1
|
Musai J, Mammen AL, Pinal-Fernandez I. Recent Updates on the Pathogenesis of Inflammatory Myopathies. Curr Rheumatol Rep 2024; 26:421-430. [PMID: 39316320 PMCID: PMC11527972 DOI: 10.1007/s11926-024-01164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a comprehensive and updated overview of autoimmune myopathies, with a special focus on the latest advancements in understanding the role of autoantibodies. We will begin by examining the risk factors and triggers associated with myositis. Next, we will delve into recent research on how autoantibodies contribute to disease pathogenesis. Finally, we will explore the latest innovations in treatment strategies and their implications for our understanding of myositis pathogenesis. RECENT FINDINGS Recent research has revealed that myositis-specific autoantibodies can infiltrate muscle cells and disrupt the function of their target autoantigens, playing a crucial role in disease pathogenesis. Significant advances in treatment include CD19 CAR-T cell therapy, JAK-STAT inhibitors, and novel strategies targeting the type 1 interferon pathway in dermatomyositis. Additionally, the ineffectiveness of complement inhibitors in treating immune-mediated necrotizing myositis has challenged established views on disease mechanisms. Autoimmune myopathies are a collection of disorders significantly influenced by specific autoantibodies that drive disease pathogenesis. This review highlights the critical role of autoantibody research in deepening our understanding of these conditions and discusses recent therapeutic advancements targeting key pathogenic pathways.
Collapse
Affiliation(s)
- Jon Musai
- Muscle Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Room 1141, Building 50, MSC 8024, Bethesda, MD, 20892, USA
| | - Andrew L Mammen
- Muscle Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Room 1141, Building 50, MSC 8024, Bethesda, MD, 20892, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Iago Pinal-Fernandez
- Muscle Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Room 1141, Building 50, MSC 8024, Bethesda, MD, 20892, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024:e0110224. [PMID: 39431820 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
3
|
Brady S, Poulton J, Muller S. Inclusion body myositis: Correcting impaired mitochondrial and lysosomal autophagy as a potential therapeutic strategy. Autoimmun Rev 2024; 23:103644. [PMID: 39306221 DOI: 10.1016/j.autrev.2024.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Inclusion body myositis (IBM) is a late onset sporadic myopathy with a characteristic clinical presentation, but as yet unknown aetiology or effective treatment. Typical clinical features are early predominant asymmetric weakness of finger flexor and knee extensor muscles. Muscle biopsy shows endomysial inflammatory infiltrate, mitochondrial changes, and protein aggregation. Proteostasis (protein turnover) appears to be impaired, linked to potentially dysregulated chaperone-mediated autophagy and mitophagy (a type of mitochondrial quality control). In this review, we bring together the most recent clinical and biological data describing IBM. We then address the question of diagnosing this pathology and the relevance of the current biological markers that characterize IBM. In these descriptions, we put a particular emphasis on data related to the deregulation of autophagic processes and to the mitochondrial-lysosomal crosstalk. Finally, after a short description of current treatments, an overview is provided pointing towards novel therapeutic targets and emerging regulatory molecules that are being explored for treating IBM. Special attention is paid to autophagy inhibitors that may offer innovative breakthrough therapies for patients with IBM.
Collapse
Affiliation(s)
- Stefen Brady
- Oxford Adult Muscle Service, John Radcliffe Hospital, Oxford University Hospital Trust, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
4
|
Yamashita S, Tawara N, Sugie K, Suzuki N, Nishino I, Aoki M. Impact of sex, age at onset, and anti-cN1A antibodies on sporadic inclusion body myositis. J Neurol Sci 2024; 464:123164. [PMID: 39126732 DOI: 10.1016/j.jns.2024.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Inclusion body myositis (IBM) is a progressive myopathy occurring in patients over 45 years of age, with heterogeneous and variable clinical features. This study aimed to determine the influence of autoantibodies, gender, and age of onset on the clinical features of IBM. METHODS Medical records and muscle histology findings of 570 participants with suspected IBM were reviewed. Various characteristics of patients who met the 2011 ENMC IBM diagnostic criteria were compared based on the presence of anti-cytosolic 5'-nucleotidase 1 A (cN1A) autoantibodies, gender, age of onset, and disease duration. RESULTS Of the 353 patients who met the criteria, 41.6% were female. The mean age at onset was 64.6 ± 9.3 years, and the mean duration from onset to diagnosis was 5.7 ± 4.7 years. 196 of the 353 patients (55.5%) were positive for anti-cN1A autoantibodies and 157 were negative. Logistic regression showed that patients with anti-cN1A autoantibodies had a higher frequency of finger flexion weakness. Multiple regression showed that patients with later age of onset had shorter disease duration, lower BMI, and lower serum CK levels. Male patients had a higher frequency of onset with finger weakness and female patients had a lower BMI. CONCLUSION Autoantibodies, gender, age of onset, and disease duration may influence the clinical presentation of IBM, highlighting the need for a precision medicine approach that considers these factors along with the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan.
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Liu S, Hong Y, Wang BR, Wei ZQ, Zhao HD, Jiang T, Zhang YD, Shi JQ. The presence and clinical significance of autoantibodies in amyotrophic lateral sclerosis: a narrative review. Neurol Sci 2024; 45:4133-4149. [PMID: 38733435 DOI: 10.1007/s10072-024-07581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease, which is characterized by the selective loss of the upper and lower motor neurons. The pathogenesis of ALS remains to be elucidated and has been connected to genetic, environmental and immune conditions. Evidence from clinical and experimental studies has suggested that the immune system played an important role in ALS pathophysiology. Autoantibodies are essential components of the immune system. Several autoantibodies directed at antigens associated with ALS pathogenesis have been identified in the serum and/or cerebrospinal fluid of ALS patients. The aim of this review is to summarize the presence and clinical significance of autoantibodies in ALS.
Collapse
Affiliation(s)
- Shen Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Bian-Rong Wang
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Zi-Qiao Wei
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Hong-Dong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, PR China.
| |
Collapse
|
6
|
Mathias A, Perriot S, Jones S, Canales M, Bernard-Valnet R, Gimenez M, Torcida N, Oberholster L, Hottinger AF, Zekeridou A, Theaudin M, Pot C, Du Pasquier R. Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases. Front Immunol 2024; 15:1419712. [PMID: 39114659 PMCID: PMC11303155 DOI: 10.3389/fimmu.2024.1419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objectives Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Methods Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Results Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Conclusion Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Sylvain Perriot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Samuel Jones
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Mathieu Canales
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Nathan Torcida
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Larise Oberholster
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Andreas F. Hottinger
- Lundin Family Brain Tumor Research Centre, Department of Clinical Neurosciences and Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology and Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Marie Theaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Tebo AE. Autoantibody evaluation in idiopathic inflammatory myopathies. Adv Clin Chem 2024; 120:45-67. [PMID: 38762242 DOI: 10.1016/bs.acc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Idiopathic inflammatory myopathies (IIM), generally referred to as myositis is a heterogeneous group of diseases characterized by muscle inflammation and/or skin involvement, diverse extramuscular manifestations with variable risk for malignancy and response to treatment. Contemporary clinico-serologic categorization identifies 5 main clinical groups which can be further stratified based on age, specific clinical manifestations and/or risk for cancer. The serological biomarkers for this classification are generally known as myositis-specific (MSAs) and myositis-associated antibodies. Based on the use of these antibodies, IIM patients are classified into anti-synthetase syndrome, dermatomyositis, immune-mediated necrotizing myopathy, inclusion body myositis, and overlap myositis. The current classification criteria for IIM requires clinical findings, laboratory measurements, and histological findings of the muscles. However, the use MSAs and myositis-associated autoantibodies as an adjunct for disease evaluation is thought to provide a cost-effective personalized approach that may not only guide diagnosis but aid in stratification and/or prognosis of patients. This review provides a comprehensive overview of contemporary autoantibodies that are specific or associated myositis. In addition, it highlights possible pathways for the detection and interpretation of these antibodies with limitations for routine clinical use.
Collapse
Affiliation(s)
- Anne E Tebo
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States.
| |
Collapse
|
8
|
Lilleker JB, Naddaf E, Saris CGJ, Schmidt J, de Visser M, Weihl CC. 272nd ENMC international workshop: 10 Years of progress - revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16-18 June 2023, Hoofddorp, The Netherlands. Neuromuscul Disord 2024; 37:36-51. [PMID: 38522330 DOI: 10.1016/j.nmd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Since the publication of the 2013 European Neuromuscular Center (ENMC) diagnostic criteria for Inclusion Body Myositis (IBM), several advances have been made regarding IBM epidemiology, pathogenesis, diagnostic tools, and clinical trial readiness. Novel diagnostic tools include muscle imaging techniques such as MRI and ultrasound, and serological testing for cytosolic 5'-nucleotidase-1A antibodies. The 272nd ENMC workshop aimed to develop new diagnostic criteria, discuss clinical outcome measures and clinical trial readiness. The workshop started with patient representatives highlighting several understudied symptoms and the urge for a timely diagnosis. This was followed by presentations from IBM experts highlighting the new developments in the field. This report is composed of two parts, the first part providing new diagnostic criteria on which consensus was achieved. The second part focuses on the use of outcome measures in clinical practice and clinical trials, highlighting current limitations and outlining the goals for future studies.
Collapse
Affiliation(s)
- James B Lilleker
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK; Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christiaan G J Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jens Schmidt
- Department of Neurology and Pain Treatment, Neuromuscular Center and Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School MHB, Rüdersdorf bei Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Marianne de Visser
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
10
|
Connolly CM, Gupta L, Fujimoto M, Machado PM, Paik JJ. Idiopathic inflammatory myopathies: current insights and future frontiers. THE LANCET. RHEUMATOLOGY 2024; 6:e115-e127. [PMID: 38267098 DOI: 10.1016/s2665-9913(23)00322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
Idiopathic inflammatory myopathies are a group of autoimmune diseases with a broad spectrum of clinical presentations, primarily characterised by immune-mediated muscle injury. Until recently, there was little insight into the pathogenesis of idiopathic inflammatory myopathies, which challenged the recognition of the breadth of heterogeneity of this group of diseases as well as the development of new therapeutics. However, the landscape of idiopathic inflammatory myopathies is evolving. In the past decade, advances in diagnostic tools have facilitated an enhanced understanding of the underlying disease mechanisms in idiopathic inflammatory myopathies, enabling the expansion of therapeutic trials. The fields of transcriptomics, prot§eomics, and machine learning offer the potential to gain greater insights into the underlying pathophysiology of idiopathic inflammatory myopathies. Harnessing insights gained from these sophisticated tools could contribute to the identification of differences at a molecular level among patients, accelerating the development of targeted, tailored therapies. Bolstered by the validation and standardisation of robust outcome measures, many promising therapies are in clinical trial development. Although challenges remain, there is great optimism in the field due to the progress in innovative diagnostics, outcome measures, and therapeutic approaches. In this Review, we discuss the expanding landscape of idiopathic inflammatory myopathies as the frontier of precision medicine becomes imminent.
Collapse
Affiliation(s)
- Caoilfhionn M Connolly
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Latika Gupta
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK; Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, The University of Manchester, Manchester, UK; Department of Rheumatology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Manabu Fujimoto
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Pedro M Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK; Centre for Rheumatology, University College London, London, UK; National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK; Department of Rheumatology, Northwick Park Hospital, London North West University Healthcare NHS Trust, London, UK
| | - Julie J Paik
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Slater N, Sooda A, McLeish E, Beer K, Brusch A, Shakya R, Bundell C, James I, Chopra A, Mastaglia FL, Needham M, Coudert JD. High-resolution HLA genotyping in inclusion body myositis refines 8.1 ancestral haplotype association to DRB1*03:01:01 and highlights pathogenic role of arginine-74 of DRβ1 chain. J Autoimmun 2024; 142:103150. [PMID: 38043487 DOI: 10.1016/j.jaut.2023.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES Inclusion body myositis (IBM) is a progressive inflammatory-degenerative muscle disease of older individuals, with some patients producing anti-cytosolic 5'-nucleotidase 1A (NT5C1A, aka cN1A) antibodies. Human Leukocyte Antigens (HLA) is the highest genetic risk factor for developing IBM. In this study, we aimed to further define the contribution of HLA alleles to IBM and the production of anti-cN1A antibodies. METHODS We HLA haplotyped a Western Australian cohort of 113 Caucasian IBM patients and 112 ethnically matched controls using Illumina next-generation sequencing. Allele frequency analysis and amino acid alignments were performed using the Genentech/MiDAS bioinformatics package. Allele frequencies were compared using Fisher's exact test. Age at onset analysis was performed using the ggstatsplot package. All analysis was carried out in RStudio version 1.4.1717. RESULTS Our findings validated the independent association of HLA-DRB1*03:01:01 with IBM and attributed the risk to an arginine residue in position 74 within the DRβ1 protein. Conversely, DRB4*01:01:01 and DQA1*01:02:01 were found to have protective effects; the carriers of DRB1*03:01:01 that did not possess these alleles had a fourteenfold increased risk of developing IBM over the general Caucasian population. Furthermore, patients with the abovementioned genotype developed symptoms on average five years earlier than patients without. We did not find any HLA associations with anti-cN1A antibody production. CONCLUSIONS High-resolution HLA sequencing more precisely characterised the alleles associated with IBM and defined a haplotype linked to earlier disease onset. Identification of the critical amino acid residue by advanced biostatistical analysis of immunogenetics data offers mechanistic insights and future directions into uncovering IBM aetiopathogenesis.
Collapse
Affiliation(s)
- Nataliya Slater
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia
| | - Anuradha Sooda
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia
| | - Emily McLeish
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia
| | - Kelly Beer
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Anna Brusch
- PathWest Laboratory Medicine, Dept of Clinical Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - Rakesh Shakya
- PathWest Laboratory Medicine, Dept of Clinical Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - Christine Bundell
- PathWest Laboratory Medicine, Dept of Clinical Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - Ian James
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; Murdoch University, Institute for Immunology and Infection Diseases, Murdoch, WA, Australia
| | - Abha Chopra
- Murdoch University, Institute for Immunology and Infection Diseases, Murdoch, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; University of Western Australia, Centre for Neuromuscular & Neurological Disorders, Crawley, WA, Australia
| | - Merrilee Needham
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; University of Notre Dame Australia, School of Medicine, Fremantle, WA, Australia; Fiona Stanley Hospital, Department of Neurology, Murdoch, WA, Australia
| | - Jerome D Coudert
- Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; University of Notre Dame Australia, School of Medicine, Fremantle, WA, Australia.
| |
Collapse
|
12
|
Yamashita S, Tawara N, Zhang Z, Nakane S, Sugie K, Suzuki N, Nishino I, Aoki M. Pathogenic role of anti-cN1A autoantibodies in sporadic inclusion body myositis. J Neurol Neurosurg Psychiatry 2023; 94:1018-1024. [PMID: 37451693 DOI: 10.1136/jnnp-2023-331474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Sporadic inclusion body myositis (sIBM) is an intractable muscle disease that frequently affects elderly people. Autoantibodies recognising cytosolic 5'-nucleotidase 1A (cN1A) were found in the sera of patients with sIBM. However, the pathogenic role of the autoantibodies remained unknown. This study investigated the pathogenic properties of the autoantibodies using active cN1A peptides immunisation. METHODS Wild-type C57BL6 mice were injected with three different mouse cN1A peptides corresponding to the previously reported epitope sequences of human cN1A. After confirming the production of autoantibodies to the corresponding cN1A peptides in each group, changes in body weight, exercise capacity by treadmill test and histological changes in mice injected with cN1A peptides or controls were investigated. RESULTS Autoantibodies against cN1A were detected in serum samples from mice injected with cN1A peptide. Some groups of mice injected with cN1A peptide showed significant weight loss and decreased motor activity. The number of myofibres with internal nuclei increased in all the peptide-injected groups, with surrounding or invading CD8-positive T cells into myofibres, abnormal protein aggregates and overexpression of p62 and LC3. CONCLUSIONS Active cN1A peptide immunisation partially reproduced the clinical and histological aspects of sIBM in wild-type mice. The murine model demonstrates the pathogenic properties of anti-cN1A autoantibodies to cause sIBM-like histological changes.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, Kumamoto University, Kumamoto, Japan
- Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Nozomu Tawara
- Department of Neurology, Kumamoto University, Kumamoto, Japan
| | - Ziwei Zhang
- Department of Neurology, Kumamoto University, Kumamoto, Japan
| | - Shunya Nakane
- Department of Neurology, Kumamoto University, Kumamoto, Japan
- Department of Neurology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Skolka MP, Naddaf E. Exploring challenges in the management and treatment of inclusion body myositis. Curr Opin Rheumatol 2023; 35:404-413. [PMID: 37503813 PMCID: PMC10552844 DOI: 10.1097/bor.0000000000000958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of the management and treatment landscape of inclusion body myositis (IBM), while highlighting the current challenges and future directions. RECENT FINDINGS IBM is a slowly progressive myopathy that predominantly affects patients over the age of 40, leading to increased morbidity and mortality. Unfortunately, a definitive cure for IBM remains elusive. Various clinical trials targeting inflammatory and some of the noninflammatory pathways have failed. The search for effective disease-modifying treatments faces numerous hurdles including variability in presentation, diagnostic challenges, poor understanding of pathogenesis, scarcity of disease models, a lack of validated outcome measures, and challenges related to clinical trial design. Close monitoring of swallowing and respiratory function, adapting an exercise routine, and addressing mobility issues are the mainstay of management at this time. SUMMARY Addressing the obstacles encountered by patients with IBM and the medical community presents a multitude of challenges. Effectively surmounting these hurdles requires embracing cutting-edge research strategies aimed at enhancing the management and treatment of IBM, while elevating the quality of life for those affected.
Collapse
|
14
|
Carstens PO, Müllar LM, Wrede A, Zechel S, Wachowski MM, Brandis A, Krause S, Zierz S, Schmidt J. Skeletal muscle fibers produce B-cell stimulatory factors in chronic myositis. Front Immunol 2023; 14:1177721. [PMID: 37731487 PMCID: PMC10508232 DOI: 10.3389/fimmu.2023.1177721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction We aimed to identify B-cell-mediated immunomechanisms in inclusion body myositis (IBM) and polymyositis (PM) as part of the complex pathophysiology. Materials and methods Human primary myotube cultures were derived from orthopedic surgery. Diagnostic biopsy specimens from patients with IBM (n=9) and PM (n=9) were analyzed for markers of B cell activation (BAFF and APRIL) and for chemokines that control the recruitment of B cells (CXCL-12 and CXCL-13). Results were compared to biopsy specimens without myopathic changes (n=9) and hereditary muscular dystrophy (n=9). Results The mRNA expression of BAFF, APRIL, and CXCL-13 was significantly higher in IBM and PM compared to controls. Patients with IBM displayed the highest number of double positive muscle fibers for BAFF and CXCL-12 (48%) compared to PM (25%), muscular dystrophy (3%), and non-myopathic controls (0%). In vitro, exposure of human myotubes to pro-inflammatory cytokines led to a significant upregulation of BAFF and CXCL-12, but APRIL and CXCL-13 remained unchanged. Conclusion The results substantiate the hypothesis of an involvement of B cell-associated mechanisms in the pathophysiology of IBM and PM. Muscle fibers themselves seem to contribute to the recruitment of B cells and sustain inflammation.
Collapse
Affiliation(s)
- Per-Ole Carstens
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa M. Müllar
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Arne Wrede
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Neuropathology, Saarland University Medical Center and Medical Faculty of Saarland University, Homburg, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin M. Wachowski
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Almuth Brandis
- Department of Pathology, Klinikum Region Hannover, Hannover, Germany
- Institute of Pathology and Neuropathology, Medical University Hannover, Hannover, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of München, München, Germany
| | - Stephan Zierz
- Department of Neurology, University Hospital Halle/Saale, Halle, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei, Berlin, Germany
| |
Collapse
|
15
|
Porcelli B, d'Alessandro M, Gupta L, Grazzini S, Volpi N, Bacarelli MR, Ginanneschi F, Biasi G, Bellisai F, Fabbroni M, Bennett D, Fabiani C, Cantarini L, Bargagli E, Frediani B, Conticini E. Anti-Cytosolic 5'-Nucleotidase 1A in the Diagnosis of Patients with Suspected Idiopathic Inflammatory Myopathies: An Italian Real-Life, Single-Centre Retrospective Study. Biomedicines 2023; 11:1963. [PMID: 37509600 PMCID: PMC10377506 DOI: 10.3390/biomedicines11071963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Anti-cytosolic 5'-nucleotidase 1A (anti-cN1A) antibodies were proposed as a biomarker for the diagnosis of inclusion body myositis (IBM), but conflicting specificity and sensitivity evidence limits its use. Our study aimed to assess the diagnostic accuracy of anti-cN1A in a cohort of patients who underwent a myositis line immunoassay for suspected idiopathic inflammatory myopathies (IIM). We also assessed the agreement between two testing procedures: line immunoassay (LIA) and enzyme-linked immunoassay (ELISA). MATERIALS AND METHODS We collected retrospective clinical and serological data for 340 patients who underwent a myositis antibody assay using LIA (EUROLINE Autoimmune Inflammatory Myopathies 16 Ag et cN-1A (IgG) line immunoassay) and verification with an anti-cN1A antibody assay using ELISA (IgG) (Euroimmun Lubeck, Germany). RESULTS The serum samples of 20 (5.88%) patients (15 females, 5 males, mean age 58.76 ± 18.31) tested positive for anti-cN1A using LIA, but only two out of twenty were diagnosed with IBM. Seventeen out of twenty tested positive for anti-cN1A using ELISA (median IQR, 2.9 (1.9-4.18)). CONCLUSIONS Our study suggests excellent concordance between LIA and ELISA for detecting anti-cN1A antibodies. LIA may be a rapid and useful adjunct, and it could even replace ELISA for cN1A assay. However, the high prevalence of diseases other than IBM in our cohort of anti-cN1A-positive patients did not allow us to consider anti-cN1A antibodies as a specific biomarker for IBM.
Collapse
Affiliation(s)
- Brunetta Porcelli
- UOC Laboratorio Patologia Clinica, Policlinico S. Maria alle Scotte, AOU Senese, 53100 Siena, Italy
- Dipartimento Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Latika Gupta
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Silvia Grazzini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Nila Volpi
- Neurology and Clinical Neurophysiology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Maria Romana Bacarelli
- UOC Laboratorio Patologia Clinica, Policlinico S. Maria alle Scotte, AOU Senese, 53100 Siena, Italy
| | - Federica Ginanneschi
- Neurology and Clinical Neurophysiology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| | - Giovanni Biasi
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesca Bellisai
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Marta Fabbroni
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - David Bennett
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Claudia Fabiani
- Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luca Cantarini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Bruno Frediani
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
16
|
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. Int J Mol Sci 2023; 24:11139. [PMID: 37446317 DOI: 10.3390/ijms241311139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Sporadic inclusion body myositis (s-IBM) represents a unique disease within idiopathic inflammatory myopathies with a dual myodegenerative-autoimmune physiopathology and a lack of an efficacious treatment. Circulating miRNA expression could expand our knowledge of s-IBM patho-mechanisms and provide new potential disease biomarkers. To evaluate the expression of selected pre-amplified miRNAs in the serum of s-IBM patients compared to those of a sex- and age-matched healthy control group, we enrolled 14 consecutive s-IBM patients and 8 sex- and age-matched healthy controls. By using two different normalization approaches, we found one downregulated and three upregulated miRNAs. hsa-miR-192-5p was significantly downregulated, while hsa-miR-372-3p was found to be upregulated more in the s-IBM patients compared to the level of the controls. The other two miRNAs had a very low expression levels (raw Ct data > 29). hsa-miR-192-5p and hsa-miR-372-3p were found to be significantly dysregulated in the serum of s-IBM patients. These miRNAs are involved in differentiation and regeneration processes, thus possibly reflecting pathological mechanisms in s-IBM muscles and potentially representing disease biomarkers.
Collapse
Affiliation(s)
- Matteo Lucchini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Santoro
- Energy and Sustainable Economic Development, Division of Health Protection Technologies ENEA-Italian National Agency for New Technologies, 00123 Rome, Italy
| | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Aldobrando Broccolini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
17
|
Connolly CM, Paik JJ. Clinical pearls and promising therapies in myositis. Expert Rev Clin Immunol 2023; 19:797-811. [PMID: 37158055 PMCID: PMC10330909 DOI: 10.1080/1744666x.2023.2212162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Idiopathic inflammatory myopathies (IIMs) represent a diverse group of systemic autoimmune disorders with variable clinical manifestations and disease course. Currently, the challenges of IIMs are multifold, including difficulties in timely diagnosis owing to clinical heterogeneity, limited insights into disease pathogenesis, as well as a restricted number of available therapies. However, advances utilizing myositis-specific autoantibodies have facilitated the definition of subgroups as well as the prediction of clinical phenotypes, disease course, and response to treatment. AREAS COVERED Herein we provide an overview of the clinical presentations of dermatomyositis, anti-synthetase syndrome, immune-mediated necrotizing myopathy, and inclusion body myositis. We then provide an updated review of available and promising therapies for each of these disease groups. We synthesize current treatment recommendations in the context of case-based construct to facilitate application to patient care. Finally, we provide high-yield, clinical pearls relevant to each of the subgroups that can be incorporated into clinical reasoning. EXPERT OPINION There are many exciting developments on the horizon for IIM. As insights into pathogenesis evolve, the therapeutic armamentarium is expanding with many novel therapies in development, holding promise for more targeted treatment approaches.
Collapse
Affiliation(s)
- Caoilfhionn M. Connolly
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Julie J. Paik
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Diederichsen LP, Iversen LV, Nielsen CT, Jacobsen S, Hermansen ML, Witting N, Cortes R, Korsholm SS, Krogager ME, Friis T. Myositis-related autoantibody profile and clinical characteristics stratified by anti-cytosolic 5'-nucleotidase 1A status in connective tissue diseases. Muscle Nerve 2023. [PMID: 37177880 DOI: 10.1002/mus.27841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
INTRODUCTION/AIMS Cytosolic 5'-nucleotidase 1A (cN-1A) autoantibodies have been recognized as myositis-related autoantibodies. However, their correlations with clinical characteristics and other myositis-specific and myositis-associated autoantibodies (MSAs/MAAs) are still unclear. We aimed to establish the prevalence and clinical and laboratory associations of cN-1A autoantibodies in a cohort of patients with connective tissue diseases. METHODS A total of 567 participants (182 idiopathic inflammatory myopathies [IIM], 164 systemic lupus erythematosus [SLE], 121 systemic sclerosis [SSc], and 100 blood donors [BD]) were tested for the presence of cN-1A autoantibodies and other myositis-specific and myositis-associated autoantibodies (MSAs/MAAs). Clinical and laboratory characteristics were compared between anti-cN-1A positive and negative patients with sporadic inclusion body myositis (sIBM) and between anti-cN-1A positive and negative patients with non-IBM IIM. RESULTS In the sIBM cohort, 30 patients (46.9%) were anti-cN-1A positive vs. 18 (15.2%) in the non-IBM IIM cohort, 17 (10%) were anti-cN-1A positive in the SLE cohort and none in the SSc or the BD cohorts. Anti-cN-1A positivity had an overall sensitivity of 46.9% and a specificity of 93.2% for sIBM. Dysphagia was more frequent in the anti-cN-1A positive vs. negative sIBM patients (p = .04). In the non-IBM IIM group, being anti-cN-1A antibody positive was associated with the diagnosis polymyositis (p = .04) and overlap-myositis (p = .04) and less disease damage evaluated by physician global damage score (p < .001). DISCUSSION cN-1A autoantibodies were predominantly found in IIM patients and was associated with dysphagia in sIBM patients. Notably, anti-cN-1A appears to identify a distinct phenotype of anti-cN-1A positive non-IBM IIM patients with a milder disease course.
Collapse
Affiliation(s)
- Louise Pyndt Diederichsen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Line Vinderslev Iversen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg Hospital, Copenhagen, Denmark
- Department of Dermatology, Odense University Hospital, Odense, Denmark
| | - Christoffer Tandrup Nielsen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jacobsen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marie-Louise Hermansen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nanna Witting
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke Cortes
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Sine Søndergaard Korsholm
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | - Tina Friis
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
19
|
Jiang R, Roy B, Wu Q, Mohanty S, Nowak RJ, Shaw AC, Kleinstein SH, O’Connor KC. The Plasma Cell Infiltrate Populating the Muscle Tissue of Patients with Inclusion Body Myositis Features Distinct B Cell Receptor Repertoire Properties. Immunohorizons 2023; 7:310-322. [PMID: 37171806 PMCID: PMC10579972 DOI: 10.4049/immunohorizons.2200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Inclusion body myositis (IBM) is an autoimmune and degenerative disorder of skeletal muscle. The B cell infiltrates in IBM muscle tissue are predominantly fully differentiated Ab-secreting plasma cells, with scarce naive or memory B cells. The role of this infiltrate in the disease pathology is not well understood. To better define the humoral response in IBM, we used adaptive immune receptor repertoire sequencing, of human-derived specimens, to generate large BCR repertoire libraries from IBM muscle biopsies and compared them to those generated from dermatomyositis, polymyositis, and circulating CD27+ memory B cells, derived from healthy controls and Ab-secreting cells collected following vaccination. The repertoire properties of the IBM infiltrate included the following: clones that equaled or exceeded the highly clonal vaccine-associated Ab-secreting cell repertoire in size; reduced somatic mutation selection pressure in the CDRs and framework regions; and usage of class-switched IgG and IgA isotypes, with a minor population of IgM-expressing cells. The IBM IgM-expressing population revealed unique features, including an elevated somatic mutation frequency and distinct CDR3 physicochemical properties. These findings demonstrate that some of IBM muscle BCR repertoire characteristics are distinct from dermatomyositis and polymyositis and circulating Ag-experienced subsets, suggesting that it may form through selection by disease-specific Ags.
Collapse
Affiliation(s)
- Roy Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Bhaskar Roy
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | | | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Kevin C. O’Connor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Neurology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
20
|
McLeish E, Sooda A, Slater N, Kachigunda B, Beer K, Paramalingam S, Lamont PJ, Chopra A, Mastaglia FL, Needham M, Coudert JD. Uncovering the significance of expanded CD8+ large granular lymphocytes in inclusion body myositis: Insights into T cell phenotype and functional alterations, and disease severity. Front Immunol 2023; 14:1153789. [PMID: 37063893 PMCID: PMC10098158 DOI: 10.3389/fimmu.2023.1153789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionInclusion body myositis (IBM) is a progressive inflammatory myopathy characterised by skeletal muscle infiltration and myofibre invasion by CD8+ T lymphocytes. In some cases, IBM has been reported to be associated with a systemic lymphoproliferative disorder of CD8+ T cells exhibiting a highly differentiated effector phenotype known as T cell Large Granular Lymphocytic Leukemia (T-LGLL). MethodsWe investigated the incidence of a CD8+ T-LGL lymphoproliferative disorder in 85 IBM patients and an aged-matched group of 56 Healthy Controls (HC). Further, we analysed the phenotypical characteristics of the expanded T-LGLs and investigated whether their occurrence was associated with any particular HLA alleles or clinical characteristics. ResultsBlood cell analysis by flow cytometry revealed expansion of T-LGLs in 34 of the 85 (40%) IBM patients. The T cell immunophenotype of T-LGLHIGH patients was characterised by increased expression of surface molecules including CD57 and KLRG1, and to a lesser extent of CD94 and CD56 predominantly in CD8+ T cells, although we also observed modest changes in CD4+ T cells and γδ T cells. Analysis of Ki67 in CD57+ KLRG1+ T cells revealed that only a small proportion of these cells was proliferating. Comparative analysis of CD8+ and CD4+ T cells isolated from matched blood and muscle samples donated by three patients indicated a consistent pattern of more pronounced alterations in muscles, although not significant due to small sample size. In the T-LGLHIGH patient group, we found increased frequencies of perforin-producing CD8+ and CD4+ T cells that were moderately correlated to combined CD57 and KLRG1 expression. Investigation of the HLA haplotypes of 75 IBM patients identified that carriage of the HLA-C*14:02:01 allele was significantly higher in T-LGLHIGH compared to T-LGLLOW individuals. Expansion of T-LGL was not significantly associated with seropositivity patient status for anti-cytosolic 5'-nucleotidase 1A autoantibodies. Clinically, the age at disease onset and disease duration were similar in the T-LGLHIGH and T-LGLLOW patient groups. However, metadata analysis of functional alterations indicated that patients with expanded T-LGL more frequently relied on mobility aids than T-LGLLOW patients indicating greater disease severity. ConclusionAltogether, these results suggest that T-LGL expansion occurring in IBM patients is correlated with exacerbated immune dysregulation and increased disease burden.
Collapse
Affiliation(s)
- Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Emily McLeish, ; Jerome David Coudert,
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Barbara Kachigunda
- Harry Butler Institute, Centre for Biosecurity and One Health, Murdoch University, Murdoch, WA, Australia
| | - Kelly Beer
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | | | - Phillipa J. Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Perth, WA, Australia
| | - Abha Chopra
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Frank Louis Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Department of Neurology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Jerome David Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- *Correspondence: Emily McLeish, ; Jerome David Coudert,
| |
Collapse
|
21
|
De Paepe B. Incorporating circulating cytokines into the idiopathic inflammatory myopathy subclassification toolkit. Front Med (Lausanne) 2023; 10:1130614. [PMID: 37007787 PMCID: PMC10061103 DOI: 10.3389/fmed.2023.1130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Extensive diagnostic delays and deferred treatment impact the quality of life of patients suffering from an idiopathic inflammatory myopathy. In-depth subtyping of patients is a necessary effort to engage appropriate disease management and may require specialized and elaborate evaluation of the complex spectrum of clinical and pathological disease features. Blood samples are routinely taken for diagnostic purposes, with creatine kinase measurement and autoantibody typing representing standard diagnostic tools in the clinical setting. However, for many patients the diagnostic odyssey includes the invasive and time-consuming procedure of taking a muscle biopsy. It is proposed that further implementation of blood-based disease biomarkers represents a convenient alternative approach with the potential to reduce the need for diagnostic muscle biopsies substantially. Quantification of judicious combinations of circulating cytokines could be added to the diagnostic flowchart, and growth differentiation factor 15 and C-X-C motif chemokine ligand 10 come forward as particularly good candidates. These biomarkers can offer complementary information for diagnosis indicative of disease severity, therapeutic response and prognosis.
Collapse
|
22
|
Khvan YI, Khelkovskaya-Sergeeva AN. Combination of sporadic inclusion body myositis and primary Sjцgren’s syndrome: clinical case and review of literature. MODERN RHEUMATOLOGY JOURNAL 2023. [DOI: 10.14412/1996-7012-2023-1-78-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The article presents a review of the literature and a clinical observation of a patient with long-term anamnesis of primary Sjцgren's syndrome (SS) in combination with sporadic inclusion body myositis (sIBM). The diagnosis of SS was confirmed in accordance with the Russian diagnostic criteria for SS 2001, as well as with the ACR 2012 and ACR/EULAR 2016 criteria. The diagnosis of sIBM was established on the basis of a characteristic clinical picture: the development of the disease in a woman after 50 years of age with slowly progressive asymmetric muscle weakness and a typical distribution, a moderate increase in the level of creatine phosphokinase (<10 norms for the entire observation period), the presence of a generalized primary muscle process according to needle electromyography, a typical picture of muscle involvement according to magnetic resonance imaging, and the ineffectiveness of high doses of glucocorticoids. The absence of histological confirmation does not contradict the diagnosis, since morphological examination of muscles in patients with a typical course of the disease fails to detect characteristic signs of sIBM in 20% of cases.Currently, there is no effective pathogenetic therapy for sIBM. Understanding the mechanisms of sIBM development will allow to develop effective methods of its treatment.
Collapse
Affiliation(s)
- Yu. I. Khvan
- V.A. Nasonova Research Institute of Rheumatology
| | | |
Collapse
|
23
|
Hosono Y, Sie B, Pinal-Fernandez I, Pak K, Mecoli CA, Casal-Dominguez M, Warner BM, Kaplan MJ, Albayda J, Danoff S, Lloyd TE, Paik JJ, Tiniakou E, Aggarwal R, Oddis CV, Moghadam-Kia S, Carmona-Rivera C, Milisenda JC, Grau-Junyent JM, Selva-O'Callaghan A, Christopher-Stine L, Larman HB, Mammen AL. Coexisting autoantibodies against transcription factor Sp4 are associated with decreased cancer risk in patients with dermatomyositis with anti-TIF1γ autoantibodies. Ann Rheum Dis 2023; 82:246-252. [PMID: 36008132 PMCID: PMC9870850 DOI: 10.1136/ard-2022-222441] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVES In dermatomyositis (DM), autoantibodies are associated with unique clinical phenotypes. For example, anti-TIF1γ autoantibodies are associated with an increased risk of cancer. The purpose of this study was to discover novel DM autoantibodies. METHODS Phage ImmunoPrecipitation Sequencing using sera from 43 patients with DM suggested that transcription factor Sp4 is a novel autoantigen; this was confirmed by showing that patient sera immunoprecipitated full-length Sp4 protein. Sera from 371 Johns Hopkins patients with myositis (255 with DM, 28 with antisynthetase syndrome, 40 with immune-mediated necrotising myopathy, 29 with inclusion body myositis and 19 with polymyositis), 80 rheumatological disease controls (25 with Sjogren's syndrome, 25 with systemic lupus erythematosus and 30 with rheumatoid arthritis (RA)) and 200 healthy comparators were screened for anti-SP4 autoantibodies by ELISA. A validation cohort of 46 anti-TIF1γ-positive patient sera from the University of Pittsburgh was also screened for anti-Sp4 autoantibodies. RESULTS Anti-Sp4 autoantibodies were present in 27 (10.5%) patients with DM and 1 (3.3%) patient with RA but not in other clinical groups. In patients with DM, 96.3% of anti-Sp4 autoantibodies were detected in those with anti-TIF1γ autoantibodies. Among 26 TIF1γ-positive patients with anti-Sp4 autoantibodies, none (0%) had cancer. In contrast, among 35 TIF1γ-positive patients without anti-Sp4 autoantibodies, 5 (14%, p=0.04) had cancer. In the validation cohort, among 15 TIF1γ-positive patients with anti-Sp4 autoantibodies, 2 (13.3%) had cancer. By comparison, among 31 TIF1γ-positive patients without anti-Sp4 autoantibodies, 21 (67.7%, p<0.001) had cancer. CONCLUSIONS Anti-Sp4 autoantibodies appear to identify a subgroup of anti-TIF1γ-positive DM patients with lower cancer risk.
Collapse
Affiliation(s)
- Yuji Hosono
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brandon Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine Pak
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher A Mecoli
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maria Casal-Dominguez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jemima Albayda
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sonye Danoff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas E Lloyd
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie J Paik
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eleni Tiniakou
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rohit Aggarwal
- Department of Medicine, Division of Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester V Oddis
- Department of Medicine, Division of Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Siamak Moghadam-Kia
- Department of Medicine, Division of Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | - Lisa Christopher-Stine
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Lee Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Abstract
The autoimmune inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation and moderate to severe muscle weakness. Based on currently evolved distinct clinical, histologic, immunopathologic, and autoantibody features, these disorders can be best classified as dermatomyositis, necrotizing autoimmune myositis, antisynthetase syndrome-overlap myositis, and inclusion body myositis. Although polymyositis is no longer considered a distinct subset but rather an extinct entity, it is herein described because its clinicopathologic information has provided over many years fundamental information on T-cell-mediated myocytotoxicity, especially in reference to inclusion body myositis. Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis, and response to immunotherapies, necessitating the need to correctly diagnose each subtype from the outset and avoid disease mimics. The paper describes the main clinical characteristics that aid in the diagnosis of each myositis subtype, highlights the distinct features on muscle morphology and immunopathology, elaborates on the potential role of autoantibodies in pathogenesis or diagnosis , and clarifies common uncertainties in reference to putative triggering factors such as statins and viruses including the 2019-coronavirus-2 pandemic. It extensively describes the main autoimmune markers related to autoinvasive myocytotoxic T-cells, activated B-cells, complement, cytokines, and the possible role of innate immunity. The concomitant myodegenerative features seen in inclusion body myositis along with their interrelationship between inflammation and degeneration are specifically emphasized. Finally, practical guidelines on the best therapeutic approaches are summarized based on up-to-date knowledge and controlled studies, highlighting the prospects of future immunotherapies and ongoing controversies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States; Neuroimmunology Unit National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
25
|
McGinnis SM, McCann RF, Patel V, Doughty CT, Miller MB, Gale SA, Silbersweig DA, Daffner KR. Case Study 5: A 74-Year-Old Man With Dysphagia, Weakness, and Memory Loss. J Neuropsychiatry Clin Neurosci 2023; 35:210-217. [PMID: 37448308 DOI: 10.1176/appi.neuropsych.20230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Affiliation(s)
- Scott M McGinnis
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Ruth F McCann
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Viharkumar Patel
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Christopher T Doughty
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Michael B Miller
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Seth A Gale
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - David A Silbersweig
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Kirk R Daffner
- Departments of Neurology (McGinnis, Doughty, Gale, Daffner) and Psychiatry (McCann, Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Patel, Miller), Brigham and Women's Hospital, Harvard Medical School, Boston
| |
Collapse
|
26
|
Goyal NA. Inclusion Body Myositis. Continuum (Minneap Minn) 2022; 28:1663-1677. [PMID: 36537974 DOI: 10.1212/con.0000000000001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This article highlights the clinical and diagnostic features of inclusion body myositis (IBM) and provides recent insights into the pathomechanisms and therapeutic strategies of the disease. RECENT FINDINGS IBM is an often-misdiagnosed myopathy subtype. Due to the insidious onset and slow progression of muscle weakness, it can often be dismissed as a sign of aging as it commonly presents in older adults. While challenging to recognize upon initial clinical evaluation, the recent recognition of specialized stains highlighting features seen on muscle pathology, the use of diagnostic tools such as the anti-cytosolic 5'-nucleotidase 1A antibody biomarker, and the ability of muscle imaging to detect patterns of preferential muscle involvement seen in IBM has allowed for earlier diagnosis of the disease than was previously possible. While the pathogenesis of IBM has historically been poorly understood, several ongoing studies point toward mechanisms of autophagy and highly differentiated cytotoxic T cells that are postulated to be pathogenic in IBM. SUMMARY Overall advancements in our understanding of IBM have resulted in improvements in the management of the disease and are the foundation of several strategies for current and upcoming novel therapeutic drug trials in IBM.
Collapse
|
27
|
Coudert JD, Slater N, Sooda A, Beer K, Lim EM, Boyder C, Zhang R, Mastaglia FL, Learmonth YC, Fairchild TJ, Yeap BB, Needham M. Immunoregulatory effects of testosterone supplementation combined with exercise training in men with Inclusion Body Myositis: a double-blind, placebo-controlled, cross-over trial. Clin Transl Immunology 2022; 11:e1416. [PMID: 36188123 PMCID: PMC9495304 DOI: 10.1002/cti2.1416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Sporadic Inclusion Body Myositis (IBM) is an inflammatory muscle disease affecting individuals over the age of 45, leading to progressive muscle wasting, disability and loss of independence. Histologically, IBM is characterised by immune changes including myofibres expressing major histocompatibility complex molecules and invaded by CD8+ T cells and macrophages, and by degenerative changes including protein aggregates organised in inclusion bodies, rimmed vacuoles and mitochondrial abnormalities. There is currently no cure, and regular exercise is currently the only recognised treatment effective at limiting muscle weakening, atrophy and loss of function. Testosterone exerts anti-inflammatory effects, inhibiting effector T-cell differentiation and pro-inflammatory cytokine production. Methods We conducted a double-blind, placebo-controlled, cross-over trial in men with IBM, to assess whether a personalised progressive exercise training combined with application of testosterone, reduced the inflammatory immune response associated with this disease over and above exercise alone. To assess intervention efficacy, we immunophenotyped blood immune cells by flow cytometry, and measured serum cytokines and chemokines by Luminex immunoassay. Results Testosterone supplementation resulted in modest yet significant count reduction in the classical monocyte subset as well as eosinophils. Testosterone-independent immunoregulatory effects attributed to exercise included altered proportions of some monocyte, T- and B-cell subsets, and reduced IL-12, IL-17, TNF-α, MIP-1β and sICAM-1 in spite of interindividual variability. Conclusion Overall, our findings indicate anti-inflammatory effects of exercise training in IBM patients, whilst concomitant testosterone supplementation provides some additional changes. Further studies combining testosterone and exercise would be worthwhile in larger cohorts and longer testosterone administration periods.
Collapse
Affiliation(s)
- Jerome D Coudert
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Kelly Beer
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Ee Mun Lim
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Conchita Boyder
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Rui Zhang
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Yvonne C Learmonth
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Timothy J Fairchild
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Bu B Yeap
- Medical School University of Western Australia Perth WA Australia.,Department of Endocrinology and Diabetes Fiona Stanley Hospital Perth WA Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia.,Department of Neurology Fiona Stanley Hospital Perth WA Australia
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To discuss recent developments in our understanding of epidemiology, diagnostics, biomarkers, pathology, pathogenesis, outcome measures, and therapeutics in inclusion body myositis (IBM). RECENT FINDINGS Recent epidemiology data confirms a relatively higher prevalence in the population aged above 50 years and the reduced life expectancy. Association with cancer and other systemic disorders is better defined. The role of magnetic resonance imaging (MRI) and ultrasound in diagnosis as well as in following disease progression has been elucidated. There are new blood and imaging biomarkers that show tremendous promise for diagnosis and as outcome measures in therapeutic trials. Improved understanding of the pathogenesis of the disease will lead to better therapeutic interventions, but also highlights the importance to have sensitive and responsive outcome measures that accurately quantitate change. SUMMARY There are exciting new developments in our understanding of IBM which should lead to improved management and therapeutic options.
Collapse
Affiliation(s)
- Mari Perez-Rosendahl
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine
| | - Tahseen Mozaffar
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine
- Department of Neurology, School of Medicine, University of California, Irvine
- Institute for Immunology, School of Medicine, University of California, Irvine
| |
Collapse
|
29
|
Naddaf E. Inclusion body myositis: Update on the diagnostic and therapeutic landscape. Front Neurol 2022; 13:1020113. [PMID: 36237625 PMCID: PMC9551222 DOI: 10.3389/fneur.2022.1020113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion body myositis (IBM) is a progressive muscle disease affecting patients over the age of 40, with distinctive clinical and histopathological features. The typical clinical phenotype is characterized by prominent involvement of deep finger flexors and quadriceps muscles. Less common presentations include isolated dysphagia, asymptomatic hyper-CKemia, and axial or limb weakness beyond the typical pattern. IBM is associated with marked morbidity as majority of patients eventually become wheelchair dependent with limited use of their hands and marked dysphagia. Furthermore, IBM mildly affects longevity with aspiration pneumonia and respiratory complications being the most common cause of death. On muscle biopsy, IBM is characterized by a peculiar combination of endomysial inflammation, rimmed vacuoles, and protein aggregation. These histopathological features are reflective of the complexity of underlying disease mechanisms. No pharmacological treatment is yet available for IBM. Monitoring for swallowing and respiratory complications, exercise, and addressing mobility issues are the mainstay of management. Further research is needed to better understand disease pathogenesis and identify novel therapeutic targets.
Collapse
|
30
|
Chen A, Kammers K, Larman HB, Scharpf RB, Ruczinski I. Detecting antibody reactivities in Phage ImmunoPrecipitation Sequencing data. BMC Genomics 2022; 23:654. [PMID: 36109689 PMCID: PMC9476399 DOI: 10.1186/s12864-022-08869-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess antibody reactivity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data; however some important differences do exist. In this manuscript we investigated whether the publicly available method edgeR (Robinson et al., Bioinformatics 26(1):139-140, 2010) for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find that edgeR is remarkably effective, but improvements can be made and introduce a Bayesian framework specifically tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).
Collapse
Affiliation(s)
- Athena Chen
- grid.21107.350000 0001 2171 9311Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Kai Kammers
- grid.21107.350000 0001 2171 9311Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - H Benjamin Larman
- grid.21107.350000 0001 2171 9311Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Robert B. Scharpf
- grid.21107.350000 0001 2171 9311Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
31
|
Murakami A, Noda S, Kazuta T, Hirano S, Kimura S, Nakanishi H, Matsuo K, Tsujikawa K, Iida M, Koike H, Sakamoto K, Hara Y, Kuru S, Kadomatsu K, Shimamura T, Ogi T, Katsuno M. Metabolome and transcriptome analysis on muscle of sporadic inclusion body myositis. Ann Clin Transl Neurol 2022; 9:1602-1615. [PMID: 36107781 PMCID: PMC9539386 DOI: 10.1002/acn3.51657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Methods Results Interpretation
Collapse
Affiliation(s)
- Ayuka Murakami
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Seiya Noda
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Tomoyuki Kazuta
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Satoko Hirano
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Seigo Kimura
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | | | - Koji Matsuo
- Department of Neurology Kariya Toyota General Hospital Kariya Japan
| | - Koyo Tsujikawa
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Madoka Iida
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Haruki Koike
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Kazuma Sakamoto
- Department of Biochemistry Nagoya University Graduate School of Medicine Nagoya Japan
- Institute for Glyco‐Core Research (iGCORE), Nagoya University Nagoya Japan
| | - Yuichiro Hara
- Department of Genetics Research Institute of Environmental Medicine (RLeM), Nagoya University Nagoya Japan
- Department of Human Genetics and Molecular Biology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Satoshi Kuru
- Department of Neurology National Hospital Organization Suzuka Hospital Suzuka Japan
| | - Kenji Kadomatsu
- Department of Biochemistry Nagoya University Graduate School of Medicine Nagoya Japan
- Institute for Glyco‐Core Research (iGCORE), Nagoya University Nagoya Japan
| | - Teppei Shimamura
- Division of Systems Biology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Tomoo Ogi
- Department of Genetics Research Institute of Environmental Medicine (RLeM), Nagoya University Nagoya Japan
- Department of Human Genetics and Molecular Biology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masahisa Katsuno
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Clinical Research Education Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
32
|
Credle JJ, Gunn J, Sangkhapreecha P, Monaco DR, Zheng XA, Tsai HJ, Wilbon A, Morgenlander WR, Rastegar A, Dong Y, Jayaraman S, Tosi L, Parekkadan B, Baer AN, Roederer M, Bloch EM, Tobian AAR, Zyskind I, Silverberg JI, Rosenberg AZ, Cox AL, Lloyd T, Mammen AL, Benjamin Larman H. Unbiased discovery of autoantibodies associated with severe COVID-19 via genome-scale self-assembled DNA-barcoded protein libraries. Nat Biomed Eng 2022; 6:992-1003. [PMID: 35986181 PMCID: PMC10034860 DOI: 10.1038/s41551-022-00925-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2022] [Indexed: 12/13/2022]
Abstract
Pathogenic autoreactive antibodies that may be associated with life-threatening coronavirus disease 2019 (COVID-19) remain to be identified. Here, we show that self-assembled genome-scale libraries of full-length proteins covalently coupled to unique DNA barcodes for analysis by sequencing can be used for the unbiased identification of autoreactive antibodies in plasma samples. By screening 11,076 DNA-barcoded proteins expressed from a sequence-verified human ORFeome library, the method, which we named MIPSA (for Molecular Indexing of Proteins by Self-Assembly), allowed us to detect circulating neutralizing type-I and type-III interferon (IFN) autoantibodies in five plasma samples from 55 patients with life-threatening COVID-19. In addition to identifying neutralizing type-I IFN-α and IFN-ω autoantibodies and other previously known autoreactive antibodies in patient plasma, MIPSA enabled the detection of as yet unidentified neutralizing type-III anti-IFN-λ3 autoantibodies that were not seen in healthy plasma samples or in convalescent plasma from ten non-hospitalized individuals with COVID-19. The low cost and simple workflow of MIPSA will facilitate unbiased high-throughput analyses of protein-antibody, protein-protein and protein-small-molecule interactions.
Collapse
Affiliation(s)
- Joel J Credle
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Gunn
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Puwanat Sangkhapreecha
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Monaco
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuwen Alice Zheng
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hung-Ji Tsai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Azaan Wilbon
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andre Rastegar
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Dong
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Tosi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Alan N Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York City, NY, USA
- Department of Pediatrics, Maimonides Medical Center, Brooklyn, NY, USA
| | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Avi Z Rosenberg
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom Lloyd
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew L Mammen
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
34
|
Galindo-Feria AS, Wang G, Lundberg IE. Autoantibodies: Pathogenic or epiphenomenon. Best Pract Res Clin Rheumatol 2022; 36:101767. [PMID: 35810122 DOI: 10.1016/j.berh.2022.101767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases. There are distinct subgroups, including antisynthetase syndrome, dermatomyositis, polymyositis, immune-mediated necrotizing myopathy, and sporadic inclusion body myositis. In patients with IIM, autoantibodies are present in up to 80% of the patients. These autoantibodies are often characterized as myositis-specific autoantibodies (MSA) or myositis-associated autoantibodies (MAA). The recognition of the importance of autoantibodies, especially MSA, is increasing in recent years. In this chapter, we provide an overview of the MSAs, including some new autoantibodies of interest as they target mainly muscle-specific autoantigen, in clinical classification, the measurement of the disease activity, and a possible role in the pathogenesis in the patients with IIM.
Collapse
Affiliation(s)
- Angeles S Galindo-Feria
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| | - Guochun Wang
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
35
|
Lindgren U, Pullerits R, Lindberg C, Oldfors A. Epidemiology, survival and clinical characteristics of inclusion body myositis. Ann Neurol 2022; 92:201-212. [PMID: 35596584 PMCID: PMC9541152 DOI: 10.1002/ana.26412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 05/15/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We performed a population-based study on inclusion body myositis with the primary aims to define the prevalence, survival rate and incidence and to investigate the symptom profiles associated with disease duration and sex over a 33-year period. METHODS Patients diagnosed between 1985 and 2017 in Region Västra Götaland, Sweden were identified according to the European Neuromuscular Centre diagnostic criteria from 2011. RESULTS We identified 128 patients, 89 men and 39 women with the strict clinico-pathologically definition of inclusion body myositis. The prevalence was 32 per million inhabitants, 19 per million women and 45 per million men December 31st 2017. Mean incidence was 2.5 per million inhabitants and year. Mean age at symptom onset was 64.4 years with quadriceps weakness being the most common presenting symptom followed by finger flexor weakness. Dysphagia was a common presenting symptom being more frequent in women (23%) than men (10%) and was during the disease course reported in 74% of men and 84% of women. Seventy-three patients were deceased, with mean survival of 14 years from symptom onset. Survival rate from both diagnosis date and symptom onset was decreased compared to the matched population. Twenty-one percent of the patients had an additional autoimmune disease. A cross-sectional analysis of autoantibodies in 50 patients and 28 matched controls showed autoantibodies to cytosolic 5'-nucleotidase 1A in 40% of the patients and 3.6% of controls. INTERPRETATION Inclusion body myositis is an autoimmune disease with decreased survival rate and with marked sex differences in both prevalence and clinical manifestations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ulrika Lindgren
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Neuromuscular Center, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Lindberg
- Neuromuscular Center, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Jędrzejewska A, Kutryb-Zając B, Król O, Harasim G, Frańczak M, Jabłońska P, Słomińska E, Smoleński RT. The decreased serum activity of cytosolic 5'-nucleotidase IA as a potential marker of breast cancer-associated muscle inflammation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:273-284. [PMID: 34814800 DOI: 10.1080/15257770.2021.2007396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytosolic 5'-nucleotidase IA (cN-IA) plays a central role in the regulation of the purine nucleotide pool in skeletal muscle, preferentially converting adenosine monophosphate to adenosine. cN-IA can act as an autoantigen in muscle diseases, including the paraneoplastic syndrome related to breast cancer (BC). As a result of myocyte damage, released cN-IA protein may trigger the production of anti-cN-IA antibodies (anti-NT5C1A). This work aimed to develop an effective method to measure cN-IA activity in the serum and analyze it in BC patients. Our study demonstrated that serum cN-IA activity was decreased in BC patients and we assumed it is due to the presence of specific autoantibodies. We found correlations between cN-IA activity and parameters of inflammatory muscle damage. Thus, cN-IA is worth further attention to clarify its usefulness as a biomarker of BC-associated polymyositis.
Collapse
Affiliation(s)
- Agata Jędrzejewska
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Oliwia Król
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Patrycja Jabłońska
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
37
|
Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EM, Liu F, Yang Y, González-Hernández JA, Meffre E, Hinchcliff M, Koumpouras F, Lionakis MS, Ring AM. High-throughput identification of autoantibodies that target the human exoproteome. CELL REPORTS METHODS 2022; 2:100172. [PMID: 35360706 PMCID: PMC8967185 DOI: 10.1016/j.crmeth.2022.100172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Autoantibodies that recognize extracellular proteins (the exoproteome) exert potent biological effects but are challenging to detect. Here, we developed rapid extracellular antigen profiling (REAP), a high-throughput technique for the comprehensive discovery of exoproteome-targeting autoantibodies. Patient samples are applied to a genetically barcoded yeast surface display library containing 2,688 human extracellular proteins. Antibody-coated yeast are isolated, and sequencing of barcodes is used to identify displayed antigens. To benchmark REAP's performance, we screened 77 patients with autoimmune polyglandular syndrome type 1 (APS-1). REAP sensitively and specifically detected both known and previously unidentified autoantibodies in APS-1. We further screened 106 patients with systemic lupus erythematosus (SLE) and identified numerous autoantibodies, several of which were associated with disease severity or specific clinical manifestations and exerted functional effects on cell signaling ex vivo. These findings demonstrate the utility of REAP to atlas the expansive landscape of exoproteome-targeting autoantibodies and their impacts on patient health outcomes.
Collapse
Affiliation(s)
- Eric Y. Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monica M. Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mei X. Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Elise M.N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Eric Meffre
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fotios Koumpouras
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
38
|
Abdelnaby R, Mohamed KA, Elgenidy A, Sonbol YT, Bedewy MM, Aboutaleb AM, Ebrahim MA, Maallem I, Dardeer KT, Heikal HA, Gawish HM, Zschüntzsch J. Muscle Sonography in Inclusion Body Myositis: A Systematic Review and Meta-Analysis of 944 Measurements. Cells 2022; 11:600. [PMID: 35203250 PMCID: PMC8869828 DOI: 10.3390/cells11040600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/14/2023] Open
Abstract
Inclusion body myositis (IBM) is a slowly progressive muscle weakness of distal and proximal muscles, which is diagnosed by clinical and histopathological criteria. Imaging biomarkers are inconsistently used and do not follow international standardized criteria. We conducted a systematic review and meta-analysis to investigate the diagnostic value of muscle ultrasound (US) in IBM compared to healthy controls. A systematic search of PubMed/MEDLINE, Scopus and Web of Science was performed. Articles reporting the use of muscle ultrasound in IBM, and published in peer-reviewed journals until 11 September 2021, were included in our study. Seven studies were included, with a total of 108 IBM and 171 healthy controls. Echogenicity between IBM and healthy controls, which was assessed by three studies, demonstrated a significant mean difference in the flexor digitorum profundus (FDP) muscle, which had a grey scale value (GSV) of 36.55 (95% CI, 28.65-44.45, p < 0.001), and in the gastrocnemius (GC), which had a GSV of 27.90 (95% CI 16.32-39.48, p < 0.001). Muscle thickness in the FDP showed no significant difference between the groups. The pooled sensitivity and specificity of US in the differentiation between IBM and the controls were 82% and 98%, respectively, and the area under the curve was 0.612. IBM is a rare disease, which is reflected in the low numbers of patients included in each of the studies and thus there was high heterogeneity in the results. Nevertheless, the selected studies conclusively demonstrated significant differences in echogenicity of the FDP and GC in IBM, compared to controls. Further high-quality studies, using standardized operating procedures, are needed to implement muscle ultrasound in the diagnostic criteria.
Collapse
Affiliation(s)
- Ramy Abdelnaby
- Department of Neurology, RWTH Aachen University, Pauwels Street 30, 52074 Aachen, Germany;
| | - Khaled Ashraf Mohamed
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Anas Elgenidy
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Yousef Tarek Sonbol
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Mahmoud Mostafa Bedewy
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | | | - Mohamed Ayman Ebrahim
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Imene Maallem
- Faculty of Medicine, Pharmacy Department, University Badji Mokhtar Annaba, Zaafrania Street, Annaba 23000, Algeria;
| | - Khaled Tarek Dardeer
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Hamed Amr Heikal
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Hazem Maher Gawish
- Faculty of Medicine, Cairo University, 1 Gamaa Street, Cairo 12613, Egypt; (K.A.M.); (A.E.); (Y.T.S.); (M.M.B.); (M.A.E.); (K.T.D.); (H.A.H.); (H.M.G.)
| | - Jana Zschüntzsch
- Clinic for Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
39
|
Affiliation(s)
- Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD .,Departments of Neurology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Britson KA, Ling JP, Braunstein KE, Montagne JM, Kastenschmidt JM, Wilson A, Ikenaga C, Tsao W, Pinal-Fernandez I, Russell KA, Reed N, Mozaffar T, Wagner KR, Ostrow LW, Corse AM, Mammen AL, Villalta SA, Larman HB, Wong PC, Lloyd TE. Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Sci Transl Med 2022; 14:eabi9196. [PMID: 35044790 PMCID: PMC9118725 DOI: 10.1126/scitranslmed.abi9196] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sporadic inclusion body myositis (IBM) is the most common acquired muscle disease in adults over age 50, yet it remains unclear whether the disease is primarily driven by T cell–mediated autoimmunity. IBM muscle biopsies display nuclear clearance and cytoplasmic aggregation of TDP-43 in muscle cells, a pathologic finding observed initially in neurodegenerative diseases, where nuclear loss of TDP-43 in neurons causes aberrant RNA splicing. Here, we show that loss of TDP-43–mediated splicing repression, as determined by inclusion of cryptic exons, occurs in skeletal muscle of subjects with IBM. Of 119 muscle biopsies tested, RT-PCR–mediated detection of cryptic exon inclusion was able to diagnose IBM with 84% sensitivity and 99% specificity. To determine the role of T cells in pathogenesis, we generated a xenograft model by transplanting human IBM muscle into the hindlimb of immunodeficient mice. Xenografts from subjects with IBM displayed robust regeneration of human myofibers and recapitulated both inflammatory and degenerative features of the disease. Myofibers in IBM xenografts showed invasion by human, oligoclonal CD8+ T cells and exhibited MHC-I up-regulation, rimmed vacuoles, mitochondrial pathology, p62-positive inclusions, and nuclear clearance and cytoplasmic aggregation of TDP-43, associated with cryptic exon inclusion. Reduction of human T cells within IBM xenografts by treating mice intraperitoneally with anti-CD3 (OKT3) suppressed MHC-I up-regulation. However, rimmed vacuoles and loss of TDP-43 function persisted. These data suggest that T cell depletion does not alter muscle degenerative pathology in IBM.
Collapse
Affiliation(s)
- Kyla A. Britson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kerstin E. Braunstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle M. Montagne
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Andrew Wilson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Tsao
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Iago Pinal-Fernandez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katelyn A. Russell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicole Reed
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tahseen Mozaffar
- Institute for Immunology, Department of Neurology, University of California Irvine, Irvine, CA 92697, USA
| | - Kathryn R. Wagner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Lyle W. Ostrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea M. Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew L. Mammen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Synder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Synder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Treatment and Management of Autoimmune Myopathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Abstract
Idiopathic inflammatory myopathies (IIM), also known as myositis, are a heterogeneous group of autoimmune disorders with varying clinical manifestations, treatment responses and prognoses. Muscle weakness is usually the classical clinical manifestation but other organs can be affected, including the skin, joints, lungs, heart and gastrointestinal tract, and they can even result in the predominant manifestations, supporting that IIM are systemic inflammatory disorders. Different myositis-specific auto-antibodies have been identified and, on the basis of clinical, histopathological and serological features, IIM can be classified into several subgroups - dermatomyositis (including amyopathic dermatomyositis), antisynthetase syndrome, immune-mediated necrotizing myopathy, inclusion body myositis, polymyositis and overlap myositis. The prognoses, treatment responses and organ manifestations vary among these groups, implicating different pathophysiological mechanisms in each subtype. A deeper understanding of the molecular pathways underlying the pathogenesis and identifying the auto-antigens of the immune reactions in these subgroups is crucial to improving outcomes. New, more homogeneous subgroups defined by auto-antibodies may help define disease mechanisms and will also be important in future clinical trials for the development of targeted therapies and in identifying biomarkers to guide treatment decisions for the individual patient.
Collapse
|
43
|
Tsamis KI, Boutsoras C, Kaltsonoudis E, Pelechas E, Nikas IP, Simos YV, Voulgari PV, Sarmas I. Clinical features and diagnostic tools in idiopathic inflammatory myopathies. Crit Rev Clin Lab Sci 2021; 59:219-240. [PMID: 34767470 DOI: 10.1080/10408363.2021.2000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are rare autoimmune disorders affecting primarily muscles, but other organs can be involved. This review describes the clinical features, diagnosis and treatment for IIMs, namely polymyositis (PM), dermatomyositis (DM), sporadic inclusion body myositis (sIBM), immune-mediated necrotizing myopathy (IMNM), and myositis associated with antisynthetase syndrome (ASS). The diagnostic approach has been updated recently based on the discovery of circulating autoantibodies, which has enhanced the management of patients. Currently, validated classification criteria for IIMs allow clinical studies with well-defined sets of patients but diagnostic criteria to guide the care of individual patients in routine clinical practice are still missing. This review analyzes the clinical manifestations and laboratory findings of IIMs, discusses the efficiency of modern and standard methods employed in their workup, and delineates optimal practice for clinical care. Α multidisciplinary diagnostic approach that combines clinical, neurologic and rheumatologic examination, evaluation of electrophysiologic and morphologic muscle characteristics, and assessment of autoantibody immunoassays has been determined to be the preferred approach for effective management of patients with suspected IIMs.
Collapse
Affiliation(s)
- Konstantinos I Tsamis
- Department of Neurology, University Hospital of Ioannina, Ioannina, Greece.,School of Medicine, European University Cyprus, Nicosia, Cyprus.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | | | | | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | - Ioannis Sarmas
- Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
44
|
Bartley CM, Parikshak NN, Ngo TT, Alexander JA, Zorn KC, Alvarenga BA, Kang MK, Pedriali M, Pleasure SJ, Wilson MR. Case Report: A False Negative Case of Anti-Yo Paraneoplastic Myelopathy. Front Neurol 2021; 12:728700. [PMID: 34744969 PMCID: PMC8570369 DOI: 10.3389/fneur.2021.728700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
The development of autoimmune antibody panels has improved the diagnosis of paraneoplastic neurological disorders (PNDs) of the brain and spinal cord. Here, we present a case of a woman with a history of breast cancer who presented with a subacute sensory ataxia that progressed over 18 months. Her examination and diagnostic studies were consistent with a myelopathy. Metabolic, infectious, and autoimmune testing were non-diagnostic. However, she responded to empirical immunosuppression, prompting further workup for an autoimmune etiology. An unbiased autoantibody screen utilizing phage display immunoprecipitation sequencing (PhIP-Seq) identified antibodies to the anti-Yo antigens cerebellar degeneration related protein 2 like (CDR2L) and CDR2, which were subsequently validated by immunoblot and cell-based overexpression assays. Furthermore, CDR2L protein expression was restricted to HER2 expressing tumor cells in the patient's breast tissue. Recent evidence suggests that CDR2L is likely the primary antigen in anti-Yo paraneoplastic cerebellar degeneration, but anti-Yo myelopathy is poorly characterized. By immunostaining, we detected neuronal CDR2L protein expression in the murine and human spinal cord. This case demonstrates the diagnostic utility of unbiased assays in patients with suspected PNDs, supports prior observations that anti-Yo PND can be associated with isolated myelopathy, and implicates CDR2L as a potential antigen in the spinal cord.
Collapse
Affiliation(s)
- Christopher M Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Neelroop N Parikshak
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Thomas T Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jessa A Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Bonny A Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Min K Kang
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Massimo Pedriali
- Operative Unit of Surgical Pathology, Azienda Ospedaliera-Universitaria, Ferrara, Italy
| | - Samuel J Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
45
|
Pinto MV, Laughlin RS, Klein CJ, Mandrekar J, Naddaf E. Inclusion body myositis: correlation of clinical outcomes with histopathology, electromyography and laboratory findings. Rheumatology (Oxford) 2021; 61:2504-2511. [PMID: 34617994 DOI: 10.1093/rheumatology/keab754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine whether histopathological, electromyographic and laboratory markers correlate with clinical measures in Inclusion Body Myositis (IBM). METHODS We reviewed our electronic medical records to identify patients with IBM according to ENMC 2011 criteria, seen between 2015 and 2020. We only included patients who had a muscle biopsy and needle electromyography (EMG) performed on the same muscle (opposite or same side). We used a detailed grading system (0- normal to 4- severe) to score histopathological and EMG findings. Clinical severity was assessed by the modified Rankin scale (mRS), muscle strength sum score (SSS), quadriceps strength and severity of dysphagia on swallow evaluation. Serum markers of interest were creatine kinase level, and cN-1A antibodies. RESULTS We included 50 IBM patients, with a median age of 69 years; 64% were males. Median disease duration at diagnosis was 51 months. On muscle biopsy, endomysial inflammation mainly correlated with dysphagia, and inversely correlated with mRS. Vacuoles and congophilic inclusions did not correlate with any of the clinical measures. On EMG, the shortness of motor unit potential (MUP) duration correlated with all clinical measures. Myotonic discharges, and not fibrillation potentials, correlated with the severity of inflammation. Serum markers did not have a statistically-significant correlation with any of the clinical measures. CONCLUSIONS Dysphagia was the main clinical feature of IBM correlating with endomysial inflammation. Otherwise, inclusion body myositis clinical measures had limited correlation with histopathological features in this study. The shortness of MUP duration correlated with all clinical measures.
Collapse
Affiliation(s)
- Marcus V Pinto
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jay Mandrekar
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
Grönwall C, Malmström V. New technologies laying a foundation for next generation clinical serology. EBioMedicine 2021; 72:103585. [PMID: 34563922 PMCID: PMC8479613 DOI: 10.1016/j.ebiom.2021.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Caroline Grönwall
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stcokholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stcokholm, Sweden.
| |
Collapse
|
47
|
Biomarker und Histologie bei idiopathischen inflammatorischen Myopathien. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1548-8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie idiopathischen inflammatorischen Myopathien (IIM) sind eine Gruppe entzündlicher Muskelerkrankungen für deren Diagnosestellung, Verlaufsbeurteilung, Prognoseabschätzung und Risikostratifizierung Biomarker eine jeweils essentielle Rolle spielen. Biomarker in diesem Kontext können sowohl „herkömmliche“ serologische Marker wie Muskelenzyme oder Autoantikörper, histologische Marker wie entitätsspezifische inflammatorische Muster, aber auch genomische und genetische Marker sein. Der vorliegende Artikel gibt einen Überblick über bewährte und innovative Marker.
Collapse
|
48
|
Positive Cytosolic 5-Nucleotidase 1A Antibodies in Motor Neuron Disease. J Clin Neuromuscul Dis 2021; 22:50-52. [PMID: 32833724 DOI: 10.1097/cnd.0000000000000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inclusion body myositis (IBM) is the most common acquired myopathy in adults older than 50 years. Muscle biopsy remains the gold standard for diagnosis. Recently described serum antibodies against cytosolic 5-nucleotidase 1A (cN1A) are considered highly specific for IBM. However, positive cN1A antibodies in diseases other than IBM are recently reported. We review 2 cases in which serum antibodies were positive but ancillary testing revealed motor neuron disease. A 68-year-old man presented with asymmetric quadriceps and handgrip weakness prompting concern for IBM. However, electromyography showed purely chronic neurogenic abnormalities, and muscle biopsy was consistent with post-polio syndrome. A 60-year-old woman reported a history of progressive muscle weakness. Despite positive antibodies, examination and electromyography were indicative of amyotrophic lateral sclerosis. Serum cN1A antibodies are not 100% specific for the diagnosis of IBM. Careful clinical, electrophysiologic, and histopathologic correlation is required in workup of individuals with neuromuscular weakness and positive antibodies.
Collapse
|
49
|
Update on the Diagnostic and Therapeutic Landscape of Sporadic Inclusion Body Myositis. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Lucchini M, Maggi L, Pegoraro E, Filosto M, Rodolico C, Antonini G, Garibaldi M, Valentino ML, Siciliano G, Tasca G, De Arcangelis V, De Fino C, Mirabella M. Anti-cN1A Antibodies Are Associated with More Severe Dysphagia in Sporadic Inclusion Body Myositis. Cells 2021; 10:cells10051146. [PMID: 34068623 PMCID: PMC8151681 DOI: 10.3390/cells10051146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/15/2023] Open
Abstract
In recent years, an autoantibody directed against the 5'-citosolic nucleotidase1A (cN1A) was identified in the sera of sporadic inclusion body myositis (s-IBM) patients with widely variable sensitivity (33%-76%) and specificity (87%-100%). We assessed the sensitivity/specificity of anti-cN1A antibodies in an Italian cohort of s-IBM patients, searching for a potential correlation with clinical data. We collected clinical data and sera from 62 consecutive s-IBM patients and 62 other inflammatory myopathies patients. Testing for anti-cN1A antibodies was performed using a commercial ELISA. Anti-cN1A antibodies were detected in 23 s-IBM patients, resulting in a sensitivity of 37.1% with a specificity of 96.8%. Positive and negative predictive values were 92.0% and 60.6%, respectively. We did not find significant difference regarding demographic variables, nor quadriceps or finger flexor weakness. Nevertheless, we found that anti-cN1A-positive patients presented significantly lower scores in IBMFRS item 1 (swallowing, p = 0.045) and more frequently reported more severe swallowing problems, expressed as an IBMFRS item 1 score ≤ 2 (p < 0.001). We confirmed the low sensitivity and high specificity of anti-cN1A Ab in s-IBM patients with a high positive predictive value. The presence of anti-CN1A antibodies identified patients with a greater risk of more severe dysphagia.
Collapse
Affiliation(s)
- Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (G.T.); (V.D.A.); (C.D.F.); (M.M.)
- Department of Neurosciences, Section of Neurology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence:
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy;
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, 35122 Padova, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25121 Brescia, Italy;
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Antonini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), School of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (G.A.); (M.G.)
| | - Matteo Garibaldi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), School of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (G.A.); (M.G.)
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Giorgio Tasca
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (G.T.); (V.D.A.); (C.D.F.); (M.M.)
- Department of Neurosciences, Section of Neurology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Valeria De Arcangelis
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (G.T.); (V.D.A.); (C.D.F.); (M.M.)
| | - Chiara De Fino
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (G.T.); (V.D.A.); (C.D.F.); (M.M.)
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (G.T.); (V.D.A.); (C.D.F.); (M.M.)
- Department of Neurosciences, Section of Neurology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|