1
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
2
|
Gonzalez-Lorenzo M, Ridley B, Minozzi S, Del Giovane C, Peryer G, Piggott T, Foschi M, Filippini G, Tramacere I, Baldin E, Nonino F. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2024; 1:CD011381. [PMID: 38174776 PMCID: PMC10765473 DOI: 10.1002/14651858.cd011381.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Different therapeutic strategies are available for the treatment of people with relapsing-remitting multiple sclerosis (RRMS), including immunomodulators, immunosuppressants and biological agents. Although each one of these therapies reduces relapse frequency and slows disability accumulation compared to no treatment, their relative benefit remains unclear. This is an update of a Cochrane review published in 2015. OBJECTIVES To compare the efficacy and safety, through network meta-analysis, of interferon beta-1b, interferon beta-1a, glatiramer acetate, natalizumab, mitoxantrone, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, pegylated interferon beta-1a, daclizumab, laquinimod, azathioprine, immunoglobulins, cladribine, cyclophosphamide, diroximel fumarate, fludarabine, interferon beta 1-a and beta 1-b, leflunomide, methotrexate, minocycline, mycophenolate mofetil, ofatumumab, ozanimod, ponesimod, rituximab, siponimod and steroids for the treatment of people with RRMS. SEARCH METHODS CENTRAL, MEDLINE, Embase, and two trials registers were searched on 21 September 2021 together with reference checking, citation searching and contact with study authors to identify additional studies. A top-up search was conducted on 8 August 2022. SELECTION CRITERIA Randomised controlled trials (RCTs) that studied one or more of the available immunomodulators and immunosuppressants as monotherapy in comparison to placebo or to another active agent, in adults with RRMS. DATA COLLECTION AND ANALYSIS Two authors independently selected studies and extracted data. We considered both direct and indirect evidence and performed data synthesis by pairwise and network meta-analysis. Certainty of the evidence was assessed by the GRADE approach. MAIN RESULTS We included 50 studies involving 36,541 participants (68.6% female and 31.4% male). Median treatment duration was 24 months, and 25 (50%) studies were placebo-controlled. Considering the risk of bias, the most frequent concern was related to the role of the sponsor in the authorship of the study report or in data management and analysis, for which we judged 68% of the studies were at high risk of other bias. The other frequent concerns were performance bias (34% judged as having high risk) and attrition bias (32% judged as having high risk). Placebo was used as the common comparator for network analysis. Relapses over 12 months: data were provided in 18 studies (9310 participants). Natalizumab results in a large reduction of people with relapses at 12 months (RR 0.52, 95% CI 0.43 to 0.63; high-certainty evidence). Fingolimod (RR 0.48, 95% CI 0.39 to 0.57; moderate-certainty evidence), daclizumab (RR 0.55, 95% CI 0.42 to 0.73; moderate-certainty evidence), and immunoglobulins (RR 0.60, 95% CI 0.47 to 0.79; moderate-certainty evidence) probably result in a large reduction of people with relapses at 12 months. Relapses over 24 months: data were reported in 28 studies (19,869 participants). Cladribine (RR 0.53, 95% CI 0.44 to 0.64; high-certainty evidence), alemtuzumab (RR 0.57, 95% CI 0.47 to 0.68; high-certainty evidence) and natalizumab (RR 0.56, 95% CI 0.48 to 0.65; high-certainty evidence) result in a large decrease of people with relapses at 24 months. Fingolimod (RR 0.54, 95% CI 0.48 to 0.60; moderate-certainty evidence), dimethyl fumarate (RR 0.62, 95% CI 0.55 to 0.70; moderate-certainty evidence), and ponesimod (RR 0.58, 95% CI 0.48 to 0.70; moderate-certainty evidence) probably result in a large decrease of people with relapses at 24 months. Glatiramer acetate (RR 0.84, 95%, CI 0.76 to 0.93; moderate-certainty evidence) and interferon beta-1a (Avonex, Rebif) (RR 0.84, 95% CI 0.78 to 0.91; moderate-certainty evidence) probably moderately decrease people with relapses at 24 months. Relapses over 36 months findings were available from five studies (3087 participants). None of the treatments assessed showed moderate- or high-certainty evidence compared to placebo. Disability worsening over 24 months was assessed in 31 studies (24,303 participants). Natalizumab probably results in a large reduction of disability worsening (RR 0.59, 95% CI 0.46 to 0.75; moderate-certainty evidence) at 24 months. Disability worsening over 36 months was assessed in three studies (2684 participants) but none of the studies used placebo as the comparator. Treatment discontinuation due to adverse events data were available from 43 studies (35,410 participants). Alemtuzumab probably results in a slight reduction of treatment discontinuation due to adverse events (OR 0.39, 95% CI 0.19 to 0.79; moderate-certainty evidence). Daclizumab (OR 2.55, 95% CI 1.40 to 4.63; moderate-certainty evidence), fingolimod (OR 1.84, 95% CI 1.31 to 2.57; moderate-certainty evidence), teriflunomide (OR 1.82, 95% CI 1.19 to 2.79; moderate-certainty evidence), interferon beta-1a (OR 1.48, 95% CI 0.99 to 2.20; moderate-certainty evidence), laquinimod (OR 1.49, 95 % CI 1.00 to 2.15; moderate-certainty evidence), natalizumab (OR 1.57, 95% CI 0.81 to 3.05), and glatiramer acetate (OR 1.48, 95% CI 1.01 to 2.14; moderate-certainty evidence) probably result in a slight increase in the number of people who discontinue treatment due to adverse events. Serious adverse events (SAEs) were reported in 35 studies (33,998 participants). There was probably a trivial reduction in SAEs amongst people with RRMS treated with interferon beta-1b as compared to placebo (OR 0.92, 95% CI 0.55 to 1.54; moderate-certainty evidence). AUTHORS' CONCLUSIONS We are highly confident that, compared to placebo, two-year treatment with natalizumab, cladribine, or alemtuzumab decreases relapses more than with other DMTs. We are moderately confident that a two-year treatment with natalizumab may slow disability progression. Compared to those on placebo, people with RRMS treated with most of the assessed DMTs showed a higher frequency of treatment discontinuation due to AEs: we are moderately confident that this could happen with fingolimod, teriflunomide, interferon beta-1a, laquinimod, natalizumab and daclizumab, while our certainty with other DMTs is lower. We are also moderately certain that treatment with alemtuzumab is associated with fewer discontinuations due to adverse events than placebo, and moderately certain that interferon beta-1b probably results in a slight reduction in people who experience serious adverse events, but our certainty with regard to other DMTs is lower. Insufficient evidence is available to evaluate the efficacy and safety of DMTs in a longer term than two years, and this is a relevant issue for a chronic condition like MS that develops over decades. More than half of the included studies were sponsored by pharmaceutical companies and this may have influenced their results. Further studies should focus on direct comparison between active agents, with follow-up of at least three years, and assess other patient-relevant outcomes, such as quality of life and cognitive status, with particular focus on the impact of sex/gender on treatment effects.
Collapse
Affiliation(s)
- Marien Gonzalez-Lorenzo
- Laboratorio di Metodologia delle revisioni sistematiche e produzione di Linee Guida, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- Cochrane Italy, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Guy Peryer
- School of Health Sciences, University of East Anglia (UEA), Norwich, UK
| | - Thomas Piggott
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Family Medicine, Queens University, Kingston, Ontario, Canada
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Tramacere I, Virgili G, Perduca V, Lucenteforte E, Benedetti MD, Capobussi M, Castellini G, Frau S, Gonzalez-Lorenzo M, Featherstone R, Filippini G. Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2023; 11:CD012186. [PMID: 38032059 PMCID: PMC10687854 DOI: 10.1002/14651858.cd012186.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects mainly young adults (two to three times more frequently in women than in men) and causes significant disability after onset. Although it is accepted that immunotherapies for people with MS decrease disease activity, uncertainty regarding their relative safety remains. OBJECTIVES To compare adverse effects of immunotherapies for people with MS or clinically isolated syndrome (CIS), and to rank these treatments according to their relative risks of adverse effects through network meta-analyses (NMAs). SEARCH METHODS We searched CENTRAL, PubMed, Embase, two other databases and trials registers up to March 2022, together with reference checking and citation searching to identify additional studies. SELECTION CRITERIA We included participants 18 years of age or older with a diagnosis of MS or CIS, according to any accepted diagnostic criteria, who were included in randomized controlled trials (RCTs) that examined one or more of the agents used in MS or CIS, and compared them versus placebo or another active agent. We excluded RCTs in which a drug regimen was compared with a different regimen of the same drug without another active agent or placebo as a control arm. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods for data extraction and pairwise meta-analyses. For NMAs, we used the netmeta suite of commands in R to fit random-effects NMAs assuming a common between-study variance. We used the CINeMA platform to GRADE the certainty of the body of evidence in NMAs. We considered a relative risk (RR) of 1.5 as a non-inferiority safety threshold compared to placebo. We assessed the certainty of evidence for primary outcomes within the NMA according to GRADE, as very low, low, moderate or high. MAIN RESULTS This NMA included 123 trials with 57,682 participants. Serious adverse events (SAEs) Reporting of SAEs was available from 84 studies including 5696 (11%) events in 51,833 (89.9%) participants out of 57,682 participants in all studies. Based on the absolute frequency of SAEs, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 18 additional people would have a SAE compared to placebo. Low-certainty evidence suggested that three drugs may decrease SAEs compared to placebo (relative risk [RR], 95% confidence interval [CI]): interferon beta-1a (Avonex) (0.78, 0.66 to 0.94); dimethyl fumarate (0.79, 0.67 to 0.93), and glatiramer acetate (0.84, 0.72 to 0.98). Several drugs met our non-inferiority criterion versus placebo: moderate-certainty evidence for teriflunomide (1.08, 0.88 to 1.31); low-certainty evidence for ocrelizumab (0.85, 0.67 to 1.07), ozanimod (0.88, 0.59 to 1.33), interferon beta-1b (0.94, 0.78 to 1.12), interferon beta-1a (Rebif) (0.96, 0.80 to 1.15), natalizumab (0.97, 0.79 to 1.19), fingolimod (1.05, 0.92 to 1.20) and laquinimod (1.06, 0.83 to 1.34); very low-certainty evidence for daclizumab (0.83, 0.68 to 1.02). Non-inferiority with placebo was not met due to imprecision for the other drugs: low-certainty evidence for cladribine (1.10, 0.79 to 1.52), siponimod (1.20, 0.95 to 1.51), ofatumumab (1.26, 0.88 to 1.79) and rituximab (1.01, 0.67 to 1.52); very low-certainty evidence for immunoglobulins (1.05, 0.33 to 3.32), diroximel fumarate (1.05, 0.23 to 4.69), peg-interferon beta-1a (1.07, 0.66 to 1.74), alemtuzumab (1.16, 0.85 to 1.60), interferons (1.62, 0.21 to 12.72) and azathioprine (3.62, 0.76 to 17.19). Withdrawals due to adverse events Reporting of withdrawals due to AEs was available from 105 studies (85.4%) including 3537 (6.39%) events in 55,320 (95.9%) patients out of 57,682 patients in all studies. Based on the absolute frequency of withdrawals, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 31 additional people would withdraw compared to placebo. No drug reduced withdrawals due to adverse events when compared with placebo. There was very low-certainty evidence (meaning that estimates are not reliable) that two drugs met our non-inferiority criterion versus placebo, assuming an upper 95% CI RR limit of 1.5: diroximel fumarate (0.38, 0.11 to 1.27) and alemtuzumab (0.63, 0.33 to 1.19). Non-inferiority with placebo was not met due to imprecision for the following drugs: low-certainty evidence for ofatumumab (1.50, 0.87 to 2.59); very low-certainty evidence for methotrexate (0.94, 0.02 to 46.70), corticosteroids (1.05, 0.16 to 7.14), ozanimod (1.06, 0.58 to 1.93), natalizumab (1.20, 0.77 to 1.85), ocrelizumab (1.32, 0.81 to 2.14), dimethyl fumarate (1.34, 0.96 to 1.86), siponimod (1.63, 0.96 to 2.79), rituximab (1.63, 0.53 to 5.00), cladribine (1.80, 0.89 to 3.62), mitoxantrone (2.11, 0.50 to 8.87), interferons (3.47, 0.95 to 12.72), and cyclophosphamide (3.86, 0.45 to 33.50). Eleven drugs may have increased withdrawals due to adverse events compared with placebo: low-certainty evidence for teriflunomide (1.37, 1.01 to 1.85), glatiramer acetate (1.76, 1.36 to 2.26), fingolimod (1.79, 1.40 to 2.28), interferon beta-1a (Rebif) (2.15, 1.58 to 2.93), daclizumab (2.19, 1.31 to 3.65) and interferon beta-1b (2.59, 1.87 to 3.77); very low-certainty evidence for laquinimod (1.42, 1.01 to 2.00), interferon beta-1a (Avonex) (1.54, 1.13 to 2.10), immunoglobulins (1.87, 1.01 to 3.45), peg-interferon beta-1a (3.46, 1.44 to 8.33) and azathioprine (6.95, 2.57 to 18.78); however, very low-certainty evidence is unreliable. Sensitivity analyses including only studies with low attrition bias, drug dose above the group median, or only patients with relapsing remitting MS or CIS, and subgroup analyses by prior disease-modifying treatments did not change these figures. Rankings No drug yielded consistent P scores in the upper quartile of the probability of being better than others for primary and secondary outcomes. AUTHORS' CONCLUSIONS We found mostly low and very low-certainty evidence that drugs used to treat MS may not increase SAEs, but may increase withdrawals compared with placebo. The results suggest that there is no important difference in the occurrence of SAEs between first- and second-line drugs and between oral, injectable, or infused drugs, compared with placebo. Our review, along with other work in the literature, confirms poor-quality reporting of adverse events from RCTs of interventions. At the least, future studies should follow the CONSORT recommendations about reporting harm-related issues. To address adverse effects, future systematic reviews should also include non-randomized studies.
Collapse
Affiliation(s)
- Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Vittorio Perduca
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Maria Donata Benedetti
- UOC Neurologia B - Policlinico Borgo Roma, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Capobussi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Greta Castellini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Marien Gonzalez-Lorenzo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Oncology, Laboratory of Clinical Research Methodology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| |
Collapse
|
4
|
Konen FF, Möhn N, Witte T, Schefzyk M, Wiestler M, Lovric S, Hufendiek K, Schwenkenbecher P, Sühs KW, Friese MA, Klotz L, Pul R, Pawlitzki M, Hagin D, Kleinschnitz C, Meuth SG, Skripuletz T. Treatment of autoimmunity: The impact of disease-modifying therapies in multiple sclerosis and comorbid autoimmune disorders. Autoimmun Rev 2023; 22:103312. [PMID: 36924922 DOI: 10.1016/j.autrev.2023.103312] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
More than 10 disease-modifying therapies (DMT) are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) and new therapeutic options are on the horizon. Due to different underlying therapeutic mechanisms, a more individualized selection of DMTs in MS is possible, taking into account the patient's current situation. Therefore, concomitant treatment of various comorbid conditions, including autoimmune mediated disorders such as rheumatoid arthritis, should be considered in MS patients. Because the pathomechanisms of autoimmunity partially overlap, DMT could also treat concomitant inflammatory diseases and simplify the patient's treatment. In contrast, the exacerbation and even new occurrence of several autoimmune diseases have been reported as a result of immunomodulatory treatment of MS. To simplify treatment and avoid disease exacerbation, knowledge of the beneficial and adverse effects of DMT in other autoimmune disorders is critical. Therefore, we conducted a literature search and described the beneficial and adverse effects of approved and currently studied DMT in a large number of comorbid autoimmune diseases, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel diseases, cutaneous disorders including psoriasis, Sjögren´s syndrome, systemic lupus erythematosus, systemic vasculitis, autoimmune hepatitis, and ocular autoimmune disorders. Our review aims to facilitate the selection of an appropriate DMT in patients with MS and comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany..
| | - Matthias Schefzyk
- Department of Dermatology, Allergology and Venerology, Hannover Medical School, 30625 Hannover, Germany..
| | - Miriam Wiestler
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany.
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany.
| | - Karsten Hufendiek
- University Eye Hospital, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen 45147, Germany.
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St., Tel-Aviv 6423906, Israel.
| | - Christoph Kleinschnitz
- Department of Neurology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen 45147, Germany.
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| |
Collapse
|
5
|
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol 2022; 13:824926. [PMID: 35720070 PMCID: PMC9205455 DOI: 10.3389/fneur.2022.824926] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system that causes significant disability and healthcare burden. The treatment of MS has evolved over the past three decades with development of new, high efficacy disease modifying therapies targeting various mechanisms including immune modulation, immune cell suppression or depletion and enhanced immune cell sequestration. Emerging therapies include CNS-penetrant Bruton's tyrosine kinase inhibitors and autologous hematopoietic stem cell transplantation as well as therapies aimed at remyelination or neuroprotection. Therapy development for progressive MS has been more challenging with limited efficacy of current approved agents for inactive disease and older patients with MS. The aim of this review is to provide a broad overview of the current therapeutic landscape for MS.
Collapse
Affiliation(s)
- Jennifer H. Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- *Correspondence: Jennifer H. Yang
| | - Torge Rempe
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Natalie Whitmire
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Jennifer S. Graves
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Okuda DT, Burgess KW, Cook K, McCreary M, Winkler MD, Moog TM. Hiding in Plain Sight: The Magnitude of Unused Disease Modifying Therapies in Multiple Sclerosis and Strategies for Reducing the Economic Burden of Care. Mult Scler Relat Disord 2022; 63:103920. [DOI: 10.1016/j.msard.2022.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
|
7
|
Impact of Disease-Modifying Therapies on MRI Outcomes in Patients with Relapsing -Remitting Multiple Sclerosis: A Systematic Review and Network Meta-Analysis. Mult Scler Relat Disord 2022; 61:103760. [DOI: 10.1016/j.msard.2022.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/06/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
|
8
|
Poncet-Megemont L, Pereira B, Rollot F, Sormani MP, Clavelou P, Moisset X. Estimation of sample size in randomized controlled trials in multiple sclerosis studying annualized relapse rates: A systematic review. Mult Scler 2021; 28:1457-1466. [PMID: 34697961 DOI: 10.1177/13524585211052400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In multiple sclerosis (MS) studies, the most appropriate model for the distribution of the number of relapses was shown to be the negative binomial (NB) distribution. OBJECTIVE To determine whether the sample-size estimation (SSE) and the analysis of annualized relapse rates (ARRs) in randomized controlled trials (RCTs) were aligned and compare the SSE between normal and NB distributions. METHODS Systematic review of phase 3 and 4 RCTs for which the primary endpoint was ARR in relapsing remitting MS published since 2008 in pre-selected major medical journals. A PubMed search was performed on 30 November 2020. We checked whether the SSE and ARR analyses were congruent. We also performed standardized (fixed α/β, number of arms and overdispersion) SSEs using data collected from the studies. RESULTS Twenty articles (22 studies) were selected. NB distribution (or quasi-Poisson) was used for SSE in only 7/22 studies, whereas 21/22 used it for ARR analyses. SSE relying on NB regression necessitated a smaller sample size in 21/22 of our calculations. CONCLUSION SSE was rarely performed using the most appropriate model. However, the use of an NB model is recommended to optimize the number of included patients and to be congruent with the final analysis.
Collapse
Affiliation(s)
- Louis Poncet-Megemont
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Bruno Pereira
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Fabien Rollot
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France/Hospices Civils de Lyon, Hôpital Neurologique, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Bron, France/Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 et CNRS UMR 5292, Lyon, France/EUGENE DEVIC EDMUS Foundation Against Multiple Sclerosis, state-approved foundation, Bron, France
| | - Maria Pia Sormani
- Department of Health Sciences (DISSAL), University of Genoa and Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Pierre Clavelou
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Xavier Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| |
Collapse
|
9
|
Ito K, Ito N, Yadav SK, Suresh S, Lin Y, Dhib-Jalbut S. Effect of switching glatiramer acetate formulation from 20 mg daily to 40 mg three times weekly on immune function in multiple sclerosis. Mult Scler J Exp Transl Clin 2021; 7:20552173211032323. [PMID: 34377526 PMCID: PMC8330487 DOI: 10.1177/20552173211032323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Background Many RRMS patients who had been treated for over 20 years with GA 20 mg/ml daily (GA20) switched to 40 mg/ml three times-a-week (GA40) to reduce injection-related adverse events. Although GA40 is as effective as GA20 in reducing annualized relapse rate and MRI activity, it remains unknown how switching to GA40 from GA20 affects the development of pathogenic and regulatory immune cells. Objective To investigate the difference in immunological parameters in response to GA20 and GA40 treatments. Methods We analyzed five pro-inflammatory cytokines (IL-1β, IL-23, IL-12, IL-18, TNF-α), and three anti-inflammatory/regulatory cytokines (IL-10, IL-13, and IL-27) in serum. In addition, we analyzed six cytokines (IFN-γ, IL-17A, GM-CSF, IL-10, IL-6, and IL-27) in cultured PBMC supernatants. The development of Th1, Th17, Foxp3 Tregs, M1-like, and M2-like macrophages were examined by flow cytometry. Samples were analyzed before and 12 months post switching to GA40 or GA20. Results Pro- and anti-inflammatory cytokines were comparable between the GA40 and GA20 groups. Development of Th1, Th17, M1-like macrophages, M2-like macrophages, and Foxp3 Tregs was also comparable between the two groups. Conclusions The immunological parameters measured in RRMS patients treated with GA40 three times weekly are largely comparable to those given daily GA20 treatment.
Collapse
Affiliation(s)
- Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Sudhir K Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Shradha Suresh
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
10
|
Wei W, Ma D, Li L, Zhang L. Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Front Pharmacol 2021; 12:724718. [PMID: 34326775 PMCID: PMC8313804 DOI: 10.3389/fphar.2021.724718] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesion in CNS and cause physical disorders. Although environmental factors and susceptibility genes are reported to play a role in the pathogenesis of MS, its etiology still remains unclear. At present, there is no complete cure, but there are drugs that decelerate the progression of MS. Traditional therapies are disease-modifying drugs that control disease severity. MS drugs that are currently marketed mainly aim at the immune system; however, increasing attention is being paid to the development of new treatment strategies targeting the CNS. Further, the number of neuroprotective drugs is presently undergoing clinical trials and may prove useful for the improvement of neuronal function and survival. In this review, we have summarized the recent application of drugs used in MS treatment, mainly introducing new drugs with immunomodulatory, neuroprotective, or regenerative properties and their possible treatment strategies for MS. Additionally, we have presented Food and Drug Administration-approved MS treatment drugs and their administration methods, mechanisms of action, safety, and effectiveness, thereby evaluating their treatment efficacy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Scott TF, Su R, Xiong K, Altincatal A, Castrillo-Viguera C, Naylor ML. Matching comparisons of therapeutic efficacy suggest better clinical outcomes for patients treated with peginterferon beta-1a than with glatiramer acetate. Ther Adv Neurol Disord 2021; 14:1756286420975916. [PMID: 33488773 PMCID: PMC7809527 DOI: 10.1177/1756286420975916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Peginterferon beta-1a and glatiramer acetate (GA) are approved first-line therapies for the treatment of relapsing forms of multiple sclerosis, but their therapeutic efficacy has not been compared directly. Methods: Clinical outcomes at 2 years, including no evidence of disease activity (NEDA), for patients receiving peginterferon beta-1a 125 mcg every 2 weeks (Q2W) or GA 20 mg/ml once daily (QD) were compared by propensity score matching analysis using individual patient data from ADVANCE and CONFIRM phase III clinical trials. In addition, clinical outcomes at 1–3 years for patients receiving peginterferon beta-1a Q2W or GA 40 mg/ml three times a week (TIW) were evaluated using a matching-adjusted comparison analysis of individual patient data from ADVANCE and the ADVANCE extension study, ATTAIN, and aggregate patient data from the phase III GALA and the GALA extension studies. Results: Propensity-score-matched peginterferon beta-1a patients (n = 336) had a significantly lower annualized relapse rate [ARR (0.204 versus 0.282); rate ratio = 0.724; p = 0.045], a significantly lower probability of 12-week confirmed disability worsening (10.0% versus 14.6%; hazard ratio = 0.625; p = 0.048), and a significantly higher rate of NEDA (20.3% versus 11.5%; p = 0.047) compared with GA 20 mg/ml QD patients after 2 years of treatment. Matching-adjusted peginterferon beta-1a patients (effective n = 276) demonstrated a similar ARR at 1 year (0.278 versus 0.318; p = 0.375) and significantly lower ARR at 2 years (0.0901 versus 0.203; p = 0.032) and 3 years (0.109 versus 0.209; p = 0.047) compared with GA 40 mg/ml TIW patients (n = 834). Conclusion: Results from separate matching comparisons of phase III clinical trials and extension studies suggest that peginterferon beta-1a 125 mcg Q2W may provide better clinical outcomes than GA (20 mg/ml QD or 40 mg/ml TIW).
Collapse
Affiliation(s)
- Thomas F Scott
- Neurology and Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Ray Su
- Biogen, Cambridge, MA, USA, at the time of this analysis
| | - Kuangnan Xiong
- Biogen, Cambridge, MA, USA, at the time of this analysis
| | | | | | | |
Collapse
|
12
|
Findling O, Sellner J. Second-generation immunotherapeutics in multiple sclerosis: can we discard their precursors? Drug Discov Today 2020; 26:416-428. [PMID: 33248250 DOI: 10.1016/j.drudis.2020.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/18/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022]
Abstract
Options for disease-modifying therapies in multiple sclerosis have increased over the past two decades. Among these innovations are interferon-β, glatiramer acetate, fumaric acid and dihydroorotate dehydrogenase inhibitors, an antibody targeting the migration of immune cells, a compound that traps immune cells in lymphoid organs by sphingosine 1-phosphate receptor (S1PR) modulation and immune-reconstitution therapies. Second-generation drugs such as pegylated interferon-β, advanced CD20 depleting antibodies, more-specific S1PR modulators and new formulations have been developed to achieve higher efficacy while exhibiting fewer side effects. In this review, we address the shortcomings of the parent drugs, present the pros and cons of the second-generation therapies and summarize upcoming developments in the field of immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Oliver Findling
- Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland; Department of Neurology, University Hospital Tulln, Karl-Landsteiner-University, Tulln, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| |
Collapse
|
13
|
Andravizou A, Dardiotis E, Artemiadis A, Sokratous M, Siokas V, Tsouris Z, Aloizou AM, Nikolaidis I, Bakirtzis C, Tsivgoulis G, Deretzi G, Grigoriadis N, Bogdanos DP, Hadjigeorgiou GM. Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. AUTO- IMMUNITY HIGHLIGHTS 2019; 10:7. [PMID: 32257063 PMCID: PMC7065319 DOI: 10.1186/s13317-019-0117-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by focal or diffuse inflammation, demyelination, axonal loss and neurodegeneration. Brain atrophy can be seen in the earliest stages of MS, progresses faster compared to healthy adults, and is a reliable predictor of future physical and cognitive disability. In addition, it is widely accepted to be a valid, sensitive and reproducible measure of neurodegeneration in MS. Reducing the rate of brain atrophy has only recently been incorporated as a critical endpoint into the clinical trials of new or emerging disease modifying drugs (DMDs) in MS. With the advent of easily accessible neuroimaging softwares along with the accumulating evidence, clinicians may be able to use brain atrophy measures in their everyday clinical practice to monitor disease course and response to DMDs. In this review, we will describe the different mechanisms contributing to brain atrophy, their clinical relevance on disease presentation and course and the effect of current or emergent DMDs on brain atrophy and neuroprotection.
Collapse
Affiliation(s)
- Athina Andravizou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Artemios Artemiadis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias Ave 72-74, 11528 Athens, Greece
| | - Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis, 40500 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Bakirtzis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis, 40500 Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
14
|
Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O. Immunological Aspects of Approved MS Therapeutics. Front Immunol 2019; 10:1564. [PMID: 31354720 PMCID: PMC6637731 DOI: 10.3389/fimmu.2019.01564] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological immune-mediated disease leading to disability in young adults. The outcome of the disease is unpredictable, and over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be approved in the 1990s for relapsing-remitting MS to modulate the course of the disease. Over the past two decades, the treatment landscape has changed tremendously. Currently, more than a dozen drugs representing 1 substances with different mechanisms of action have been approved (interferon beta preparations, glatiramer acetate, fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine, alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to be approved for primary progressive MS. The objective of this review is to present the modes of action of these drugs and their effects on the immunopathogenesis of MS. Each agent's clinical development and potential side effects are discussed.
Collapse
Affiliation(s)
- Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ron Milo
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - May H. Han
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Sammita Satyanarayan
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
| | - Larissa Hauer
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Sarah Laurent
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Yinan Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Cutter G, Veneziano A, Grinspan A, Al-Banna M, Boyko A, Zakharova M, Maida E, Pasic MB, Gandhi SK, Everts R, Cordioli C, Rossi S. Higher satisfaction and adherence with glatiramer acetate 40 mg/mL TIW vs 20 mg/mL QD in RRMS. Mult Scler Relat Disord 2019; 33:13-21. [PMID: 31132664 DOI: 10.1016/j.msard.2019.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/30/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients who perceive their medication to be ineffective or inconvenient are less likely to be adherent to treatment, with potentially significant consequences on long-term clinical outcomes. Many patients with multiple sclerosis (MS) are nonadherent to treatment despite demonstrated efficacy of disease-modifying therapies (DMTs). While glatiramer acetate (GA; Copaxone®, Teva Pharmaceuticals) both 20 mg/mL once daily (GA20) and 40 mg/mL three times weekly (GA40) have demonstrated efficacy in relapsing-remitting MS (RRMS), GA40 has a superior tolerability profile in addition to a more convenient dosing schedule. These characteristics may give rise to greater treatment satisfaction and higher rates of adherence with potentially beneficial effects on clinical outcomes and health-related costs. METHODS CONFIDENCE was a Phase 4, interventional, open-label, randomized, 2-arm, parallel-group, global study with a duration of 6 months. Patients (N = 861) were randomly assigned 1:1 to receive GA20 (n = 430) or GA40 (n = 431) during the core phase. The primary endpoint was patient-reported medication satisfaction using the Medication Satisfaction Questionnaire (MSQ). Secondary endpoints included self-reported convenience perception using the Treatment Satisfaction Questionnaire for Medication-9 convenience component, symptomatic changes (Modified Fatigue Impact Scale, MFIS), and Mental Health Inventory (MHI). Treatment adherence was measured by Multiple Sclerosis Treatment Adherence Questionnaire. Results from the core phase were included. RESULTS During the core phase, 857 patients received treatments. Patients on GA40 were statistically significantly more satisfied with their medication than those on GA20 (LSM difference in MSQ, 0.3; 95% CI, 0.2, 0.5; p<0.001). Additionally, patients on GA40 found the treatment more convenient (p<0.001), were more adherent (p = 0.002), and reported statistically significant greater improvements in the MFIS Cognitive (p = 0.043) and the MHI Behavior Control (p = 0.014) subscales versus those on GA20. There were no new safety findings. CONCLUSIONS Higher levels of satisfaction, perception of convenience, and adherence were reported by patients on GA40 than those on GA20. CLINICAL TRIAL REGISTRATION NUMBER This trial was registered with ClinicalTrials.gov (NCT02499900).
Collapse
Affiliation(s)
- Gary Cutter
- University of Alabama at Birmingham, Birmingham, AL, USA; Pythagoras, Inc., Birmingham, AL, USA.
| | | | | | | | - Alexey Boyko
- Pirogov's Russian National Medical Research University and MS Center at the Ysupov Hospital, Moscow, Russia
| | | | - Eva Maida
- Multiple Sclerosis Center, Vienna, Austria.
| | - Marija Bosnjak Pasic
- Department of Neurology, University Hospital Centre Zagreb, School of Medicine, Josip Juraj Strossmayer University of Osijek, Referral Centre of the Ministry of Health of the Republic of Croatia for Demyelinating Diseases of the Central Nervous System, Zagreb, Croatia
| | | | | | - Cinzia Cordioli
- Multiple Sclerosis Center, Montichiari Hospital, Montichiari, Brescia, Italy
| | - Silvia Rossi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
16
|
Rocco P, Eberini I, Musazzi UM, Franzè S, Minghetti P. Glatiramer acetate: A complex drug beyond biologics. Eur J Pharm Sci 2019; 133:8-14. [PMID: 30902653 DOI: 10.1016/j.ejps.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023]
Abstract
Complex drugs may be either biological, if the active ingredients are derived from a biological source, or non-biological, if obtained by chemical synthesis. In both cases, their quality depends considerably on the manufacturing process. In the case of Non Biological Complex Drugs (NBCDs), complexity may arise either from the active substance, as in the case of glatiramer acetate, or from other sources, such as the formulation, as in the case of liposomes. In this paper, the case of glatiramer acetate (GA) - a NBCD relevant for clinical and economic reasons - is considered and the differences between US and EU regulatory approaches to GA marketing authorization are highlighted. Indeed, though US and EU regulatory agencies have chosen a generic approach integrated with additional data the implementation is different in the two jurisdictions. In the US, the additional data required are listed in a product specific guideline and copies of Copaxone® have been approved as generics. In the EU, instead regulatory agencies followed a hybrid approach requiring an additional comparative study, and interchangeability policies and substitution schemes have been left to national agencies.
Collapse
Affiliation(s)
- Paolo Rocco
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo, 71, 20133 Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via G. Balzaretti, 9, 20133 Milan, Italy
| | - Umberto M Musazzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo, 71, 20133 Milan, Italy
| | - Silvia Franzè
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo, 71, 20133 Milan, Italy
| | - Paola Minghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo, 71, 20133 Milan, Italy.
| |
Collapse
|
17
|
Prod'homme T, Zamvil SS. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029249. [PMID: 29440323 DOI: 10.1101/cshperspect.a029249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate (GA) is a synthetic amino acid copolymer that is approved for treatment of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS). GA reduces multiple sclerosis (MS) disease activity and has shown comparable efficacy with high-dose interferon-β. The mechanism of action (MOA) of GA has long been an enigma. Originally, it was recognized that GA treatment promoted expansion of GA-reactive T-helper 2 and regulatory T cells, and induced the release of neurotrophic factors. However, GA treatment influences both innate and adaptive immune compartments, and it is now recognized that antigen-presenting cells (APCs) are the initial cellular targets for GA. The anti-inflammatory (M2) APCs induced following treatment with GA are responsible for the induction of anti-inflammatory T cells that contribute to its therapeutic benefit. Here, we review studies that have shaped our current understanding of the MOA of GA.
Collapse
Affiliation(s)
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
18
|
Atypical Post-Injection Reactions with Delayed Onset Following Glatiramer Acetate 40 mg: Need for Titration? CNS Drugs 2018; 32:653-660. [PMID: 29949101 DOI: 10.1007/s40263-018-0529-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Glatiramer acetate (GA) 20 mg/day (GA20) is associated with immediate post-injection reactions (PIRs). For convenience of use, approved GA 40 mg three times weekly (GA40) delivers a similar weekly dose. The dose and concentration of a single GA40 injection are, however, twice as high as for GA20, and post-injection adverse events may differ. Cases of atypical PIRs to GA40 prompted us to systematically monitor such events. OBJECTIVE The aim was to characterize atypical PIRs in multiple sclerosis (MS) patients treated with GA40. METHODS Clinical practice data were prospectively collected in consecutive relapsing-remitting MS patients. Descriptive statistics for categorical and continuous variables, Mann-Whitney and Chi-squared tests for baseline comparisons, and Cox regression models for association of variables to first atypical PIRs were applied. RESULTS Forty-six out of 173 patients (26.6%) given GA40 experienced any PIRs. Of those, 38 (22.0%) had atypical, 14 (8.1%) had combined typical and atypical, and 26 (15.0%) had recurrent atypical PIRs, most frequently shivering (13.3%) and nausea/vomiting (8.1%). Compared to typical PIRs, onset of atypical PIRs was significantly delayed (median 30 vs 1 min, p < 0.0001), and their median duration longer (median 120 vs 6 min, p = 0.00013). Previous exposure to GA20 was associated with a lower risk of atypical PIRs [hazard ratio (HR) = 0.35, 95% confidence interval (CI) 0.17-0.72, p = 0.0039]. Patients experiencing PIRs with GA20 were at elevated risk for atypical PIRs with GA40 (HR = 5.75, 95% CI 1.66-19.94, p = 0.0059). CONCLUSIONS Atypical PIRs with GA40, especially gastrointestinal symptoms and/or fever/shivering, had a delayed onset and occurred in a significant proportion of our patients. Their real prevalence should be assessed in appropriately designed studies accounting for nocebo responses. Initial dose titration might reduce PIR frequency.
Collapse
|
19
|
Zivadinov R, Bergsland N, Hagemeier J, Tavazzi E, Ramasamy DP, Durfee J, Cherneva M, Carl E, Carl J, Kolb C, Hojnacki D, Weinstock-Guttman B. Effect of switching from glatiramer acetate 20 mg/daily to glatiramer acetate 40 mg three times a week on gray and white matter pathology in subjects with relapsing multiple sclerosis: A longitudinal DTI study. J Neurol Sci 2018; 387:152-156. [PMID: 29571854 DOI: 10.1016/j.jns.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Glatiramer acetate (GA) 40 mg × 3/weekly was approved for the treatment of relapsing-remitting multiple sclerosis (RRMS). While the beneficial effect of GA 20 mg/daily in MS patients on non-conventional MRI measures has been demonstrated, the effect of GA 40 mg × 3/weekly at the microstructural tissue level has yet to be explored. OBJECTIVE To investigate the effect of switching from GA 20 mg/daily to GA 40 mg × 3/weekly on the evolution of microstructural changes in the thalamus and normal appearing white matter (NAWM), using diffusion tensor imaging (DTI). METHODS In this observational, longitudinal, cross-over, 34-month MRI study, we recruited 150 RRMS patients that underwent MRI 12-18 months before switching (pre-index), during the switch (index) and 12-18 months after switching (post-index) from GA 20 mg/daily to GA 40 mg × 3/weekly. Regional DTI metrics and tract-based spatial statistics (TBSS) analyses were performed. Mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) and fractional anisotropy (FA) were measured in thalamus and NAWM. RESULTS Regional DTI measures, measures of whole brain, white and gray matter, and thalamus volumes, as well as lesion volume, showed no significant changes. However, the voxel-wise TBSS analysis showed increased FA both in the NAWM and thalamus, as well as increased MD and AD in NAWM, and decreased RD in NAWM (p < .05). Areas of increased FA and MD as well as decreased RD in the NAWM, and increased AD both in the NAWM and thalamus were detected between index to post-index (p < .05). CONCLUSIONS This study confirms a comparable effect of GA 40 mg × 3/weekly to GA 20 mg/daily on DTI measures over 34 months.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, NY, USA.
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jackie Durfee
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Mariya Cherneva
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ellen Carl
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jillian Carl
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Channa Kolb
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Neurology, University of Buffalo, Buffalo, NY, USA
| | - David Hojnacki
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Neurology, University of Buffalo, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Neurology, University of Buffalo, Buffalo, NY, USA
| |
Collapse
|
20
|
Tur C, Moccia M, Barkhof F, Chataway J, Sastre-Garriga J, Thompson AJ, Ciccarelli O. Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting. Nat Rev Neurol 2018; 14:75-93. [PMID: 29326424 DOI: 10.1038/nrneurol.2017.171] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increasing numbers of drugs are being developed for the treatment of multiple sclerosis (MS). Measurement of relevant outcomes is key for assessing the efficacy of new drugs in clinical trials and for monitoring responses to disease-modifying drugs in individual patients. Most outcomes used in trial and clinical settings reflect either clinical or neuroimaging aspects of MS (such as relapse and accrual of disability or the presence of visible inflammation and brain tissue loss, respectively). However, most measures employed in clinical trials to assess treatment effects are not used in routine practice. In clinical trials, the appropriate choice of outcome measures is crucial because the results determine whether a drug is considered effective and therefore worthy of further development; in the clinic, outcome measures can guide treatment decisions, such as choosing a first-line disease-modifying drug or escalating to second-line treatment. This Review discusses clinical, neuroimaging and composite outcome measures for MS, including patient-reported outcome measures, used in both trials and the clinical setting. Its aim is to help clinicians and researchers navigate through the multiple options encountered when choosing an outcome measure. Barriers and limitations that need to be overcome to translate trial outcome measures into the clinical setting are also discussed.
Collapse
Affiliation(s)
- Carmen Tur
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK
| | - Marcello Moccia
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Via Sergio Pansini 5, Naples 80131, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,Institute of Healthcare Engineering, University College London, Engineering Front Building, Room 2.01, 2nd Floor, Torrington Place, WC1E 7JE London, UK.,Vrije Universiteit (VU) University Medical Centre - Radiology and Nuclear Medicine, Van der Boechorststraat 7 F/A-114, 1081 BT Amsterdam, Netherlands.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK
| | - Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia, Department of Neurology and Neuroimmunology, Vall d'Hebron University Hospital, 119-129, 08035 Barcelona, Spain
| | - Alan J Thompson
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK.,University College London Faculty of Brain Sciences, Institute of Neurology, Department of Brain Repair and Rehabilitation, Queen Square, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK
| |
Collapse
|
21
|
Abstract
Accumulating neurological disability has a substantial impact on the lives of patients with multiple sclerosis (MS). As well as the established Expanded Disability Status Scale (EDSS), several other outcome measures are now available for assessing disability progression in MS. This review extends the findings of a previous analysis of relapsing-remitting MS (RRMS) trials published up to 2012, to determine whether there has been a shift in outcome measures used to assess disability in phase III clinical trials in RRMS and progressive MS. Forty relevant trials were identified (RRMS, n = 16; progressive MS, n = 18; other/mixed phenotypes, n = 6). Sustained EDSS worsening, particularly over 3 months, was included as an endpoint in almost all identified trials. Other disability-related endpoints included the Multiple Sclerosis Functional Composite z-score and scores for the physical component summary of the Multiple Sclerosis Impact Scale and Medical Outcomes Study Short-Form (36-item) Health Survey. Tests assessing manual dexterity, ambulation, vision and cognition were also employed, and in some trials, composite endpoints were used. However, there was no obvious trend in choice of disability outcome measures over time. Sustained EDSS worsening over short time periods continues to be the most widely used measure of disability progression in pivotal MS trials, despite its well-recognised limitations. A new tool set is needed for use in MS clinical trials that detects the benefit of potential treatments that slow (or reverse) progressive disability.
Collapse
|
22
|
Selmaj K, Barkhof F, Belova AN, Wolf C, van den Tweel ERW, Oberyé JJL, Mulder R, Egging DF, Koper NP, Cohen JA. Switching from branded to generic glatiramer acetate: 15-month GATE trial extension results. Mult Scler 2017; 23:1909-1917. [PMID: 28090798 PMCID: PMC5700775 DOI: 10.1177/1352458516688956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Open-label 15-month follow-up of the double-blind, placebo-controlled Glatiramer Acetate clinical Trial to assess Equivalence with Copaxone® (GATE) trial. OBJECTIVE To evaluate efficacy, safety, and tolerability of prolonged generic glatiramer acetate (GTR) treatment and to evaluate efficacy, safety, and tolerability of switching from brand glatiramer acetate (GA) to GTR treatment. METHODS A total of 729 patients received GTR 20 mg/mL daily. Safety was assessed at months 12, 15, 18, 21, and 24 and Expanded Disability Status Scale and magnetic resonance imaging (MRI) scans at months 12, 18, and 24. The presence of glatiramer anti-drug antibodies (ADAs) was tested at baseline and months 1, 3, 6, 9, 12, 18, and 24. RESULTS The mean number of gadolinium-enhancing lesions in the GTR/GTR and GA/GTR groups was similar at months 12, 18, and 24. The change in other MRI parameters was also similar in the GTR/GTR and GA/GTR groups. The annualized relapse rate (ARR) did not differ between the GTR/GTR and GA/GTR groups, 0.21 and 0.24, respectively. The incidence, spectrum, and severity of reported adverse events did not differ between the GTR/GTR and GA/GTR groups. Glatiramer ADA titers were similar in the GTR/GTR and GA/GTR groups. CONCLUSION Efficacy and safety of GTR is maintained over 2 years. Additionally, switching from GA to GTR is safe and well tolerated.
Collapse
Affiliation(s)
| | - Frederik Barkhof
- Image Analysis Center, Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands/Institutes of Neurology & Healthcare Engineering, UCL, London, UK
| | - Anna N Belova
- Research Institute of Traumatology and Orthopedics, Functional Diagnostics, Nizhny Novgorod, Russia
| | | | | | | | | | | | | | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
23
|
Ross CJ, Towfic F, Shankar J, Laifenfeld D, Thoma M, Davis M, Weiner B, Kusko R, Zeskind B, Knappertz V, Grossman I, Hayden MR. A pharmacogenetic signature of high response to Copaxone in late-phase clinical-trial cohorts of multiple sclerosis. Genome Med 2017; 9:50. [PMID: 28569182 PMCID: PMC5450152 DOI: 10.1186/s13073-017-0436-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/08/2017] [Indexed: 01/18/2023] Open
Abstract
Background Copaxone is an efficacious and safe therapy that has demonstrated clinical benefit for over two decades in patients with relapsing forms of multiple sclerosis (MS). On an individual level, patients show variability in their response to Copaxone, with some achieving significantly higher response levels. The involvement of genes (e.g., HLA-DRB1*1501) with high inter-individual variability in Copaxone’s mechanism of action (MoA) suggests the potential contribution of genetics to treatment response. This study aimed to identify genetic variants associated with Copaxone response in patient cohorts from late-phase clinical trials. Methods Single nucleotide polymorphisms (SNPs) associated with high and low levels of response to Copaxone were identified using genome-wide SNP data in a discovery cohort of 580 patients from two phase III clinical trials of Copaxone. Multivariable Bayesian modeling on the resulting SNPs in an expanded discovery cohort with 1171 patients identified a multi-SNP signature of Copaxone response. This signature was examined in 941 Copaxone-treated MS patients from seven independent late-phase trials of Copaxone and assessed for specificity to Copaxone in 310 Avonex-treated and 311 placebo-treated patients, also from late-phase trials. Results A four-SNP signature consisting of rs80191572 (in UVRAG), rs28724893 (in HLA-DQB2), rs1789084 (in MBP), and rs139890339 (in ZAK(CDCA7)) was identified as significantly associated with Copaxone response. Copaxone-treated signature-positive patients had a greater reduction in annualized relapse rate (ARR) compared to signature-negative patients in both discovery and independent cohorts, an effect not observed in Avonex-treated patients. Additionally, signature-positive placebo-treated cohorts did not show a reduction in ARR, demonstrating the predictive as opposed to prognostic nature of the signature. A 10% subset of patients, delineated by the signature, showed marked improvements across multiple clinical parameters, including ARR, MRI measures, and higher proportion with no evidence of disease activity (NEDA). Conclusions This study is the largest pharmacogenetic study in MS reported to date. Gene regions underlying the four-SNP signature have been linked with pathways associated with either Copaxone’s MoA or the pathophysiology of MS. The pronounced association of the four-SNP signature with clinical improvements in a ~10% subset of the MS patient population demonstrates the complex interplay of immune mechanisms and the individualized nature of response to Copaxone. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0436-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | - Iris Grossman
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel.
| | | |
Collapse
|
24
|
Davis MD, Ashtamker N, Steinerman JR, Knappertz V. Time course of glatiramer acetate efficacy in patients with RRMS in the GALA study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e327. [PMID: 28210662 PMCID: PMC5299631 DOI: 10.1212/nxi.0000000000000327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/27/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine the time to efficacy onset of glatiramer acetate (GA) 40 mg/mL 3-times-weekly formulation (GA40). METHODS This post hoc analysis of data from the 1-year, double-blind, placebo-controlled phase of the Glatiramer Acetate Low-Frequency Administration study (NCT01067521) of GA40 in patients with relapsing-remitting MS (RRMS) sought to determine the timing of efficacy onset using a novel data-censoring approach. RESULTS Compared with placebo-treated patients, those receiving GA40 exhibited a >30% reduction in the accumulated annualized relapse rate (ARR) within 2 months of initiating treatment and generally sustained this treatment difference during the 1-year study. Similarly, the proportion of GA40-treated patients who remained relapse-free was distinctly greater by month 2 and continued to increase up to a 10.8% difference at the end of the study. In addition, GA40 treatment was associated with a significant reduction in the number of gadolinium-enhancing T1 lesions and new/enlarging T2 lesions by month 6, with full treatment effect observed after 1 year. CONCLUSIONS GA40 contributes to efficacy within 2 months of the start of treatment in patients with RRMS. These results are consistent with the observed time to efficacy onset for patients treated with GA 20 mg/mL daily in previous randomized, placebo-controlled clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with RRMS, a 3-times-weekly formulation of GA 40 mg/mL leads to a >30% reduction in the ARR within 2 months.
Collapse
Affiliation(s)
- Mat D Davis
- Teva Pharmaceutical Industries (M.D.D., J.R.S., V.K.), Frazer, PA; Teva Pharmaceutical Industries (N.A.), Netanya, Israel; and Heinrich-Heine Universität Düsseldorf (V.K.), Germany
| | - Natalia Ashtamker
- Teva Pharmaceutical Industries (M.D.D., J.R.S., V.K.), Frazer, PA; Teva Pharmaceutical Industries (N.A.), Netanya, Israel; and Heinrich-Heine Universität Düsseldorf (V.K.), Germany
| | - Joshua R Steinerman
- Teva Pharmaceutical Industries (M.D.D., J.R.S., V.K.), Frazer, PA; Teva Pharmaceutical Industries (N.A.), Netanya, Israel; and Heinrich-Heine Universität Düsseldorf (V.K.), Germany
| | - Volker Knappertz
- Teva Pharmaceutical Industries (M.D.D., J.R.S., V.K.), Frazer, PA; Teva Pharmaceutical Industries (N.A.), Netanya, Israel; and Heinrich-Heine Universität Düsseldorf (V.K.), Germany
| |
Collapse
|
25
|
Boyko AN, Alifirova VM. Efficacy, safety and tolerability of glatiramer acetate injections in dose 40 mg/ml in patients with relapsing-remitting multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:135-139. [DOI: 10.17116/jnevro2017117111135-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Alroughani R, Deleu D, El Salem K, Al-Hashel J, Alexander KJ, Abdelrazek MA, Aljishi A, Alkhaboori J, Al Azri F, Al Zadjali N, Hbahbih M, Sokrab TE, Said M, Rovira À. A regional consensus recommendation on brain atrophy as an outcome measure in multiple sclerosis. BMC Neurol 2016; 16:240. [PMID: 27881095 PMCID: PMC5121973 DOI: 10.1186/s12883-016-0762-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory and neurodegenerative processes leading to irreversible neurological impairment. Brain atrophy occurs early in the course of the disease at a rate greater than the general population. Brain volume loss (BVL) is associated with disability progression and cognitive impairment in patients with MS; hence its value as a potential target in monitoring and treating MS is discussed. METHODS A group of MS neurologists and neuro-radiologists reviewed the current literature on brain atrophy and discussed the challenges in assessing and implementing brain atrophy measurements in clinical practice. The panel used a voting system to reach a consensus and the votes were counted for the proposed set of questions for cognitive and brain atrophy assessments. RESULTS The panel of experts was able to identify recent studies, which demonstrated the correlation between BVL and future worsening of disability and cognition. The current evidence revealed that reduction of BVL could be achieved with different disease-modifying therapies (DMTs). BVL provided a better treatment and monitoring strategy when it is combined to the composite measures of "no evidence of disease activity" (NEDA). The panel recommended a set of cognitive assessment tools and MRI methods and software applications that may help in capturing and measuring the underlying MS pathology with high degree of specificity. CONCLUSION BVL was considered to be a useful measurement to longitudinally assess disease progression and cognitive function in patients with MS. Brain atrophy measurement was recommended to be incorporated into the concept of NEDA. Consequently, a consensus recommendation was reached in anticipation for implementation of the use of cognitive assessment and brain atrophy measurements on a regional level.
Collapse
Affiliation(s)
- Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Kuwait City, Kuwait.
- Neurology Clinic, Dasman Diabetes Institute, Dasman, Kuwait.
| | - Dirk Deleu
- Division of Neurology (Neuroscience Institute), Hamad General Hospital, Doha, Qatar
| | - Khalid El Salem
- Department of Neurology, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid, Jordan
| | - Jasem Al-Hashel
- Department of Neurology, Ibn Sina Hospital, Kuwait City, Kuwait
| | | | | | - Adel Aljishi
- Department of Neurology, Salmaniya Hospital & AGU, Manama, Bahrain
| | | | - Faisal Al Azri
- Department of Radiology, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | | - Tag Eldin Sokrab
- Division of Neurology (Neuroscience Institute), Hamad General Center, Doha, Qatar
| | - Mohamed Said
- Medical Manger-Gulf Countries, Novartis pharmaceuticals, Dubai, United Arab Emirates
| | - Àlex Rovira
- Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
27
|
La Mantia L, Di Pietrantonj C, Rovaris M, Rigon G, Frau S, Berardo F, Gandini A, Longobardi A, Weinstock‐Guttman B, Vaona A. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2016; 11:CD009333. [PMID: 27880972 PMCID: PMC6464642 DOI: 10.1002/14651858.cd009333.pub3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interferons-beta (IFNs-beta) and glatiramer acetate (GA) were the first two disease-modifying therapies (DMTs) approved 20 years ago for the treatment of multiple sclerosis (MS). DMTs' prescription rates as first or switching therapies and their costs have both increased substantially over the past decade. As more DMTs become available, the choice of a specific DMT should reflect the risk/benefit profile, as well as the impact on quality of life. As MS cohorts enrolled in different studies can vary significantly, head-to-head trials are considered the best approach for gaining objective reliable data when two different drugs are compared. The purpose of this systematic review is to summarise available evidence on the comparative effectiveness of IFNs-beta and GA on disease course through the analysis of head-to-head trials.This is an update of the Cochrane review 'Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis' (first published in the Cochrane Library 2014, Issue 7). OBJECTIVES To assess whether IFNs-beta and GA differ in terms of safety and efficacy in the treatment of people with relapsing-remitting (RR) MS. SEARCH METHODS We searched the Trials Register of the Cochrane Multiple Sclerosis and Rare Diseases of the CNS Group (08 August 2016) and the reference lists of retrieved articles. We contacted authors and pharmaceutical companies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing directly IFNs-beta versus GA in study participants affected by RRMS. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as expected by Cochrane. MAIN RESULTS Six trials were included and five trials contributed to this review with data. A total of 2904 participants were randomly assigned to IFNs (1704) and GA (1200). The treatment duration was three years for one study, two years for the other four RCTs while one study was stopped early (after one year). The IFNs analysed in comparison with GA were IFN-beta 1b 250 mcg (two trials, 933 participants), IFN-beta 1a 44 mcg (three trials, 466 participants) and IFN-beta 1a 30 mcg (two trials, 305 participants). Enrolled participants were affected by active RRMS. All studies were at high risk for attrition bias. Three trials are still ongoing, one of them completed.Both therapies showed similar clinical efficacy at 24 months, given the primary outcome variables (number of participants with relapse (risk ratio (RR) 1.04, 95% confidence interval (CI) 0.87 to 1.24) or progression (RR 1.11, 95% CI 0.91 to 1.35). However at 36 months, evidence from a single study suggests that relapse rates were higher in the group given IFNs than in the GA group (RR 1.40, 95% CI 1.13 to 1.74, P value 0.002).Secondary magnetic resonance imaging (MRI) outcomes analysis showed that effects on new or enlarging T2- or new contrast-enhancing T1 lesions at 24 months were similar (mean difference (MD) -0.15, 95% CI -0.68 to 0.39, and MD -0.14, 95% CI -0.30 to 0.02, respectively). However, the reduction in T2- and T1-weighted lesion volume was significantly greater in the groups given IFNs than in the GA groups (MD -0.58, 95% CI -0.99 to -0.18, P value 0.004, and MD -0.20, 95% CI -0.33 to -0.07, P value 0.003, respectively).The number of participants who dropped out of the study because of adverse events was similar in the two groups (RR 0.95, 95% CI 0.64 to 1.40).The quality of evidence for primary outcomes was judged as moderate for clinical end points, but for safety and some MRI outcomes (number of active T2 lesions), quality was judged as low. AUTHORS' CONCLUSIONS The effects of IFNs-beta and GA in the treatment of people with RRMS, including clinical (e.g. people with relapse, risk to progression) and MRI (Gd-enhancing lesions) measures, seem to be similar or to show only small differences. When MRI lesion load accrual is considered, the effect of the two treatments differs, in that IFNs-beta were found to limit the increase in lesion burden as compared with GA. Evidence was insufficient for a comparison of the effects of the two treatments on patient-reported outcomes, such as quality-of-life measures.
Collapse
Affiliation(s)
- Loredana La Mantia
- I.R.C.C.S. Santa Maria Nascente ‐ Fondazione Don GnocchiUnit of Neurorehabilitation ‐ Multiple Sclerosis CenterVia Capecelatro, 66MilanoItaly20148
| | - Carlo Di Pietrantonj
- Local Health Unit Alessandria‐ ASL ALRegional Epidemiology Unit SeREMIVia Venezia 6AlessandriaAlessandriaItaly15121
| | - Marco Rovaris
- I.R.C.C.S. Santa Maria Nascente ‐ Fondazione Don GnocchiUnit of Neurorehabilitation ‐ Multiple Sclerosis CenterVia Capecelatro, 66MilanoItaly20148
| | - Giulio Rigon
- Azienda ULSS 20 ‐ VeronaPrimary CareVia Vivaldi, 11VeronaItaly37138
| | | | - Francesco Berardo
- Azienda Ospedaliera di Verona ‐ Department of PharmacyDrug Efficacy Evaluation Unit (UVEF) ‐ Veneto Regional Drug Information CenterPiazzale Stefani 1VeronaItaly37126
| | - Anna Gandini
- Azienda ULSS 21 ‐ LegnagoRegional Health ServiceVia Gianella 1LegnagoVareseItaly37045
| | - Anna Longobardi
- Azienda ULSS 20 ‐ VeronaPrimary CareVia Vivaldi, 11VeronaItaly37138
| | - Bianca Weinstock‐Guttman
- SUNY University of BuffaloDirector, Jacobs MS Center and Pediatric MS Center of Excellence100 High StreetBuffaloNew YorkUSA14203
| | - Alberto Vaona
- Azienda ULSS 20 ‐ VeronaPrimary CareVia Vivaldi, 11VeronaItaly37138
| | | |
Collapse
|
28
|
Khan O, Rieckmann P, Boyko A, Selmaj K, Ashtamker N, Davis MD, Kolodny S, Zivadinov R. Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. Mult Scler 2016; 23:818-829. [PMID: 27503905 DOI: 10.1177/1352458516664033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The 1-year placebo-controlled (PC) phase of the Glatiramer Acetate Low-Frequency Administration (GALA) study showed that glatiramer acetate 40 mg/mL three times weekly (GA40) significantly reduced annualized relapse rate (ARR) and magnetic resonance imaging (MRI) activity in patients with relapsing-remitting multiple sclerosis. Patients completing the PC phase were invited to an open-label (OL) extension. OBJECTIVE To evaluate the effects of early start (ES) and delayed start (DS) of GA40 over 3 years. METHODS A total of 97.2% of patients completing the PC phase received GA40 in the OL extension. ES ( n = 943) patients received GA40 throughout; DS ( n = 461) patients received placebo during the PC phase and GA40 during the OL phase. Relapse, MRI, disease progression, and safety were evaluated. RESULTS A total of 1041 patients completed 3 years of follow-up. During the OL phase, ES and DS patients showed comparable ARRs (0.20-0.22) and similar numbers of gadolinium-enhancing T1 ( p = 0.49) and new or enlarging T2 lesions ( p = 0.51) at Year 3. ES patients showed significantly smaller changes in gray matter volume than DS patients from Months 12 to 36 (mean difference, 0.371%; p = 0.015), with similar trend in whole-brain volume ( p = 0.080). Adverse events were mild, consistent with the well-established glatiramer acetate (GA) safety profile. CONCLUSION GA40 conferred treatment benefit over 3 years: sustained low ARR and lesion activity and favorable safety.
Collapse
Affiliation(s)
- Omar Khan
- The Sastry Foundation Advanced Imaging Laboratory & Multiple Sclerosis Center, Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Rieckmann
- Department of Neurology, Bamberg Academic Hospital, University of Erlangen, Bamberg, Germany
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetic of the Pirogov's Russian National Research Medical University and MS Clinic at the Usupov's Hospital, Moscow, Russia
| | - Krzysztof Selmaj
- Department of Neurology, Medical University of Łódź, Łódź, Poland
| | | | | | | | - Robert Zivadinov
- Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
29
|
Comi G, Amato MP, Bertolotto A, Centonze D, De Stefano N, Farina C, Gallo P, Ghezzi A, Grimaldi LM, Mancardi G, Marrosu MG, Montanari E, Patti F, Pozzilli C, Provinciali L, Salvetti M, Tedeschi G, Trojano M. The heritage of glatiramer acetate and its use in multiple sclerosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0010-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Abstract
A rapidly changing set of drugs for treatment of multiple sclerosis (MS) leads to the necessity of searching for predictors of their efficacy. Understanding of pathogenetic processes in MS and mechanisms of action of different drugs play an important role in the search for markers of potential responders. The author analyses the presently accumulated information on the original drug copaxone (glatiramer acetate) including current concepts on the mechanism of action, long-term safety and efficacy. Data on the frequency and significance of adverse effects during treatment with glatiramer acetate as well as on the influence of the drug on pregnancy, postpartum course of MS and development of the infant who received glatiramer acetate prenatally compared to other disease-modifying drugs are presented.
Collapse
Affiliation(s)
- D S Kasatkin
- Department of Nervous Diseases with Medical Genetics and Neurosurgery 'Yaroslavl state medical University', Yaroslavl, Russia
| |
Collapse
|
31
|
Tramacere I, Del Giovane C, Salanti G, D'Amico R, Filippini G. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2015; 2015:CD011381. [PMID: 26384035 PMCID: PMC9235409 DOI: 10.1002/14651858.cd011381.pub2] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Different therapeutic strategies are available for the treatment of people with relapsing-remitting multiple sclerosis (RRMS), including immunomodulators, immunosuppressants and biologics. Although there is consensus that these therapies reduce the frequency of relapses, their relative benefit in delaying new relapses or disability worsening remains unclear due to the limited number of direct comparison trials. OBJECTIVES To compare the benefit and acceptability of interferon beta-1b, interferon beta-1a (Avonex, Rebif), glatiramer acetate, natalizumab, mitoxantrone, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, pegylated interferon beta-1a, daclizumab, laquinimod, azathioprine and immunoglobulins for the treatment of people with RRMS and to provide a ranking of these treatments according to their benefit and acceptability, defined as the proportion of participants who withdrew due to any adverse event. SEARCH METHODS We searched the Cochrane Multiple Sclerosis and Rare Diseases of the CNS Group Trials Register, which contains trials from CENTRAL (2014, Issue 9), MEDLINE (1966 to 2014), EMBASE (1974 to 2014), CINAHL (1981 to 2014), LILACS (1982 to 2014), clinicaltrials.gov and the WHO trials registry, and US Food and Drug Administration (FDA) reports. We ran the most recent search in September 2014. SELECTION CRITERIA Randomised controlled trials (RCTs) that studied one or more of the 15 treatments as monotherapy, compared to placebo or to another active agent, for use in adults with RRMS. DATA COLLECTION AND ANALYSIS Two authors independently identified studies from the search results and performed data extraction. We performed data synthesis by pairwise meta-analysis and network meta-analysis. We assessed the quality of the body of evidence for outcomes within the network meta-analysis according to GRADE, as very low, low, moderate or high. MAIN RESULTS We included 39 studies in this review, in which 25,113 participants were randomised. The majority of the included trials were short-term studies, with a median duration of 24 months. Twenty-four (60%) were placebo-controlled and 15 (40%) were head-to-head studies.Network meta-analysis showed that, in terms of a protective effect against the recurrence of relapses in RRMS during the first 24 months of treatment, alemtuzumab, mitoxantrone, natalizumab, and fingolimod outperformed other drugs. The most effective drug was alemtuzumab (risk ratio (RR) versus placebo 0.46, 95% confidence interval (CI) 0.38 to 0.55; surface under the cumulative ranking curve (SUCRA) 96%; moderate quality evidence), followed by mitoxantrone (RR 0.47, 95% CI 0.27 to 0.81; SUCRA 92%; very low quality evidence), natalizumab (RR 0.56, 95% CI 0.47 to 0.66; SUCRA 88%; high quality evidence), and fingolimod (RR 0.72, 95% CI 0.64 to 0.81; SUCRA 71%; moderate quality evidence).Disability worsening was based on a surrogate marker, defined as irreversible worsening confirmed at three-month follow-up, measured during the first 24 months in the majority of included studies. Both direct and indirect comparisons revealed that the most effective treatments were mitoxantrone (RR versus placebo 0.20, 95% CI 0.05 to 0.84; SUCRA 96%; low quality evidence), alemtuzumab (RR 0.35, 95% CI 0.26 to 0.48; SUCRA 94%; low quality evidence), and natalizumab (RR 0.64, 95% CI 0.49 to 0.85; SUCRA 74%; moderate quality evidence).Almost all of the agents included in this review were associated with a higher proportion of participants who withdrew due to any adverse event compared to placebo. Based on the network meta-analysis methodology, the corresponding RR estimates versus placebo over the first 24 months of follow-up were: mitoxantrone 9.92 (95% CI 0.54 to 168.84), fingolimod 1.69 (95% CI 1.32 to 2.17), natalizumab 1.53 (95% CI 0.93 to 2.53), and alemtuzumab 0.72 (95% CI 0.32 to 1.61).Information on serious adverse events (SAEs) was scanty, characterised by heterogeneous results and based on a very low number of events observed during the short-term duration of the trials included in this review. AUTHORS' CONCLUSIONS Conservative interpretation of these results is warranted, since most of the included treatments have been evaluated in few trials. The GRADE approach recommends providing implications for practice based on moderate to high quality evidence. Our review shows that alemtuzumab, natalizumab, and fingolimod are the best choices for preventing clinical relapses in people with RRMS, but this evidence is limited to the first 24 months of follow-up. For the prevention of disability worsening in the short term (24 months), only natalizumab shows a beneficial effect on the basis of moderate quality evidence (all of the other estimates were based on low to very low quality evidence). Currently, therefore, insufficient evidence is available to evaluate treatments for the prevention of irreversible disability worsening.There are two additional major concerns that have to be considered. First, the benefit of all of these treatments beyond two years is uncertain and this is a relevant issue for a disease with a duration of 30 to 40 years. Second, short-term trials provide scanty and poorly reported safety data and do not provide useful evidence in order to obtain a reliable risk profile of treatments. In order to provide long-term information on the safety of the treatments included in this review, it will be necessary also to evaluate non-randomised studies and post-marketing reports released from the regulatory agencies. Finally, more than 70% of the studies included in this review were sponsored by pharmaceutical companies and this may have influenced the results.There are three needs that the research agenda should address. First, randomised trials of direct comparisons between active agents would be useful, avoiding further placebo-controlled studies. Second, follow-up of the original trial cohorts should be mandatory. Third, more studies are needed to assess the medium and long-term benefit and safety of immunotherapies and the comparative safety of different agents.
Collapse
Affiliation(s)
- Irene Tramacere
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo BestaNeuroepidemiology UnitVia Giovanni Celoria, 11MilanoItaly20133
| | - Cinzia Del Giovane
- University of Modena and Reggio EmiliaItalian Cochrane Centre, Department of Diagnostic, Clinical and Public Health MedicineModenaItaly
| | - Georgia Salanti
- University of Ioannina School of MedicineDepartment of Hygiene and EpidemiologyMedical School CampusUniversity of IoanninaIoanninaGreece45110
| | - Roberto D'Amico
- University of Modena and Reggio EmiliaItalian Cochrane Centre, Department of Diagnostic, Clinical and Public Health MedicineModenaItaly
| | - Graziella Filippini
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo BestaScientific Directionvia Celoria, 11MilanoItaly20133
| | | |
Collapse
|
32
|
Wolinsky JS, Borresen TE, Dietrich DW, Wynn D, Sidi Y, Steinerman JR, Knappertz V, Kolodny S. GLACIER: An open-label, randomized, multicenter study to assess the safety and tolerability of glatiramer acetate 40 mg three-times weekly versus 20 mg daily in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2015. [PMID: 26195058 DOI: 10.1016/j.msard.2015.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The efficacy and safety of glatiramer acetate (GA) 20 mg/mL once-daily subcutaneous injections (GA20) in relapsing-remitting multiple sclerosis (RRMS) is well-established. However, injection-related adverse events (IRAEs) may impede treatment adherence and tolerability. GA 40 mg/mL three-times weekly (GA40) also has a favorable efficacy and safety profile. OBJECTIVE To evaluate the safety, tolerability, and patient experience when converting from GA20 to GA40. METHODS/TRIAL DESIGN GLACIER was an open-label, randomized, parallel-group trial conducted at 31 sites in the US between June 2013 and December 2013. Stable RRMS patients on GA20 were randomized in a 1:1 ratio to continue with GA20 or convert to GA40. The adjusted mean annualized rate of IRAEs was the primary endpoint for this study. Additionally, the severity of IRAEs, rate of injection-site reactions (ISRs), and patient-reported MS impact and treatment satisfaction were compared for the two treatment groups over the 4-month core study. RESULTS A total of 209 patients were randomized to convert to GA40 (n=108) or continue with GA20 (n=101). The adjusted mean annualized rate of IRAEs was reduced by 50% with GA40 (35.3 events per year; n=108) versus GA20 (70.4 events per year; n=101) (risk ratio (RR)=0.50; 95% confidence interval [CI]=0.34-0.74; p=0.0006). There was a 60% reduction in the rate of moderate/severe events (GA40 (n=108): 0.9 events per year versus GA20 (n=101): 2.2 events per year; RR=0.40; p=0.0021). Perception of treatment convenience improved for GA40-treated patients soon after converting and was sustained. CONCLUSIONS The GLACIER study demonstrates a favorable IRAE and convenience profile of GA40 for RRMS patients. TRIAL REGISTRATION NCT01874145 available at clinicaltrial.gov.
Collapse
Affiliation(s)
- Jerry S Wolinsky
- University of Texas Health Science Center at Houston, Houston, TX, USA.
| | | | | | - Daniel Wynn
- Consultants in Neurology, Northbrook, IL, USA
| | | | | | - Volker Knappertz
- Global Clinical Development, Teva Pharmaceuticals, Frazer, PA, USA; Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
33
|
Vidal-Jordana A, Sastre-Garriga J, Rovira A, Montalban X. Treating relapsing-remitting multiple sclerosis: therapy effects on brain atrophy. J Neurol 2015; 262:2617-26. [PMID: 26041617 DOI: 10.1007/s00415-015-7798-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system with a complex and heterogeneous pathology that may ultimately lead to neurodegeneration and brain atrophy. Brain volume loss in MS is known to occur early in the disease course and to be clinically relevant, as it has been related to disability progression. Nowadays, brain volume loss is relatively easy to measure with different automated, reproducible and accurate software tools. Therefore, most of (if not all) the newest clinical trials have incorporated brain volume outcomes as a measure of treatment effect. With this review, we aimed to update and summarize all existing data regarding brain volume and RRMS treatment in clinical trials as well as in open-label observational studies of drugs with positive results in its primary outcome in at least one phase III trial as of March 2014.
Collapse
Affiliation(s)
- Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Edifici Cemcat, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Edifici Cemcat, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Alex Rovira
- Magnetic Resonance Unit, Radiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Edifici Cemcat, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| |
Collapse
|
34
|
Abstract
Glatiramer acetate (Copaxone(®)) is a synthetic analogue of myelin basic protein, which is thought to be involved in the pathogenesis of multiple sclerosis (MS). The therapeutic effects of the drug in the treatment of MS are thought to be via immunomodulation and neuroprotection. Subcutaneous glatiramer acetate 20 mg/mL once daily is approved in several countries for the treatment of relapsing forms of MS. Recently, a high-concentration formulation of glatiramer acetate 40 mg/mL administered three times weekly was approved in the USA and several European countries in the same indication. This article reviews the efficacy and tolerability of the high-concentration regimen. In the randomized, phase III GALA study in patients with relapsing-remitting MS (RRMS), glatiramer acetate 40 mg/mL three times weekly reduced annualized relapse rates significantly more than placebo, and indirect comparisons indicate that the efficacy of the three-times-weekly regimen is similar to that of the 20 mg/mL once-daily regimen. Results of the randomized, phase IIIb GLACIER study in patients with RRMS demonstrated that the three-times-weekly regimen reduced the risk of injection-site reactions by 50 % and was associated with numerically greater patient convenience scores than the once-daily regimen. Thus, in the treatment of RRMS, glatiramer acetate 40 mg/mL three times weekly is effective and provides a better tolerated and possibly more convenient option than the once-daily regimen.
Collapse
Affiliation(s)
- Kate McKeage
- Springer, Private Bag 65901, Mairangi Bay, 0754, Auckland, New Zealand.
| |
Collapse
|
35
|
Boster AL, Ford CC, Neudorfer O, Gilgun-Sherki Y. Glatiramer acetate: long-term safety and efficacy in relapsing-remitting multiple sclerosis. Expert Rev Neurother 2015; 15:575-86. [DOI: 10.1586/14737175.2015.1040768] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
English C, Aloi JJ. New FDA-Approved Disease-Modifying Therapies for Multiple Sclerosis. Clin Ther 2015; 37:691-715. [DOI: 10.1016/j.clinthera.2015.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
|
37
|
Milo R. Effectiveness of multiple sclerosis treatment with current immunomodulatory drugs. Expert Opin Pharmacother 2015; 16:659-73. [DOI: 10.1517/14656566.2015.1002769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
La Mantia L, Di Pietrantonj C, Rovaris M, Rigon G, Frau S, Berardo F, Gandini A, Longobardi A, Weinstock-Guttman B, Vaona A. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2014:CD009333. [PMID: 25062935 DOI: 10.1002/14651858.cd009333.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interferons (IFNs)-beta and glatiramer acetate (GA) were the first two disease-modifying therapies (DMTs) approved 15 years ago for the treatment of multiple sclerosis (MS). DMTs prescription rates as first or switching therapies and their costs have increased substantially over the past decade. As more DMTs become available, the choice of a specific DMT should reflect the risk/benefit profile, as well as the impact on quality profile. As MS cohorts enrolled in different studies can vary significantly, head-to-head trials are considered the best approach for gaining objective reliable data when two different drugs are compared. The purpose of this study is to summarise available evidence on the comparative effectiveness of IFNs-beta and GA on disease course through a systematic review of head-to-head trials. OBJECTIVES To assess whether IFNs-beta and GA differ in terms of safety and efficacy in the treatment of patients with relapsing-remitting MS (RRMS). SEARCH METHODS We searched the Trials Specialised Register of the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group (29 October 2013) and the reference lists of retrieved articles. We contacted trialists and pharmaceutical companies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing directly IFNs-beta versus GA in study participants affected by RRMS. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as expected by The Cochrane Collaboration. MAIN RESULTS Five trials contributed to this review. A total of 2858 participants were randomly assigned to IFNs (1679) and GA (1179). The treatment duration was three years for one study and two years for the other four RCTs. The IFNs analysed in comparison with GA were IFN-beta 1b 250 mcg (two trials, 933 participants), IFN-beta 1a 44 mcg (two trials, 441 participants) and IFN-beta 1a 30 mcg (two trials, 305 participants). Enrolled participants were affected by active RRMS. All studies were at high risk for attrition bias.Both therapies showed similar clinical efficacy at 24 months, given the primary outcome variables (number of participants with relapse (risk ratio (RR) 1.04, 95% confidence interval (CI) 0.87 to 1.24) or progression (RR 1.11, 95% CI 0.91 to 1.35)). However at 36 months, evidence from a single study suggests that relapse rates were higher in the group given IFNs than in the GA group (RR 1.40, 95% CI 1.13 to 1.7, P value 0.002).Secondary magnetic resonance imaging (MRI) outcomes analysis showed that effects on new or enlarging T2- or gadolinium (Gd)-enhancing lesions at 24 months were similar (mean difference (MD) -0.01, 95% CI -0.28 to 0.26, and MD -0.14, 95% CI -0.30 to 0.02, respectively). However, the reduction in T2- and T1-weighted lesion volume was significantly greater in the groups given IFNs than in the GA groups (MD -0.58, 95% CI -0.99 to -0.18, P value 0.004, and MD -0.20, 95% CI -0.33 to -0.07, P value 0.003, respectively).The number of participants who dropped out of the study because of adverse events was similar in the two groups (RR 0.95, 95% CI 0.64 to 1.40).The quality of evidence for primary outcomes was judged as moderate for clinical end points, but for safety and some MRI outcomes (number of active T2 lesions), quality was judged as low. AUTHORS' CONCLUSIONS The effects of IFNs-beta and GA in the treatment of patients with RRMS, including clinical (e.g. patients with relapse, risk to progression) and MRI (Gd-enhancing lesions) activity measures, seem to be similar or to show only small differences. When MRI lesion load accrual is considered, the effect of the two treatments differs, in that IFNs-beta were found to limit the increase in lesion burden as compared with GA. Evidence was insufficient for a comparison of the effects of the two treatments on patient-reported outcomes, such as quality of life measures.
Collapse
Affiliation(s)
- Loredana La Mantia
- Unit of Neurorehabilitation - Multiple Sclerosis Center, I.R.C.C.S. Santa Maria Nascente - Fondazione Don Gnocchi, Via Capecelatro, 66, Milano, Italy, 20148
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Characterization of T cell phenotype and function in a double transgenic (collagen-specific TCR/HLA-DR1) humanized model of arthritis. Arthritis Res Ther 2014; 16:R7. [PMID: 24405551 PMCID: PMC3978884 DOI: 10.1186/ar4433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
Introduction T cells orchestrate joint inflammation in rheumatoid arthritis (RA), yet they are difficult to study due to the small numbers of antigen-specific cells. The goal of this study was to characterize a new humanized model of autoimmune arthritis and to describe the phenotypic and functional changes that occur in autoimmune T cells following the induction of pathological events. Methods We developed a double transgenic mouse containing both the HLA-DR1 transgene and an HLA-DR1-restricted collagen-specific TCR in order to obtain large numbers of antigen-specific T cells that can be used for immunologic studies. Results In vitro, CII-specific T cells from this mouse proliferated vigorously in response to the CII immunodominant peptide A2 and the cells altered their phenotype to become predominately CD62Llow and CD44high “activated” T cells. The response was accompanied by the production of Th1, Th2, and Th17-type cytokines. Following immunization with bovine CII/CFA, these mice develop an accelerated arthritis compared to single transgenic HLA-DR1 mice. On the other hand, when the mice were treated orally with the analog peptide A12, (a suppressive analog of collagen we have previously described), arthritis was significantly suppressed, despite the fact that >90% of the CD4+ T cells express the TCR Tg. In GALT tissues taken from the A12-treated mice, IL-2, IFN-γ, and IL-17 production to the autoimmune collagen determinant dropped while high levels of IL-10 and IL-4 were produced. Conclusions We have developed a humanized model of autoimmune arthritis that will be useful for the study of T cell directed therapies as well as T cell mediated mechanisms of autoimmune diseases.
Collapse
|
40
|
Johnson KP. Glatiramer acetate for treatment of relapsing–remitting multiple sclerosis. Expert Rev Neurother 2014; 12:371-84. [DOI: 10.1586/ern.12.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Caporro M, Disanto G, Gobbi C, Zecca C. Two decades of subcutaneous glatiramer acetate injection: current role of the standard dose, and new high-dose low-frequency glatiramer acetate in relapsing-remitting multiple sclerosis treatment. Patient Prefer Adherence 2014; 8:1123-34. [PMID: 25170258 PMCID: PMC4144933 DOI: 10.2147/ppa.s68698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glatiramer acetate, a synthetic amino acid polymer analog of myelin basic protein, is one of the first approved drugs for the treatment of relapsing-remitting multiple sclerosis. Several clinical trials have shown consistent and sustained efficacy of glatiramer acetate 20 mg subcutaneously daily in reducing relapses and new demyelinating lesions on magnetic resonance imaging in patients with relapsing-remitting multiple sclerosis, as well as comparable efficacy to high-dose interferon beta. Some preclinical and clinical data suggest a neuroprotective role for glatiramer acetate in multiple sclerosis. Glatiramer acetate is associated with a relatively favorable side-effect profile, and importantly this was confirmed also during long-term use. Glatiramer acetate is the only multiple sclerosis treatment compound that has gained the US Food and Drug Administration pregnancy category B. All these data support its current use as a first-line treatment option for patients with clinical isolated syndrome or relapsing-remitting multiple sclerosis. More recent data have shown that high-dose glatiramer acetate (ie, 40 mg) given three times weekly is effective, safe, and well tolerated in the treatment of relapsing-remitting multiple sclerosis, prompting the approval of this dosage in the US in early 2014. This high-dose, lower-frequency glatiramer acetate might represent a new, more convenient regimen of administration, and this might enhance patients' adherence to the treatment, crucial for optimal disease control.
Collapse
Affiliation(s)
- Matteo Caporro
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Giulio Disanto
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Claudio Gobbi
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Chiara Zecca
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland
- Correspondence: Chiara Zecca, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, 46 Via Tesserete, Lugano 6903, Switzerland, Tel +41 91 811 6921, Fax +41 91 811 6915, Email
| |
Collapse
|
42
|
Abstract
It is widely accepted that the main common pathogenetic pathway in multiple sclerosis (MS) involves an immune-mediated cascade initiated in the peripheral immune system and targeting CNS myelin. Logically, therefore, the therapeutic approaches to the disease include modalities aiming at downregulation of the various immune elements that are involved in this immunologic cascade. Since the introduction of interferons in 1993, which were the first registered treatments for MS, huge steps have been made in the field of MS immunotherapy. More efficious and specific immunoactive drugs have been introduced and it appears that the increased specificity for MS of these new treatments is paralleled by greater efficacy. Unfortunately, this seemingly increased efficacy has been accompanied by more safety issues. The immunotherapeutic modalities can be divided into two main groups: those affecting the acute stages (relapses) of the disease and the long-term treatments that are aimed at preventing the appearance of relapses and the progression in disability. Immunomodulating treatments may also be classified according to the level of the 'immune axis' where they exert their main effect. Since, in MS, a neurodegenerative process runs in parallel and as a consequence of inflammation, early immune intervention is warranted to prevent progression of relapses of MS and the accumulation of disability. The use of neuroimaging (MRI) techniques that allow the detection of silent inflammatory activity of MS and neurodegeneration has provided an important tool for the substantiation of the clinical efficacy of treatments and the early diagnosis of MS. This review summarizes in detail the existing information on all the available immunotherapies for MS, old and new, classifies them according to their immunologic mechanisms of action and proposes a structured algorithm/therapeutic scheme for the management of the disease.
Collapse
|
43
|
Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013; 73:705-13. [DOI: 10.1002/ana.23938] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/28/2013] [Accepted: 05/10/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Omar Khan
- Department of Neurology and Multiple Sclerosis Center; Wayne State University School of Medicine; Detroit; MI
| | - Peter Rieckmann
- Department of Neurology, Bamberg Academic Hospital; University of Erlangen; Bamberg; Germany
| | - Alexey Boyko
- Department of Neurology and Neurosurgery; Russian National Medical Research University and Moscow Multiple Sclerosis Center; Moscow; Russia
| | - Krzysztof Selmaj
- Department of Neurology; Medical University of Lodz; Lodz; Poland
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Department of Neurology; University of Buffalo; Buffalo; NY
| | | |
Collapse
|
44
|
Sormani MP, Bruzzi P. MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol 2013; 12:669-76. [PMID: 23743084 DOI: 10.1016/s1474-4422(13)70103-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A meta-analysis of randomised trials in relapsing-remitting multiple sclerosis published in 2009 showed a quantitative relation between the treatment effects detected on MRI lesions and clinical relapses. We aimed to validate that relation using data from a large and independent set of clinical trials in multiple sclerosis. METHODS We searched Medline for clinical trials that assessed disease-modifying drugs for relapsing-remitting multiple sclerosis published from Sept 1, 2008, to Oct 31, 2012. We extracted data for the treatment effects on MRI lesions and on relapses from each trial, and the correlation of log transformed relative measures of these treatment effects was assessed with a weighted linear regression analysis. The R(2) value was estimated to quantify the strength of the correlation, and we used an interaction test to test for a difference in slope from the previously estimated equation. We also ran several sensitivity analyses. FINDINGS We identified 31 eligible trials, which provided data for 18 901 patients with relapsing-remitting multiple sclerosis. The regression equation derived using data from these studies showed a relation between the concurrent treatment effects on MRI lesions and relapses (slope=0·52; R(2)=0·71), much the same as was previously estimated (pinteraction=0·45). Analysis of trials that tested the same drugs in phase 2 and phase 3 studies showed that the effects on MRI lesions over short follow-up periods (6-9 months) can also predict the effects on relapses over longer follow-up periods (12-24 months), with reported effects on relapses that were within the 95% prediction intervals in eight of nine trials. INTERPRETATION Our findings indicate that the effect of a treatment on relapses can be accurately predicted by the effect of that therapy on MRI lesions, implying that the use of MRI markers as primary endpoints in future clinical trials of treatments for multiple sclerosis can be considered, in specific situations, such as in trials testing generics or biosimilars of drugs with a well known mechanism of action or in paediatric trials testing drugs already approved for adults. FUNDING None.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
| | | |
Collapse
|
45
|
Glatiramer Acetate Protects Against Inflammatory Synaptopathy in Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2013; 8:651-63. [DOI: 10.1007/s11481-013-9436-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
|
46
|
Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Fisher E, Brinar VV, Giovannoni G, Stojanovic M, Ertik BI, Lake SL, Margolin DH, Panzara MA, Compston DAS. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 2012; 380:1819-28. [PMID: 23122652 DOI: 10.1016/s0140-6736(12)61769-3] [Citation(s) in RCA: 875] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The anti-CD52 monoclonal antibody alemtuzumab reduced disease activity in a phase 2 trial of previously untreated patients with relapsing-remitting multiple sclerosis. We aimed to assess efficacy and safety of first-line alemtuzumab compared with interferon beta 1a in a phase 3 trial. METHODS In our 2 year, rater-masked, randomised controlled phase 3 trial, we enrolled adults aged 18-50 years with previously untreated relapsing-remitting multiple sclerosis. Eligible participants were randomly allocated in a 2:1 ratio by an interactive voice response system, stratified by site, to receive intravenous alemtuzumab 12 mg per day or subcutaneous interferon beta 1a 44 μg. Interferon beta 1a was given three-times per week and alemtuzumab was given once per day for 5 days at baseline and once per day for 3 days at 12 months. Coprimary endpoints were relapse rate and time to 6 month sustained accumulation of disability in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT00530348. FINDINGS 187 (96%) of 195 patients randomly allocated interferon beta 1a and 376 (97%) of 386 patients randomly allocated alemtuzumab were included in the primary analyses. 75 (40%) patients in the interferon beta 1a group relapsed (122 events) compared with 82 (22%) patients in the alemtuzumab group (119 events; rate ratio 0·45 [95% CI 0·32-0·63]; p<0.0001), corresponding to a 54·9% improvement with alemtuzumab. Based on Kaplan-Meier estimates, 59% of patients in the interferon beta 1a group were relapse-free at 2 years compared with 78% of patients in the alemtuzumab group (p<0·0001). 20 (11%) of patients in the interferon beta 1a group had sustained accumulation of disability compared with 30 (8%) in the alemtuzumab group (hazard ratio 0·70 [95% CI 0·40-1·23]; p=0·22). 338 (90%) of patients in the alemtuzumab group had infusion-associated reactions; 12 (3%) of which were regarded as serious. Infections, predominantly of mild or moderate severity, occurred in 253 (67%) patients treated with alemtuzumab versus 85 (45%) patients treated with interferon beta 1a. 62 (16%) patients treated with alemtuzumab had herpes infections (predominantly cutaneous) compared with three (2%) patients treated with interferon beta 1a. By 24 months, 68 (18%) patients in the alemtuzumab group had thyroid-associated adverse events compared with 12 (6%) in the interferon beta 1a group, and three (1%) had immune thrombocytopenia compared with none in the interferon beta 1a group. Two patients in the alemtuzumab group developed thyroid papillary carcinoma. INTERPRETATION Alemtuzumab's consistent safety profile and benefit in terms of reductions of relapse support its use for patients with previously untreated relapsing-remitting multiple sclerosis; however, benefit in terms of disability endpoints noted in previous trials was not observed here. FUNDING Genzyme (Sanofi) and Bayer Schering Pharma.
Collapse
|
47
|
Billetta R, Ghahramani N, Morrow O, Prakken B, de Jong H, Meschter C, Lanza P, Albani S. Epitope-specific immune tolerization ameliorates experimental autoimmune encephalomyelitis. Clin Immunol 2012; 145:94-101. [DOI: 10.1016/j.clim.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/04/2023]
|
48
|
Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367:1087-97. [PMID: 22992072 DOI: 10.1056/nejmoa1206328] [Citation(s) in RCA: 1014] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND BG-12 (dimethyl fumarate) is in development as an oral treatment for relapsing-remitting multiple sclerosis, which is commonly treated with parenteral agents (interferon or glatiramer acetate). METHODS In this phase 3, randomized study, we investigated the efficacy and safety of oral BG-12, at a dose of 240 mg two or three times daily, as compared with placebo in patients with relapsing-remitting multiple sclerosis. An active agent, glatiramer acetate, was also included as a reference comparator. The primary end point was the annualized relapse rate over a period of 2 years. The study was not designed to test the superiority or noninferiority of BG-12 versus glatiramer acetate. RESULTS At 2 years, the annualized relapse rate was significantly lower with twice-daily BG-12 (0.22), thrice-daily BG-12 (0.20), and glatiramer acetate (0.29) than with placebo (0.40) (relative reductions: twice-daily BG-12, 44%, P<0.001; thrice-daily BG-12, 51%, P<0.001; glatiramer acetate, 29%, P=0.01). Reductions in disability progression with twice-daily BG-12, thrice-daily BG-12, and glatiramer acetate versus placebo (21%, 24%, and 7%, respectively) were not significant. As compared with placebo, twice-daily BG-12, thrice-daily BG-12, and glatiramer acetate significantly reduced the numbers of new or enlarging T(2)-weighted hyperintense lesions (all P<0.001) and new T(1)-weighted hypointense lesions (P<0.001, P<0.001, and P=0.002, respectively). In post hoc comparisons of BG-12 versus glatiramer acetate, differences were not significant except for the annualized relapse rate (thrice-daily BG-12), new or enlarging T(2)-weighted hyperintense lesions (both BG-12 doses), and new T(1)-weighted hypointense lesions (thrice-daily BG-12) (nominal P<0.05 for each comparison). Adverse events occurring at a higher incidence with an active treatment than with placebo included flushing and gastrointestinal events (with BG-12) and injection-related events (with glatiramer acetate). There were no malignant neoplasms or opportunistic infections reported with BG-12. Lymphocyte counts decreased with BG-12. CONCLUSIONS In patients with relapsing-remitting multiple sclerosis, BG-12 (at both doses) and glatiramer acetate significantly reduced relapse rates and improved neuroradiologic outcomes relative to placebo. (Funded by Biogen Idec; CONFIRM ClinicalTrials.gov number, NCT00451451.).
Collapse
Affiliation(s)
- Robert J Fox
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Balak DMW, Hengstman GJD, Çakmak A, Thio HB. Cutaneous adverse events associated with disease-modifying treatment in multiple sclerosis: a systematic review. Mult Scler 2012; 18:1705-17. [PMID: 22371220 DOI: 10.1177/1352458512438239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glatiramer acetate and interferon-beta are approved first-line disease-modifying treatments (DMTs) for multiple sclerosis (MS). DMTs can be associated with cutaneous adverse events, which may influence treatment adherence and patient quality of life. In this systematic review, we aimed to provide an overview of the clinical spectrum and the incidence of skin reactions associated with DMTs. A systematic literature search was performed up to May 2011 in Medline, Embase, and Cochrane databases without applying restrictions in study design, language, or publishing date. Eligible for inclusion were articles describing any skin reaction related to DMTs in MS patients. Selection of articles and data extraction were performed by two authors independently. One hundred and six articles were included, of which 41 (39%) were randomized controlled trials or cohort studies reporting incidences of mainly local injection-site reactions. A large number of patients had experienced some form of localized injection-site reaction: up to 90% for those using subcutaneous formulations and up to 33% for those using an intramuscular formulation. Sixty-five case-reports involving 106 MS patients described a wide spectrum of cutaneous adverse events, the most frequently reported being lipoatrophy, cutaneous necrosis and ulcers, and various immune-mediated inflammatory skin diseases. DMTs for MS are frequently associated with local injection-site reactions and a wide spectrum of generalized cutaneous adverse events, in particular, the subcutaneous formulations. Although some of the skin reactions may be severe and persistent, most of them are mild and do not require cessation of DMT.
Collapse
Affiliation(s)
- Deepak M W Balak
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
50
|
Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 2012; 62:2154-68. [PMID: 22361232 DOI: 10.1016/j.neuropharm.2012.01.028] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic Parkinson's disease (PD) represents a complex interaction between the inherent vulnerability of the nigrostriatal dopaminergic system, a possible genetic predisposition, and exposure to environmental toxins including inflammatory triggers. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of PD. Activation of microglia and increased levels of pro-inflammatory mediators such as TNF-α, IL-1β and IL-6, reactive oxygen species and eicosanoids has been reported after post-mortem analysis of the substantia nigra from PD patients and in animal models of PD. It is hypothesised that chronically activated microglia secrete high levels of pro-inflammatory mediators which damage neurons and further activate microglia, resulting in a feed forward cycle promoting further inflammation and neurodegeneration. Moreover, nigrostriatal dopaminergic neurons are more vulnerable to pro-inflammatory and oxidative mediators than other cell types because of their low intracellular glutathione concentration. Systemic inflammation has also been suggested to contribute to neurodegeneration in PD, as lymphocyte infiltration has been observed in brains of PD patients and in animal models of PD, substantiating the current theory of a fundamental role of inflammation in neurodegeneration. We will examine the current evidence in the literature which offers insight into the premise that both central and systemic inflammation may contribute to neurodegeneration in PD. We will discuss the emerging possibility of the use of diagnostic tools such as imaging technologies for PD patients. Finally, we will present the immunomodulatory therapeutic strategies that are now under investigation and in clinical trials as potential neuroprotective drugs for PD.
Collapse
Affiliation(s)
- Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Biosciences Institute, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|