1
|
Kaminski HJ, Sikorski P, Coronel SI, Kusner LL. Myasthenia gravis: the future is here. J Clin Invest 2024; 134:e179742. [PMID: 39105625 DOI: 10.1172/jci179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor-induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Collapse
Affiliation(s)
| | | | | | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Lazaridis K, Tzartos SJ. Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Front Immunol 2020; 11:212. [PMID: 32117321 PMCID: PMC7033452 DOI: 10.3389/fimmu.2020.00212] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and fatiguability of skeletal muscles. It is an antibody-mediated disease, caused by autoantibodies targeting neuromuscular junction proteins. In the majority of patients (~85%) antibodies against the muscle acetylcholine receptor (AChR) are detected, while in 6% antibodies against the muscle-specific kinase (MuSK) are detected. In ~10% of MG patients no autoantibodies can be found with the classical diagnostics for AChR and MuSK antibodies (seronegative MG, SN-MG), making the improvement of methods for the detection of known autoantibodies or the discovery of novel antigenic targets imperative. Over the past years, using cell-based assays or improved highly sensitive immunoprecipitation assays, it has been possible to detect autoantibodies in previously SN-MG patients, including the identification of the low-density lipoprotein receptor-related protein 4 (LRP4) as a third MG autoantigen, as well as AChR and MuSK antibodies undetectable by conventional methods. Furthermore, antibodies against other extracellular or intracellular targets, such as titin, the ryanodine receptor, agrin, collagen Q, Kv1.4 potassium channels and cortactin have been found in some MG patients, which can be useful biomarkers. In addition to the improvement of diagnosis, the identification of the patients' autoantibody specificity is important for their stratification into respective subgroups, which can differ in terms of clinical manifestations, prognosis and most importantly their response to therapies. The knowledge of the autoantibody profile of MG patients would allow for a therapeutic strategy tailored to their MG subgroup. This is becoming especially relevant as there is increasing progress toward the development of antigen-specific therapies, targeting only the specific autoantibodies or immune cells involved in the autoimmune response, such as antigen-specific immunoadsorption, which have shown promising results. We will herein review the advances made by us and others toward development of more sensitive detection methods and the identification of new antibody targets in MG, and discuss their significance in MG diagnosis and therapy. Overall, the development of novel autoantibody assays is aiding in the more accurate diagnosis and classification of MG patients, supporting the development of advanced therapeutics and ultimately the improvement of disease management and patient quality of life.
Collapse
Affiliation(s)
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Tzartos NeuroDiagnostics, Athens, Greece
| |
Collapse
|
3
|
Zhong H, Zhao C, Luo S. HLA in myasthenia gravis: From superficial correlation to underlying mechanism. Autoimmun Rev 2019; 18:102349. [DOI: 10.1016/j.autrev.2019.102349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
|
4
|
Abstract
Surgery has proven superiority over medical management for patients with nonthymomatous myasthenia gravis. The key is complete resection of the gland, which can be achieved with various techniques. The uniportal video-assisted transcervical technique allows minimally invasive surgery with a low complication rate, a good cosmetic result, and a short length of recovery.
Collapse
|
5
|
Wang S, Breskovska I, Gandhy S, Punga AR, Guptill JT, Kaminski HJ. Advances in autoimmune myasthenia gravis management. Expert Rev Neurother 2018; 18:573-588. [PMID: 29932785 PMCID: PMC6289049 DOI: 10.1080/14737175.2018.1491310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune neuromuscular disorder with no cure and conventional treatments limited by significant adverse effects and variable benefit. In the last decade, therapeutic development has expanded based on improved understanding of autoimmunity and financial incentives for drug development in rare disease. Clinical subtypes exist based on age, gender, thymic pathology, autoantibody profile, and other poorly defined factors, such as genetics, complicate development of specific therapies. Areas covered: Clinical presentation and pathology vary considerably among patients with some having weakness limited to the ocular muscles and others having profound generalized weakness leading to respiratory insufficiency. MG is an antibody-mediated disorder dependent on autoreactive B cells which require T-cell support. Treatments focus on elimination of circulating autoantibodies or inhibition of effector mechanisms by a broad spectrum of approaches from plasmapheresis to B-cell elimination to complement inhibition. Expert commentary: Standard therapies and those under development are disease modifying and not curative. As a rare disease, clinical trials are challenged in patient recruitment. The great interest in development of treatments specific for MG is welcome, but decisions will need to be made to focus on those that offer significant benefits to patients.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Neurology, George Washington University, Washington DC 20008
| | - Iva Breskovska
- Department of Neurology, George Washington University, Washington DC 20008
| | - Shreya Gandhy
- Department of Neurology, George Washington University, Washington DC 20008
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jeffery T. Guptill
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington DC 20008
| |
Collapse
|
6
|
Luo J, Lindstrom J. Acetylcholine receptor-specific immunosuppressive therapy of experimental autoimmune myasthenia gravis and myasthenia gravis. Ann N Y Acad Sci 2018; 1413:76-81. [PMID: 29377167 DOI: 10.1111/nyas.13550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
Experimental autoimmune myasthenia gravis (EAMG) and myasthenia gravis (MG) are caused by autoantibodies to the extracellular domain of muscle nicotinic acetylcholine receptors (AChRs). Autoantibodies to the cytoplasmic domain of AChRs do not cause EAMG because they cannot bind AChRs in vivo. The ideal MG therapy would quickly and permanently suppress only the pathological autoimmune response to AChRs. We have developed a specific immunosuppressive therapy for EAMG that involves immunizing rats with bacterially expressed cytoplasmic domains of human muscle AChRs. Therapy prevents onset of chronic EAMG, rapidly suppresses ongoing EAMG, and is potent, robust, long lasting, and safe, because the therapeutic antigen cannot induce EAMG. The therapy was developed using incomplete Freund's adjuvant, but is likely to work equally well with alum adjuvants routinely used for human immunizations. Therapeutic mechanisms may involve a combination of antibody-mediated feedback suppression and regulatory T and/or B lymphocytes.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Jon Lindstrom
- Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Sharma S, Malmeström C, Lindberg C, Meisel S, Schön K, Verolin M, Lycke NY. A Sensitive Method for Detecting Peptide-specific CD4 + T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis. Front Immunol 2017; 8:1370. [PMID: 29114250 PMCID: PMC5660702 DOI: 10.3389/fimmu.2017.01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4+ T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4+ T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNγ and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNγ and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures.
Collapse
Affiliation(s)
- Sapna Sharma
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Laboratory for Clinical Immunology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Sarah Meisel
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Nils Yngve Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Rapoport B, Banuelos B, Aliesky HA, Hartwig Trier N, McLachlan SM. Critical Differences between Induced and Spontaneous Mouse Models of Graves' Disease with Implications for Antigen-Specific Immunotherapy in Humans. THE JOURNAL OF IMMUNOLOGY 2016; 197:4560-4568. [PMID: 27913646 DOI: 10.4049/jimmunol.1601393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/20/2023]
Abstract
Graves' hyperthyroidism, a common autoimmune disease caused by pathogenic autoantibodies to the thyrotropin (TSH) receptor (TSHR), can be treated but not cured. This single autoantigenic target makes Graves' disease a prime candidate for Ag-specific immunotherapy. Previously, in an induced mouse model, injecting TSHR A-subunit protein attenuated hyperthyroidism by diverting pathogenic TSHR Abs to a nonfunctional variety. In this study, we explored the possibility of a similar diversion in a mouse model that spontaneously develops pathogenic TSHR autoantibodies, NOD.H2h4 mice with the human (h) TSHR (hTSHR) A-subunit transgene expressed in the thyroid and (shown in this article) the thymus. We hypothesized that such diversion would occur after injection of "inactive" hTSHR A-subunit protein recognized only by nonpathogenic (not pathogenic) TSHR Abs. Surprisingly, rather than attenuating the pre-existing pathogenic TSHR level, in TSHR/NOD.H2h4 mice inactive hTSHR Ag injected without adjuvant enhanced the levels of pathogenic TSH-binding inhibition and thyroid-stimulating Abs, as well as nonpathogenic Abs detected by ELISA. This effect was TSHR specific because spontaneously occurring autoantibodies to thyroglobulin and thyroid peroxidase were unaffected. As controls, nontransgenic NOD.H2h4 mice similarly injected with inactive hTSHR A-subunit protein unexpectedly developed TSHR Abs, but only of the nonpathogenic variety detected by ELISA. Our observations highlight critical differences between induced and spontaneous mouse models of Graves' disease with implications for potential immunotherapy in humans. In hTSHR/NOD.H2h4 mice with ongoing disease, injecting inactive hTSHR A-subunit protein fails to divert the autoantibody response to a nonpathogenic form. Indeed, such therapy is likely to enhance pathogenic Ab production and exacerbate Graves' disease in humans.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| | - Bianca Banuelos
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| | - Holly A Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| | - Nicole Hartwig Trier
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA 90048; and
| |
Collapse
|
10
|
|
11
|
Luo J, Lindstrom J. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5044-55. [PMID: 25288571 DOI: 10.4049/jimmunol.1401392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myasthenia gravis (MG) and experimental autoimmune myasthenia gravis (EAMG) are caused by Ab-mediated autoimmune responses to muscle nicotinic acetylcholine receptors (AChRs) that impair neuromuscular transmission, thereby causing muscle weakness. Previously, we discovered that i.p. injection of a therapeutic vaccine consisting of bacterially expressed cytoplasmic domains of human AChR subunits reduced the development of chronic EAMG in rats. In this article, we show that immunization with the therapeutic vaccine in adjuvants does not induce EAMG and, thus, is safe. The potency and efficacy of the therapeutic vaccine were greatly increased by s.c. administration of repeated low doses in IFA. Onset of chronic EAMG could be prevented. Established chronic EAMG could be rapidly reversed, modeling therapy of chronic MG. Therapy reduced pathological Abs assayed by immune precipitation of a main immunogenic region chimera. Successfully treated rats exhibited long-term resistance to reinduction of EAMG, suggesting a lasting cure of MG. A long-term effect of therapy was to change the isotype of the pathogenic Ab response from IgG2b, which fixes complement, to IgG1, which does not. Prevention and reversal of chronic EAMG was not caused by the isotype switch, but the isotype switch may contribute to resistance to reinduction of EAMG. Immunization with AChR cytoplasmic domains in adjuvant is promising as a safe, Ag-specific, potent, effective, rapidly acting, and long-lasting therapeutic approach to MG.
Collapse
Affiliation(s)
- Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104
| |
Collapse
|
12
|
Huijbers MG, Lipka AF, Plomp JJ, Niks EH, van der Maarel SM, Verschuuren JJ. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J Intern Med 2014; 275:12-26. [PMID: 24215230 DOI: 10.1111/joim.12163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoantibodies against three different postsynaptic antigens and one presynaptic antigen at the neuromuscular junction are known to cause myasthenic syndromes. The mechanisms by which these antibodies cause muscle weakness vary from antigenic modulation and complement-mediated membrane damage to inhibition of endogenous ligand binding and blocking of essential protein-protein interactions. These mechanisms are related to the autoantibody titre, specific epitopes on the target proteins and IgG autoantibody subclass. We here review the role of specific autoantibody-binding epitopes in myasthenia gravis, their possible relevance to the pathophysiology of the disease and potential implications of epitope mapping knowledge for new therapeutic strategies.
Collapse
Affiliation(s)
- M G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
In myasthenia gravis (MG) and experimental autoimmune MG (EAMG), many pathologically significant autoantibodies are directed to the main immunogenic region (MIR) of muscle nicotinic acetylcholine receptors (AChRs), a conformation-dependent region at the extracellular tip of α1 subunits of AChRs. Human muscle AChR α1 MIR sequences were integrated into Aplesia ACh-binding protein (AChBP). The chimera potently induced EAMG, while AChBP induced EAMG much less potently. AChBP is a water-soluble protein resembling the extracellular domain of AChRs; yet, rats immunized with chimeras developed autoantibodies to both extracellular and cytoplasmic domains of muscle AChRs. We propose that an initial autoimmune response directed at the MIR leads to an autoimmune response sustained by muscle AChRs. Autoimmune stimulation sustained by endogenous muscle AChR may be a target for specific immunosuppression. These studies show that the α1 MIR is highly myasthenogenic, and that AChR-like proteins distantly related to muscle AChR can induce EAMG and, potentially, MG.
Collapse
Affiliation(s)
- Jon Lindstrom
- Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia, 19104-6074, USA.
| | | |
Collapse
|
14
|
Vaughan K, Kim Y, Sette A. A comparison of epitope repertoires associated with myasthenia gravis in humans and nonhuman hosts. Autoimmune Dis 2012; 2012:403915. [PMID: 23243503 PMCID: PMC3518085 DOI: 10.1155/2012/403915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/21/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022] Open
Abstract
Here we analyzed the molecular targets associated with myasthenia gravis (MG) immune responses, enabled by an immune epitope database (IEDB) inventory of approximately 600 MG-related epitopes derived from 175 references. The vast majority of epitopes were derived from the α-subunit of human AChR suggesting that other MG-associated autoantigens should be investigated further. Human α-AChR was mostly characterized in humans, whereas reactivity primarily to T. californica AChR was examined in animal models. While the fine specificity of T-cell response was similar in the two systems, substantial antibody reactivity to the C-terminus was detected in the nonhuman system, but not in humans. Further analysis showed that the reactivity of nonhuman hosts to the C-terminus was eliminated when data were restricted to hosts tested in the context of autoimmune disease (spontaneous or induced), demonstrating that the epitopes recognized in humans and animals were shared when disease was present. Finally, we provided data subsets relevant to particular applications, including those associated with HLA typing or restriction, sets of epitopes recognized by monoclonal antibodies, and epitopes associated with modulation of immunity or disease. In conclusion, this analysis highlights gaps, differences, and similarities in the epitope repertoires of humans and animal models.
Collapse
Affiliation(s)
- Kerrie Vaughan
- Immune Epitope Database (IEDB), La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
15
|
Díaz-Manera J, Rojas García R, Illa I. Treatment strategies for myasthenia gravis: an update. Expert Opin Pharmacother 2012; 13:1873-83. [DOI: 10.1517/14656566.2012.705831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Luo J, Lindstrom J. Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors. Autoimmunity 2011; 45:245-52. [PMID: 21950318 DOI: 10.3109/08916934.2011.622015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In myasthenia gravis (MG) and experimental autoimmune MG (EAMG), many pathologically significant autoantibodies are directed at the main immunogenic region (MIR), a conformation-dependent region at the extracellular tip of α1 subunits of muscle nicotinic acetylcholine receptors (AChRs). Human muscle AChR α1 MIR sequences were integrated into Aplysia ACh-binding protein (AChBP). The chimera was potent in inducing both acute and chronic EAMG, though less potent than Torpedo electric organ AChR. Wild-type AChBP also induced EAMG but was less potent, and weakness developed slowly without an acute phase. AChBP is more closely related in sequence to neuronal α7 AChRs that are also homomeric; however, autoimmune responses were induced to muscle AChR, but not to neuronal AChR subtypes. The greater accessibility of muscle AChRs to antibodies, compared to neuronal AChRs, may allow muscle AChRs to induce self-sustaining autoimmune responses. The human α1 subunit MIR is a potent immunogen for producing pathologically significant autoantibodies. Additional epitopes in this region or other parts of the AChR extracellular domain contribute significantly to myasthenogenicity. We show that an AChR-related protein can induce EAMG. Thus, in principle, an AChR-related protein could induce MG. AChBP is a water-soluble protein resembling the extracellular domain of AChRs, yet rats that developed EAMG had autoantibodies to AChR cytoplasmic domains. We propose that an initial autoimmune response, directed at the MIR on the extracellular surface of muscle AChRs, leads to an autoimmune response sustained by muscle AChRs. Autoimmune stimulation sustained by endogenous muscle AChR may be a target for specific immunosuppression.
Collapse
Affiliation(s)
- Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104-6074, USA
| | | |
Collapse
|
17
|
Niu L, Guo C, Hao Z, Yuan J, Li Z. Potential roles of recombinant acetylcholine receptor α subunit 1–211 in immunoadsorbent and DNA immunization. J Immunol Methods 2011; 372:14-21. [DOI: 10.1016/j.jim.2011.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 04/05/2011] [Indexed: 10/17/2022]
|
18
|
Wekerle H, Hohlfeld R. Zero tolerance (to acetylcholine receptor) and ways to overcome it. Ann Neurol 2010; 67:422-4. [PMID: 20437576 DOI: 10.1002/ana.22025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|