex brain behavior relationships; if they do indeed exist.
Collapse
Affiliation(s)
- Naama Levy-Cooperman
- L.C. Campbell Cognitive Neurology Research Unit, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Vascular dementia (VaD) is a heterogeneous disorder resulting from various cerebrovascular diseases (CVD) causing cognitive impairment that reflects severity and location of damage. Epidemiological studies suggest VaD is the second commonest cause of dementia, but autopsy series report that pure VaD is infrequent, while combined CVD and Alzheimer's Disease(AD) is likely the commonest pathological-dementia correlate. Both diseases share vascular risk factors and benefit from their treatment. The most widely used diagnostic criteria for VaD are highly specific but not sensitive. Vascular Cognitive Impairment (VCI) is a dynamic, evolving concept that embraces VaD, Vascular Cognitive Impairment No Dementia (VCIND) and mixed AD and CVD. Clinical trials to date have focused on probable and possible VaD with beneficial effects evident for different drug classes, including cholinergic agents and NMDA agonists. Limitations have included use of cognitive tools suitable for AD that are insensitive to executive dysfunction. Disease heterogeneity has not been adequately controlled and subtypes require further study. Diagnostic VaD criteria now 13 years old need updating. More homogeneous subgroups need to be defined and therapeutically targeted to improve cognitive-behavioural outcomes including optimal control of vascular risk factors. More sensitive testing of executive function outlined in recent VCI Harmonization criteria and longer trial duration are needed to discern meaningful effects. Imaging criteria must be well-defined, with centralized review and standardized protocols. Serial scanning with quantification of tissue atrophy and lesion burden is becoming feasible, and cognitive interventions, including rehabilitation pharmacotherapy, with drugs strategically coupled to cognitive -behavioural treatments, hold promise and need further development.
Collapse
Affiliation(s)
- Sandra E Black
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Gill AS, Binder DK. Wilder Penfield, Pío Del Río-hortega, and the Discovery of Oligodendroglia. Neurosurgery 2007; 60:940-8; discussion 940-8. [PMID: 17460531 DOI: 10.1227/01.neu.0000255448.97730.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To describe the contribution of Wilder Penfield to the early characterization of glial cells in collaboration with Pío Del Río-Hortega and Santiago Ramón y Cajal during his study in La Residencia des Estudiantes, Laboratorio de Histopatología in Madrid in 1924. METHODS Comprehensive review of the English and Spanish-language literature pertinent to the history of Wilder Penfield (1891-1976), his associations with Pío Del Río-Hortega (1882-1945) and Santiago Ramón y Cajal (1852-1934), and his articles describing glial cells. RESULTS Penfield went to Spain in the spring of 1924 to work with Río-Hortega and Cajal, which resulted in a fruitful 5 months of study. During this trip, he published several articles, including a landmark report in which he completed the characterization of the "third element" of Cajal (non-astrocyte glial cells) and its relationship to classical neuroglia. The article was accepted for publication in Brain, the leading British neurology journal of the time. CONCLUSION Today, Wilder Penfield is much better known for his seminal explorations of the cortical basis of higher function, his contributions to epilepsy surgery, and as the founder of the Montreal Neurological Institute than for his original work with Sherrington in England or Río-Hortega and Cajal in Spain. While working with Río-Hortega, his report on oligodendroglia was critical to advancing the characterization of this important class of glial cells.
Collapse
|
36
|
Simpson JE, Fernando MS, Clark L, Ince PG, Matthews F, Forster G, O'Brien JT, Barber R, Kalaria RN, Brayne C, Shaw PJ, Lewis CE, Wharton SB. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol 2007; 33:410-9. [PMID: 17442062 DOI: 10.1111/j.1365-2990.2007.00828.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responsesHyperintense lesions are frequently identified in T2-weighted magnetic resonance images (MRI) in the ageing brain. The pathological correlate and pathogenesis of white matter lesions (WML) remain unclear, and it is uncertain whether pathology and pathogenesis differ in periventricular lesions (PVL) compared with deep subcortical lesions (DSCL). Therefore we characterized astrocytic, microglial and oligodendrocyte responses in PVL and DSCL and compared them with control white matter using immunohistochemistry. Both PVL and DSCL were associated with severe myelin loss and increased microglia (P = 0.069 and P < 0.001), compared with nonlesional aged brain. Clasmatodendritic astroglia, immunoreactive for the serum protein fibrinogen, were present in 67% of PVL examined and 42% of DSCL. Compared with control and DSCL cases, more MAP-2 +13 positive remyelinating oligodendrocytes (P = 0.003 and P = 0.035) and platelet-derived growth factor alpha receptor positive reactive astrocytes (P < 0.001) were present in the perilesional white matter of PVL. In addition to a role for hypoperfusion, our data suggest that dysfunction of the blood-brain barrier may also contribute to the pathogenesis of a proportion of cerebral WML associated with ageing, and that attempts at remyelination are only associated with PVL and not DSCL.
Collapse
Affiliation(s)
- J E Simpson
- Academic Unit of Pathology, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G, Esteves F, Wharton SB, Shaw PJ, O'Brien JT, Ince PG. White Matter Lesions in an Unselected Cohort of the Elderly. Stroke 2006; 37:1391-8. [PMID: 16627790 DOI: 10.1161/01.str.0000221308.94473.14] [Citation(s) in RCA: 427] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background and Purpose—
“Incidental” MRI white matter (WM) lesions, comprising periventricular lesions (PVLs) and deep subcortical lesions (DSCLs), are common in the aging brain. Direct evidence of ischemia associated with incidental WM lesions (WMLs) has been lacking, and their pathogenesis is unresolved.
Methods—
A population-based, postmortem cohort (n=456) of donated brains was examined by MRI and pathology. In a subsample of the whole cohort, magnetic resonance images were used to sample and compare WMLs and nonlesional WM for molecular markers of hypoxic injury.
Results—
PVL severity was associated with loss of ventricular ependyma (
P
=0.004). For DSCLs, there was arteriolar sclerosis compared with normal WM (vessel wall thickness and perivascular enlargement; both
P
<0.001). Capillary endothelial activation (ratio of intercellular adhesion molecule to basement membrane collagen IV;
P
<0.001) and microglial activation (CD68 expression;
P
=0.002) were elevated in WMLs. Immunoreactivity for hypoxia-inducible factors (HIFs) HIF1α and HIF2α was elevated in DSCLs (
P
=0.003 and
P
=0.005). Other hypoxia-regulated proteins were also increased in WMLs: matrix metalloproteinase-7 (PVLs
P
<0.001; DSCLs
P
=0.009) and the number of neuroglobin-positive cells (WMLs
P
=0.02) reaching statistical significance. The severity of congophilic amyloid angiopathy was associated with increased HIF1α expression in DSCLs (
P
=0.04).
Conclusion—
The data support a hypoxic environment within MRI WMLs. Persistent HIF expression may result from failure of normal adaptive mechanisms. WM ischemia appears to be a common feature of the aging brain.
Collapse
Affiliation(s)
- Malee S Fernando
- Division of Genomic Medicine, University of Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Ikram MK, De Jong FJ, Van Dijk EJ, Prins ND, Hofman A, Breteler MMB, De Jong PTVM. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain 2005; 129:182-8. [PMID: 16317022 DOI: 10.1093/brain/awh688] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The direct visualization of retinal vessels provides a unique opportunity to study cerebral small vessel disease, because these vessels share many features. It was reported that persons with smaller retinal arteriolar-to-venular ratio tended to have more white matter lesions on MRI. It is unclear whether this is due to arteriolar narrowing or venular dilatation. We investigated whether smaller arteriolar or larger venular diameters or both were related to severity and progression of cerebral small vessel disease. We studied 490 persons (60-90 years) without dementia from a population-based cohort study. At baseline (1990-1993), retinal arteriolar and venular diameters were measured on digitized images of one eye of each participant. In 1995-1996, participants underwent cerebral MRI scanning. We rated the severity of periventricular white matter lesions on a 9-point scale, approximated a total subcortical white matter lesion volume (range: 0-29.5 ml) and rated the presence of lacunar infarcts. On average 3.3 years later, 279 persons had a second MRI. Changes in periventricular and subcortical white matter lesions were rated with a semi-quantitative scale, and progression was classified as no, minor and marked. An incident infarct was a new infarct on the follow-up MRI. Neither venular nor arteriolar diameters were related to the severity of cerebral small vessel disease. Larger venular diameters were, however, associated with a marked progression of cerebral small vessel disease. Age and gender adjusted odds ratios (ORs) per standard deviation increase were 1.71 [95% confidence interval (CI): 1.11-2.61] for periventricular, 1.72 (95% CI: 1.09-2.71) for subcortical white matter lesion progression and 1.59 (95% CI: 1.06-2.39) for incident lacunar infarcts. These associations were independent of other cardiovascular risk factors. Only the OR for incident lacunar infarcts was attenuated (1.24; 95% CI: 0.72-2.12). No association was observed between arteriolar diameters and progression of cerebral small vessel disease. In conclusion, retinal venular dilatation was related to progression of cerebral small vessel disease. The mechanisms underlying venular dilatation deserve more attention, as they may provide new clues into the pathophysiology of cerebral small vessel disease.
Collapse
Affiliation(s)
- M Kamran Ikram
- Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Gold G, Kövari E, Herrmann FR, Canuto A, Hof PR, Michel JP, Bouras C, Giannakopoulos P. Cognitive Consequences of Thalamic, Basal Ganglia, and Deep White Matter Lacunes in Brain Aging and Dementia. Stroke 2005; 36:1184-8. [PMID: 15891000 DOI: 10.1161/01.str.0000166052.89772.b5] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Most previous studies addressed the cognitive impact of lacunar infarcts using radiologic correlations that are known to correlate poorly with neuropathological data. Moreover, absence of systematic bilateral assessment of vascular lesions and masking effects of Alzheimer disease pathology and macrovascular lesions may explain discrepancies among previous reports. To define the relative contribution of silent lacunes to cognitive decline, we performed a detailed analysis of lacunar and microvascular pathology in both cortical and subcortical areas of 72 elderly individuals without significant neurofibrillary tangle pathology or macrovascular lesions.
Methods—
Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale; neuropathological evaluation included Aβ-protein deposition staging and bilateral assessment of microvascular ischemic pathology and lacunes; statistical analysis included multivariate models controlling for age, amyloid deposits, and microvascular pathology.
Results—
Thalamic and basal ganglia lacunes were negatively associated with CDR scores; cortical microinfarcts, periventricular and diffuse white matter demyelination also significantly affected cognition. In a multivariate model, cortical microinfarcts and thalamic and basal ganglia lacunes explained 22% of CDR variability; amyloid deposits and microvascular pathology explained 12%, and the assessment of thalamic and basal ganglia lacunes added an extra 17%. Deep white matter lacunes were not related to cognitive status in univariate and multivariate models.
Conclusions—
In agreement with the recently proposed concept of subcortical ischemic vascular dementia, our autopsy series provides important evidence that gray matter lacunes are independent predictors of cognitive decline in elderly individuals without concomitant dementing processes such as Alzheimer disease.
Collapse
Affiliation(s)
- Gabriel Gold
- Department of Geriatrics, HUG Belle-Idée, University of Geneva School of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rodrigo S, Henry-Feugeas MC, Oppenheim C, Verny M, Meder JF, Fredy D. [Imaging of dementia with magnetic resonance]. Presse Med 2004; 33:1027-33. [PMID: 15523253 DOI: 10.1016/s0755-4982(04)98832-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The diagnostic approach of dementia has clearly improved with the progress in medical imaging, notably magnetic resonance imaging. The conventional T1 and T2 sequences or morphological imaging have demonstrated their interest in the positive and differential diagnosis of dementia, together with the more precise description of normal ageing of the brain. The ANAES (French medicines agency) proposes systematic brain imaging, notably by magnetic resonance imaging (MRI) in their practical guidelines for the diagnosis of Alzheimer's disease (http://www.anaes.fr). THE INTEREST OF CERTAIN IMAGING TECHNIQUES: The therapeutic progress in treatment of dementia implies that the different affections be recognised as early as possible. With this in mind, the functional MRI is capable of describing the damage in cases when morphological imaging is not sufficiently specific. Recent studies have reported the interest of diffusion and perfusion imaging, activation MRI and proton spectroscopy. FROM A THERAPEUTIC POINT OF VIEW: The combination of morphological and functional approaches will provide a better definition of the groups at risk in order to target current treatments and those to come.
Collapse
Affiliation(s)
- S Rodrigo
- Département d'imagerie morphologique et fonctionnelle, Centre Hospitalier Sainte-Anne, Paris
| | | | | | | | | | | |
Collapse
|
42
|
Kövari E, Gold G, Herrmann FR, Canuto A, Hof PR, Michel JP, Bouras C, Giannakopoulos P. Cortical Microinfarcts and Demyelination Significantly Affect Cognition in Brain Aging. Stroke 2004; 35:410-4. [PMID: 14707236 DOI: 10.1161/01.str.0000110791.51378.4e] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Microvascular lesions are common in brain aging, but their clinical impact is debated. Methodological problems such as the masking effect of concomitant pathologies may explain discrepancies among previous studies. To evaluate the cognitive consequences of such lesions, we prospectively investigated elderly individuals with various degrees of cognitive impairment but without significant neurofibrillary tangle pathology or macrovascular lesions.
Methods—
This was a clinicopathological study of 45 elderly individuals. Cognitive status was assessed prospectively with the Clinical Dementia Rating (CDR) scale; neuropathological evaluation included Aβ-protein deposition staging and bilateral semiquantitative assessment of cortical microinfarcts, focal cortical and white matter glioses, and diffuse white matter and periventricular demyelination.
Results—
In a univariate logistic regression model, cortical microinfarcts explained 36.1% of the variability in CDR; periventricular demyelination, 10.6%; and diffuse white matter demyelination, 4.6%. After controlling for age and Aβ-protein deposition, cortical microinfarcts were the best predictor of cognitive status (19.9% of CDR variability), whereas periventricular and diffuse white matter demyelination accounted for 9.7% and 5.4% of CDR variability, respectively. Altogether, these 3 types of microvascular lesions explained 27.9% of the clinical variability. Focal cortical and white matter glioses were not related to clinical outcome.
Conclusions—
Our data imply that cortical microinfarcts and both periventricular and deep white matter demyelination contribute significantly to the progression of cognitive deficits in brain aging. In contrast, the neuropathological evaluation of focal cortical and white matter gliosis has no clinical validity.
Collapse
Affiliation(s)
- Enikö Kövari
- Department of Psychiatry, HUG Belle-Idée, University of Geneva School of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|