1
|
Simula ER, Jasemi S, Paulus K, Sechi LA. Upregulation of microRNAs correlates with downregulation of HERV-K expression in Parkinson's disease. J Neurovirol 2024:10.1007/s13365-024-01234-7. [PMID: 39424758 DOI: 10.1007/s13365-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Human endogenous retroviruses (HERVs) involvement in neurological diseases has been extensively documented, although the etiology of HERV reactivation remains unclear. MicroRNAs represent one of the potential regulatory mechanisms of HERV reactivation. We identified fourteen microRNAs predicted to bind the HERV-K transcript, and subsequently analyzed for their gene expression levels alongside those of HERV-K. We documented an increased expression of four microRNAs in patients with Parkinson's disease compared to healthy controls, which correlated with a downregulation of HERV-K transcripts. We hypothesize that specific microRNAs may bind to HERV-K transcripts, leading to its downregulation.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Somaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Kay Paulus
- Servizio di neuroabilitazione, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy.
| |
Collapse
|
2
|
Mirarchi A, Albi E, Arcuri C. Microglia Signatures: A Cause or Consequence of Microglia-Related Brain Disorders? Int J Mol Sci 2024; 25:10951. [PMID: 39456734 PMCID: PMC11507570 DOI: 10.3390/ijms252010951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Microglia signatures refer to distinct gene expression profiles or patterns of gene activity that are characteristic of microglia. Advances in gene expression profiling techniques, such as single-cell RNA sequencing, have allowed us to study microglia at a more detailed level and identify unique gene expression patterns that are associated, but not always, with different functional states of these cells. Microglial signatures depend on the developmental stage, brain region, and specific pathological conditions. By studying these signatures, it has been possible to gain insights into the underlying mechanisms of microglial activation and begin to develop targeted therapies to modulate microglia-mediated immune responses in the CNS. Historically, the first two signatures coincide with M1 pro-inflammatory and M2 anti-inflammatory phenotypes. The first one includes upregulation of genes such as CD86, TNF-α, IL-1β, and iNOS, while the second one may involve genes like CD206, Arg1, Chil3, and TGF-β. However, it has long been known that many and more specific phenotypes exist between M1 and M2, likely with corresponding signatures. Here, we discuss specific microglial signatures and their association, if any, with neurodegenerative pathologies and other brain disorders.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy;
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
3
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
4
|
Majewski S, Klein P, Boillée S, Clarke BE, Patani R. Towards an integrated approach for understanding glia in Amyotrophic Lateral Sclerosis. Glia 2024. [PMID: 39318236 DOI: 10.1002/glia.24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Substantial advances in technology are permitting a high resolution understanding of the salience of glia, and have helped us to transcend decades of predominantly neuron-centric research. In particular, recent advances in 'omic' technologies have enabled unique insights into glial biology, shedding light on the cellular and molecular aspects of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we review studies using omic techniques to attempt to understand the role of glia in ALS across different model systems and post mortem tissue. We also address caveats that should be considered when interpreting such studies, and how some of these may be mitigated through either using a multi-omic approach and/or careful low throughput, high fidelity orthogonal validation with particular emphasis on functional validation. Finally, we consider emerging technologies and their potential relevance in deepening our understanding of glia in ALS.
Collapse
Affiliation(s)
- Stanislaw Majewski
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
5
|
Jawdat O, Rucker J, Nakano T, Takeno K, Statland J, Pasnoor M, Dimachkie MM, Sabus C, Badawi Y, Hunt SL, Tomioka NH, Gunewardena S, Bloomer C, Wilkins HM, Herbelin L, Barohn RJ, Nishimune H. Resistance exercise in early-stage ALS patients, ALSFRS-R, Sickness Impact Profile ALS-19, and muscle transcriptome: a pilot study. Sci Rep 2024; 14:21729. [PMID: 39289471 PMCID: PMC11408620 DOI: 10.1038/s41598-024-72355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) patients lack effective treatments to maintain motor and neuromuscular function. This study aimed to evaluate the effect of a home-based exercise program on muscle strength, ALS scores, and transcriptome in ALS patients, Clinical Trials.gov #NCT03201991 (28/06/2017). An open-label, non-randomized pilot clinical trial was conducted in seven individuals with early-stage ALS. Participants were given 3 months of home-based resistance exercise focusing on the quadriceps muscles. The strength of exercised muscle was evaluated using bilateral quadriceps strength with manual muscle testing, handheld dynamometers, five times sit-to-stand, and Timed-Up-and-Go before and after the exercise program. In addition, changes in the Sickness Impact Profile ALS-19 (SIP/ALS-19) as the functional outcome measure and the transcriptome of exercised muscles were compared before and after the exercise. The primary outcome of muscle strength did not change significantly by the exercise program. The exercise program maintained the SIP/ALS-19 and the ALS Functional Rating Scale-Revised (ALSFRS-R). Transcriptome analysis revealed that exercise reverted the expression level of genes decreased in ALS, including parvalbumin. Three months of moderately intense strength and conditioning exercise maintained muscle strength of the exercised muscle and ALSFRS-R scores and had a positive effect on patients' muscle transcriptome.
Collapse
Affiliation(s)
- Omar Jawdat
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
| | - Jason Rucker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, USA
| | - Tomoki Nakano
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Kotaro Takeno
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Jeffery Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
| | - Carla Sabus
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, USA
- Department of Rehabilitation Science, Tufts University School of Medicine, Boston, USA
| | - Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - Suzanne L Hunt
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, USA
| | - Naoko H Tomioka
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, USA
| | - Clark Bloomer
- Genome Sequencing Facility, University of Kansas Medical Center, Kansas City, USA
| | - Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA
- Department of Neurology, University of Missouri, School of Medicine, 1 Hospital Dr, Columbia, MO, 65201, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, Kansas City, USA.
- Department of Neurology, University of Missouri, School of Medicine, 1 Hospital Dr, Columbia, MO, 65201, USA.
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, USA.
| |
Collapse
|
6
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|
8
|
Jiang S, Xu R. The Current Potential Pathogenesis of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2024:10.1007/s12035-024-04269-3. [PMID: 38829511 DOI: 10.1007/s12035-024-04269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease mainly characterized by the accumulation of ubiquitinated proteins in the affected motor neurons. At present, the accurate pathogenesis of ALS remains unclear and there are still no effective treatment measures for ALS. The potential pathogenesis of ALS mainly includes the misfolding of some pathogenic proteins, the genetic variation, mitochondrial dysfunction, autophagy disorders, neuroinflammation, the misregulation of RNA, the altered axonal transport, and gut microbial dysbiosis. Exploring the pathogenesis of ALS is a critical step in searching for the effective therapeutic approaches. The current studies suggested that the genetic variation, gut microbial dysbiosis, the activation of glial cells, and the transportation disorder of extracellular vesicles may play some important roles in the pathogenesis of ALS. This review conducts a systematic review of these current potential promising topics closely related to the pathogenesis of ALS; it aims to provide some new evidences and clues for searching the novel treatment measures of ALS.
Collapse
Affiliation(s)
- Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Center South University, Jiangxi Hospital. No. 152 of Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Center South University, Jiangxi Hospital. No. 152 of Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
10
|
Jadhav SP. MicroRNAs in microglia: deciphering their role in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1391537. [PMID: 38812793 PMCID: PMC11133688 DOI: 10.3389/fncel.2024.1391537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
This review presents a comprehensive analysis of the role of microRNAs in microglia and their implications in the pathogenesis of neurodegenerative diseases. Microglia, as the resident immune cells of the central nervous system (CNS), are pivotal in maintaining neural homeostasis and responding to pathological changes. Recent studies have highlighted the significance of miRNAs, small non-coding RNA molecules, in regulating microglial functions. In neurodegenerative diseases, such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), dysregulated miRNA expression in microglia contributes to disease progression through various mechanisms such regulation of gene expression, as modulation of cytokine response and phagocytosis. This review synthesizes current knowledge on how miRNAs influence microglial activation, cytokine production, and phagocytic activity. Specific miRNAs, such as miR-155, are explored for their roles in modulating microglial responses in the context of neuroinflammation and neurodegeneration. The study also discusses the impact of miRNA dysregulation on the transition of microglia from a neuroprotective to a neurotoxic phenotype, a critical aspect in the progression of neurodegenerative diseases.
Collapse
|
11
|
Wang H, Liu YT, Ren YL, Guo XY, Wang Y. Association of peripheral immune activation with amyotrophic lateral sclerosis and Parkinson's disease: A systematic review and meta-analysis. J Neuroimmunol 2024; 388:578290. [PMID: 38301596 DOI: 10.1016/j.jneuroim.2024.578290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Recent studies have revealed the link between immune activation and neurodegenerative diseases. METHODS By employing meta-analysis, we estimated the standardized mean difference (SMD) and their corresponding 95% confidence intervals (CIs) between the groups. RESULTS According to the pre-set criteria, a total of 21 published articles including 2377 ALS patients and 1244 HCs, as well as 60 articles including 5111 PD patients and 4237 HCs, were identified. This study provided evidence of peripheral immune activation in the pathogenesis of ALS and PD. CONCLUSION Our results suggested monitoring changes in peripheral blood immune cell populations, particularly lymphocyte subsets, will benefit understanding the developments and exploring reliable and specific biomarkers of these two diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi-Ti Liu
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan-Ling Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-Yan Guo
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Zamani A, Thomas E, Wright DK. Sex biology in amyotrophic lateral sclerosis. Ageing Res Rev 2024; 95:102228. [PMID: 38354985 DOI: 10.1016/j.arr.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Although sex differences in amyotrophic lateral sclerosis (ALS) have not been studied systematically, numerous clinical and preclinical studies have shown sex to be influential in disease prognosis. Moreover, with the development of advanced imaging tools, the difference between male and female brain in structure and function and their response to neurodegeneration are more definitive. As discussed in this review, ALS patients exhibit a sex bias pertaining to the features of the disease, and their clinical, pathological, (and pathophysiological) phenotypes. Several epidemiological studies have indicated that this sex disparity stems from various aetiologies, including sex-specific brain structure and neural functioning, genetic predisposition, age, gonadal hormones, susceptibility to traumatic brain injury (TBI)/head trauma and lifestyle factors.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Emma Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
13
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
14
|
Rim C, You MJ, Nahm M, Kwon MS. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl Neurodegener 2024; 13:10. [PMID: 38378788 PMCID: PMC10877780 DOI: 10.1186/s40035-024-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Brain aging is a recognized risk factor for neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), but the intricate interplay between brain aging and the pathogenesis of these conditions remains inadequately understood. Cellular senescence is considered to contribute to cellular dysfunction and inflammaging. According to the threshold theory of senescent cell accumulation, the vulnerability to neurodegenerative diseases is associated with the rates of senescent cell generation and clearance within the brain. Given the role of microglia in eliminating senescent cells, the accumulation of senescent microglia may lead to the acceleration of brain aging, contributing to inflammaging and increased vulnerability to neurodegenerative diseases. In this review, we propose the idea that the senescence of microglia, which is notably vulnerable to aging, could potentially serve as a central catalyst in the progression of neurodegenerative diseases. The senescent microglia are emerging as a promising target for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chan Rim
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
- Brainimmunex Inc., 26 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13522, Republic of Korea.
| |
Collapse
|
15
|
Hargarten JC, Ssebambulidde K, Anjum SH, Vaughan MJ, Xu J, Song B, Ganguly A, Park YD, Scott T, Hammoud DA, Olszewski MA, Williamson PR. JAK/STAT Signaling Predominates in Human and Murine Fungal Post-infectious Inflammatory Response Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301483. [PMID: 38293201 PMCID: PMC10827263 DOI: 10.1101/2024.01.18.24301483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Post-infection inflammatory syndromes have been increasingly recognized as a cause of host damage in a variety of infectious diseases including tuberculosis, bacterial meningitis, and COVID-19. Recently, a post-infectious inflammatory response syndrome (PIIRS) was described in non-HIV-infected cryptococcal fungal meningoencephalitis (CM) as a major cause of mortality. Inflammatory syndromes are particularly severe in neurological infections due to the skull's rigid structure which limits unchecked tissue expansion from inflammatory-induced edema. In the present studies, neurologic transcriptional pathway analysis utilizing a murine PIIRS model demonstrated a predominance of Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. JAK/STAT inhibitor treatment resulted in improvements in CNS damage markers, reductions in intrathecal CD44hiCD62lo CD4+ effector CD4+ T-cells and MHC II+ inflammatory myeloid cells, and weight gains in mice, the latter after treatment with antifungals. Based on these data, pathway-driven steroid-sparing human treatment for steroid-refractory PIIRS was initiated using short courses of the JAK/STAT inhibitor ruxolitinib. These were well tolerated and reduced activated HLA-DR+ CD4+ and CD8+ cells and inflammatory monocytes as well as improved brain imaging. Together, these findings support the role of JAK/STAT in PIIRS as well as further study of JAK/STAT inhibitors as potential adjunctive therapy for PIRS and other neural inflammatory syndromes.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Seher H. Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Brian Song
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Yoon-dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
16
|
Luo EY, Sugimura RR. Taming microglia: the promise of engineered microglia in treating neurological diseases. J Neuroinflammation 2024; 21:19. [PMID: 38212785 PMCID: PMC10785527 DOI: 10.1186/s12974-024-03015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Microglia, the CNS-resident immune cells, are implicated in many neurological diseases. Nearly one in six of the world's population suffers from neurological disorders, encompassing neurodegenerative and neuroautoimmune diseases, most with dysregulated neuroinflammation involved. Activated microglia become phagocytotic and secret various immune molecules, which are mediators of the brain immune microenvironment. Given their ability to penetrate through the blood-brain barrier in the neuroinflammatory context and their close interaction with neurons and other glial cells, microglia are potential therapeutic delivery vehicles and modulators of neuronal activity. Re-engineering microglia to treat neurological diseases is, thus, increasingly gaining attention. By altering gene expression, re-programmed microglia can be utilized to deliver therapeutics to targeted sites and control neuroinflammation in various neuroinflammatory diseases. This review addresses the current development in microglial engineering, including genetic targeting and therapeutic modulation. Furthermore, we discuss limitations to the genetic engineering techniques and models used to test the functionality of re-engineered microglia, including cell culture and animal models. Finally, we will discuss future directions for the application of engineered microglia in treating neurological diseases.
Collapse
Affiliation(s)
- Echo Yongqi Luo
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rio Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
17
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
19
|
Lauria G, Curcio R, Tucci P. A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression. Biomolecules 2023; 14:47. [PMID: 38254647 PMCID: PMC10813207 DOI: 10.3390/biom14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. The early diagnosis of ALS can be challenging, as it usually depends on clinical examination and the exclusion of other possible causes. In this regard, the analysis of miRNA expression profiles in biofluids makes miRNAs promising non-invasive clinical biomarkers. Due to the increasing amount of scientific literature that often provides controversial results, this work aims to deepen the understanding of the current state of the art on this topic using a machine-learning-based approach. A systematic literature search was conducted to analyze a set of 308 scientific articles using the MySLR digital platform and the Latent Dirichlet Allocation (LDA) algorithm. Two relevant topics were identified, and the articles clustered in each of them were analyzed and discussed in terms of biomolecular mechanisms, as well as in translational and clinical settings. Several miRNAs detected in the tissues and biofluids of ALS patients, including blood and cerebrospinal fluid (CSF), have been linked to ALS diagnosis and progression. Some of them may represent promising non-invasive clinical biomarkers. In this context, future scientific priorities and goals have been proposed.
Collapse
Affiliation(s)
| | - Rosita Curcio
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| | - Paola Tucci
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| |
Collapse
|
20
|
Rizzuti M, Sali L, Melzi V, Scarcella S, Costamagna G, Ottoboni L, Quetti L, Brambilla L, Papadimitriou D, Verde F, Ratti A, Ticozzi N, Comi GP, Corti S, Gagliardi D. Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Res Rev 2023; 92:102126. [PMID: 37972860 DOI: 10.1016/j.arr.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Costamagna
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
Ma YM, Zhao L. Mechanism and Therapeutic Prospect of miRNAs in Neurodegenerative Diseases. Behav Neurol 2023; 2023:8537296. [PMID: 38058356 PMCID: PMC10697780 DOI: 10.1155/2023/8537296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/30/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023] Open
Abstract
MicroRNAs (miRNAs) are the smallest class of noncoding RNAs, which widely exist in animals and plants. They can inhibit translation or overexpression by combining with mRNA and participate in posttranscriptional regulation of genes, resulting in reduced expression of target proteins, affecting the development, growth, aging, metabolism, and other physiological and pathological processes of animals and plants. It is a powerful negative regulator of gene expression. It mediates the information exchange between different cellular pathways in cellular homeostasis and stress response and regulates the differentiation, plasticity, and neurotransmission of neurons. In neurodegenerative diseases, in addition to the complex interactions between genetic susceptibility and environmental factors, miRNAs can serve as a promising diagnostic tool for diseases. They can also increase or reduce neuronal damage by regulating the body's signaling pathways, immune system, stem cells, gut microbiota, etc. They can not only affect the occurrence of diseases and exacerbate disease progression but also promote neuronal repair and reduce apoptosis, to prevent and slow down the development of diseases. This article reviews the research progress of miRNAs on the mechanism and treatment of neurodegenerative diseases in the nervous system. This trial is registered with NCT01819545, NCT02129452, NCT04120493, NCT04840823, NCT02253732, NCT02045056, NCT03388242, NCT01992029, NCT04961450, NCT03088839, NCT04137926, NCT02283073, NCT04509271, NCT02859428, and NCT05243017.
Collapse
Affiliation(s)
- Ya-Min Ma
- Acupuncture and Massage Department of Nanyang Traditional Chinese Medicine Hospital, Wo Long District, Nanyang City 473000, China
| | - Lan Zhao
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing District, Tianjin 300381, China
| |
Collapse
|
22
|
Pang XW, Chu YH, Zhou LQ, Chen M, You YF, Tang Y, Yang S, Zhang H, Xiao J, Deng G, Wang W, Shang K, Qin C, Tian DS. Trem2 deficiency attenuates microglial phagocytosis and autophagic-lysosomal activation in white matter hypoperfusion. J Neurochem 2023; 167:489-504. [PMID: 37823326 DOI: 10.1111/jnc.15987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Chronic cerebral hypoperfusion leads to sustained demyelination and a unique response of microglia. Triggering receptor expressed on myeloid cells 2 (Trem2), which is expressed exclusively on microglia in the central nervous system (CNS), plays an essential role in microglial response in various CNS disorders. However, the specific role of Trem2 in chronic cerebral hypoperfusion has not been elucidated. In this study, we investigated the specific role of Trem2 in a mouse model of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis (BCAS). Our results showed that chronic hypoperfusion induced white matter demyelination, microglial phagocytosis, and activation of the microglial autophagic-lysosomal pathway, accompanied by an increase in Trem2 expression. After Trem2 knockout, we observed attenuation of white matter lesions and microglial response. Trem2 deficiency also suppressed microglial phagocytosis and relieved activation of the autophagic-lysosomal pathway, leading to microglial polarization towards anti-inflammatory and homeostatic phenotypes. Furthermore, Trem2 knockout inhibited lipid droplet accumulation in microglia in vitro. Collectively, these findings suggest that Trem2 deficiency ameliorated microglial phagocytosis and autophagic-lysosomal activation in hypoperfusion-induced white matter injury, and could be a promising target for the treatment of chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Theme 03 - In Vitro Experimental Models. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:115-127. [PMID: 37966318 DOI: 10.1080/21678421.2023.2260193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
|
24
|
Shelash Al-Hawary SI, Yahya Ali A, Mustafa YF, Margiana R, Maksuda Ilyasovna S, Ramadan MF, Almalki SG, Alwave M, Alkhayyat S, Alsalamy A. The microRNAs (miRs) overexpressing mesenchymal stem cells (MSCs) therapy in neurological disorders; hope or hype. Biotechnol Prog 2023; 39:e3383. [PMID: 37642165 DOI: 10.1002/btpr.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.
Collapse
Affiliation(s)
| | - Anas Yahya Ali
- Department of Nursing, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Marim Alwave
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Safa Alkhayyat
- College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
25
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
26
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|
27
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
28
|
Noh MY, Kwon MS, Oh KW, Nahm M, Park J, Kim YE, Ki CS, Jin HK, Bae JS, Kim SH. Role of NCKAP1 in the Defective Phagocytic Function of Microglia-Like Cells Derived from Rapidly Progressing Sporadic ALS. Mol Neurobiol 2023; 60:4761-4777. [PMID: 37154887 PMCID: PMC10293423 DOI: 10.1007/s12035-023-03339-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute of Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Gyeonggi-Do 13488 Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Chang-Seok Ki
- GC Genome Corporation, Yongin, 16924 Republic of Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jae-sung Bae
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Wangsimniro 222-1, Daegu, 41944 Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
- Cell Therapy Center, Hanyang University Hospital, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| |
Collapse
|
29
|
Clénet ML, Keaney J, Gillet G, Valadas JS, Langlois J, Cardenas A, Gasser J, Kadiu I. Divergent functional outcomes of NLRP3 blockade downstream of multi-inflammasome activation: therapeutic implications for ALS. Front Immunol 2023; 14:1190219. [PMID: 37575265 PMCID: PMC10415077 DOI: 10.3389/fimmu.2023.1190219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
NOD-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome modulation has emerged as a potential therapeutic approach targeting inflammation amplified by pyroptotic innate immune cell death. In diseases characterized by non-cell autonomous neurodegeneration including amyotrophic lateral sclerosis (ALS), the activation of several inflammasomes has been reported. Since functional redundancy can exist among inflammasome pathways, here we investigate the effects of NLRP3 inhibition on NLRP3, NLR family CARD Domain Containing 4 (NLRC4) and non-canonical pathways to understand whether NLRP3 blockade alone can mitigate pro-inflammatory cytokine release and pyroptotic cell death in contexts where single or multiple inflammasome pathways independent of NLRP3 are activated. In this study we do not limit our insights into inflammasome biology by solely relying on the THP-1 monocytic line under the LPS/nigericin-mediated NLRP3 pathway activation paradigm. We assess therapeutic potential and limitations of NLRP3 inhibition in multi-inflammasome activation contexts utilizing various human cellular systems including cell lines expressing gain of function (GoF) mutations for several inflammasomes, primary human monocytes, macrophages, healthy and Amyotrophic Lateral Sclerosis (ALS) patient induced pluripotent stem cells (iPSC)-derived microglia (iMGL) stimulated for canonical and non-canonical inflammasome pathways. We demonstrate that NLRP3 inhibition can modulate the NLRC4 and non-canonical inflammasome pathways; however, these effects differ between immortalized, human primary innate immune cells, and iMGL. We extend our investigation in more complex systems characterized by activation of multiple inflammasomes such as the SOD1G93A mouse model. Through deep immune phenotyping by single-cell mass cytometry we demonstrate that acute NLRP3 inhibition does not ameliorate spinal cord inflammation in this model. Taken together, our data suggests that NLRP3 inhibition alone may not be sufficient to address dynamic and complex neuroinflammatory pathobiological mechanisms including dysregulation of multiple inflammasome pathways in neurodegenerative disease such as ALS.
Collapse
Affiliation(s)
- Marie-Laure Clénet
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - James Keaney
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - Gaëlle Gillet
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - Jorge S. Valadas
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - Julie Langlois
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - Alvaro Cardenas
- Development Science, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - Julien Gasser
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| | - Irena Kadiu
- Neuroinflammation Focus Area, Neuroscience Research, Early Solutions, UCB Biopharma SRL, Braine l’Alleud, Belgium
| |
Collapse
|
30
|
Yang R, Yang B, Liu W, Tan C, Chen H, Wang X. Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. J Neuroinflammation 2023; 20:173. [PMID: 37481642 PMCID: PMC10363317 DOI: 10.1186/s12974-023-02856-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
Neuroinflammation has been implicated in the initiation and progression of several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injury, spinal cord injury, viral encephalitis, and bacterial encephalitis. Microglia and astrocytes are essential in neural development, maintenance of synaptic connections, and homeostasis in a healthy brain. The activation of astrocytes and microglia is a defense mechanism of the brain against damaged tissues and harmful pathogens. However, their activation triggers neuroinflammation, which can exacerbate or induce CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that lack coding capabilities but can actively regulate mRNA expression and function through various mechanisms. ncRNAs are highly expressed in astrocytes and microglia and are potential mediators of neuroinflammation. We reviewed the recent research progress on the role of miRNAs, lncRNAs, and circRNAs in regulating neuroinflammation in various CNS diseases. Understanding how these ncRNAs affect neuroinflammation will provide important therapeutic insights for preventing and managing CNS dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Bo Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Keqian Biological Co., Ltd., Wuhan, 430070, China
| | - Wei Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
31
|
Yin Z, Herron S, Silveira S, Kleemann K, Gauthier C, Mallah D, Cheng Y, Margeta MA, Pitts KM, Barry JL, Subramanian A, Shorey H, Brandao W, Durao A, Delpech JC, Madore C, Jedrychowski M, Ajay AK, Murugaiyan G, Hersh SW, Ikezu S, Ikezu T, Butovsky O. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer's disease. Nat Neurosci 2023; 26:1196-1207. [PMID: 37291336 PMCID: PMC10619638 DOI: 10.1038/s41593-023-01355-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sebastian Silveira
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Computing, University of Portsmouth, Portsmouth, UK
| | - Christian Gauthier
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dania Mallah
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiran Cheng
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Milica A Margeta
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jen-Li Barry
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- ARCND, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Shorey
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wesley Brandao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean-Christophe Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Laboratoire NutriNeuro, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | - Charlotte Madore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratoire NutriNeuro, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gopal Murugaiyan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel W Hersh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA.
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Çarman KB, Tekin HG, Çavuşoğlu D, Yarar C, Kaplan E, Karademir CN, Arslantaş D. Evaluation of MicroRNAs in Pediatric Epilepsy. Turk Arch Pediatr 2023; 58:429-435. [PMID: 37357458 PMCID: PMC10441094 DOI: 10.5152/turkarchpediatr.2023.22320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE The pathophysiology of epilepsy remains unknown. Recent research has shown that microRNA expression changes in epileptic adults. In the present work, we aimed to identify serum microRNA expression in drug-responsive and resistant children with idiopathic general- ized epilepsy. MATERIALS AND METHODS The study included 43 (20 male and 23 female) epilepsy patients and 66 (43 male and 23 female) control subjects. The mean ages of the groups were 113.41 ± 61.83 and 105.46 ± 62.31 months, respectively. Twenty-eight epileptic patients were classi- fied as drug resistant. Thirteen of the controls were the siblings of patients with epilepsy. The study only included children with idiopathic generalized epilepsy who had normal brain mag- netic resonance imaging. The serum microRNA expressions (microRNA-181a, microRNA-155, microRNA-146, and microRNA-223) were investigated. Expressions of serum microRNA-181a, microRNA-155, microRNA-146, and microRNA-223 were previously investigated in epilepsy patients and children with febrile seizures. Therefore, these microRNAs were chosen. The expressions of serum levels of microRNAs were determined using quantitative real-time poly- merase chain reaction. RESULTS The results indicated that the expressions of serum microRNA-155 and microRNA-223 were elevated in epileptic children (P < .05). The expression of the same microRNAs was also elevated in individuals with drug-resistant epilepsy compared to healthy controls (P < .05). microRNA-146a, microRNA-155, and microRNA-223 expressions were higher in drug-resistant patients than in drug-responsive children (P < .05). A logistic regression study determined that an increase of microRNA-155 was a risk for epilepsy, while a decrease of microRNA-146a risk for epilepsy. CONCLUSION Few researchers have investigated the function of microRNAs in the develop- ment of childhood epilepsy. Our findings revealed that epilepsy patients have abnormal microRNAexpression.
Collapse
Affiliation(s)
- Kürşat Bora Çarman
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Hande Gazeteci Tekin
- Department of Pediatric Neurology, Bakırçay University, Training Hospital, İzmir, Turkey
| | - Dilek Çavuşoğlu
- Department of Pediatric Neurology, Afyon University of Health Sciences Faculty of Medicine, Afyonkarahisar, Turkey
| | - Coşkun Yarar
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Emre Kaplan
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Cefa Nil Karademir
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Didem Arslantaş
- Department of Public Health, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
33
|
Lee WE, Genetzakis E, Figtree GA. Novel Strategies in the Early Detection and Treatment of Endothelial Cell-Specific Mitochondrial Dysfunction in Coronary Artery Disease. Antioxidants (Basel) 2023; 12:1359. [PMID: 37507899 PMCID: PMC10376062 DOI: 10.3390/antiox12071359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although elevated cholesterol and other recognised cardiovascular risk factors are important in the development of coronary artery disease (CAD) and heart attack, the susceptibility of humans to this fatal process is distinct from other animals. Mitochondrial dysfunction of cells in the arterial wall, particularly the endothelium, has been strongly implicated in the pathogenesis of CAD. In this manuscript, we review the established evidence and mechanisms in detail and explore the potential opportunities arising from analysing mitochondrial function in patient-derived cells such as endothelial colony-forming cells easily cultured from venous blood. We discuss how emerging technology and knowledge may allow us to measure mitochondrial dysfunction as a potential biomarker for diagnosis and risk management. We also discuss the "pros and cons" of animal models of atherosclerosis, and how patient-derived cell models may provide opportunities to develop novel therapies relevant for humans. Finally, we review several targets that potentially alleviate mitochondrial dysfunction working both via direct and indirect mechanisms and evaluate the effect of several classes of compounds in the cardiovascular context.
Collapse
Affiliation(s)
- Weiqian E. Lee
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Elijah Genetzakis
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
34
|
Kim HJ, You MJ, Sung S, Rim C, Kwon MS. Possible involvement of microglial P2RY12 and peripheral IL-10 in postpartum depression. Front Cell Neurosci 2023; 17:1162966. [PMID: 37396924 PMCID: PMC10309556 DOI: 10.3389/fncel.2023.1162966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Postpartum depression (PPD) is another type of depression, including emotional fluctuation, fatigue, and anxiety. Based on the specific event like giving birth, it can be speculated that PPD might have its specific mechanism. Here, we confirmed that dexamethasone (DEX) administration during pregnancy (gestational days 16-18) induced depressive- and anxiety-like behaviors in dam (DEX-dam) after weaning period (3 weeks). DEX-dam showed anxiety-like behaviors in open-field test (OFT) and light-dark test (LD). In addition, DEX-dam exhibited depressive-like behaviors with the increased immobility time in forced swimming test (TST). Molecular analysis confirmed that microglia, rather than neurons, astrocytes, and oligodendrocytes, are involved in anxiety-/depressive-like behaviors. Notably, P2ry12, homeostatic gene, and purinoceptor, along with hyper-ramified form, were reduced in the hippocampus of DEX-dam. In addition, we found that IL-10 mRNA was reduced in lymph nodes without alteration of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Interestingly, anxiety-/depressive-like behaviors of DEX-dam were restored with the normalization of P2ry12 and IL-10 after 10 weeks postpartum without antidepressants. Our results propose that stress hormone elevation during pregnancy might be associated with PPD via microglial P2RY12 and peripheral IL-10.
Collapse
|
35
|
Lyu S, Lan Z, Li C. The triggering receptor expressed on myeloid cells 2-apolipoprotein E signaling pathway in diseases. Chin Med J (Engl) 2023; 136:1291-1299. [PMID: 37130227 PMCID: PMC10309513 DOI: 10.1097/cm9.0000000000002167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.
Collapse
Affiliation(s)
- Shukai Lyu
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Zhuoqing Lan
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Caixia Li
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
36
|
Maciak K, Dziedzic A, Saluk J. Remyelination in multiple sclerosis from the miRNA perspective. Front Mol Neurosci 2023; 16:1199313. [PMID: 37333618 PMCID: PMC10270307 DOI: 10.3389/fnmol.2023.1199313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Remyelination relies on the repair of damaged myelin sheaths, involving microglia cells, oligodendrocyte precursor cells (OPCs), and mature oligodendrocytes. This process drives the pathophysiology of autoimmune chronic disease of the central nervous system (CNS), multiple sclerosis (MS), leading to nerve cell damage and progressive neurodegeneration. Stimulating the reconstruction of damaged myelin sheaths is one of the goals in terms of delaying the progression of MS symptoms and preventing neuronal damage. Short, noncoding RNA molecules, microRNAs (miRNAs), responsible for regulating gene expression, are believed to play a crucial role in the remyelination process. For example, studies showed that miR-223 promotes efficient activation and phagocytosis of myelin debris by microglia, which is necessary for the initiation of remyelination. Meanwhile, miR-124 promotes the return of activated microglia to the quiescent state, while miR-204 and miR-219 promote the differentiation of mature oligodendrocytes. Furthermore, miR-138, miR-145, and miR-338 have been shown to be involved in the synthesis and assembly of myelin proteins. Various delivery systems, including extracellular vesicles, hold promise as an efficient and non-invasive way for providing miRNAs to stimulate remyelination. This article summarizes the biology of remyelination as well as current challenges and strategies for miRNA molecules in potential diagnostic and therapeutic applications.
Collapse
|
37
|
Castranio EL, Hasel P, Haure-Mirande JV, Ramirez Jimenez AV, Hamilton BW, Kim RD, Glabe CG, Wang M, Zhang B, Gandy S, Liddelow SA, Ehrlich ME. Microglial INPP5D limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimer's disease. Alzheimers Dement 2023; 19:2239-2252. [PMID: 36448627 PMCID: PMC10481344 DOI: 10.1002/alz.12821] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.
Collapse
Affiliation(s)
- Emilie L. Castranio
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
| | - Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
| | | | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
| | - Rachel D. Kim
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry,
University of California, Irvine, Irvine, California, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
- Department of Psychiatry and Alzheimer’s Disease
Research Center, Icahn School of Medicine at Mount Sinai, New York, New York,
USA
- James J. Peters VA Medical Center, Bronx, New York,
USA
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
- Department of Neuroscience & Physiology, NYU Grossman
School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of
Medicine, New York, New York, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman
School of Medicine, New York, New York, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| |
Collapse
|
38
|
Filipi T, Matusova Z, Abaffy P, Vanatko O, Tureckova J, Benesova S, Kubiskova M, Kirdajova D, Zahumensky J, Valihrach L, Anderova M. Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology. Sci Rep 2023; 13:6538. [PMID: 37085528 PMCID: PMC10121704 DOI: 10.1038/s41598-023-33608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
The role of glia in amyotrophic lateral sclerosis (ALS) is undeniable. Their disease-related activity has been extensively studied in the spinal cord, but only partly in the brain. We present herein a comprehensive study of glia in the cortex of SOD1(G93A) mice-a widely used model of ALS. Using single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, we inspected astrocytes, microglia, and oligodendrocytes, in four stages of the disease, respecting the factor of sex. We report minimal changes of glia throughout the disease progression and regardless of sex. Pseudobulk and single-cell analyses revealed subtle disease-related transcriptional alterations at the end-stage in microglia and oligodendrocytes, which were supported by immunohistochemistry. Therefore, our data support the hypothesis that the SOD1(G93A) mouse cortex does not recapitulate the disease in patients, and we recommend the use of a different model for future studies of the cortical ALS pathology.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628, Prague, Czech Republic
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
39
|
Wang C, Peng L, Wang Y, Xue Y, Chen T, Ji Y, Li Y, Zhao Y, Yu S. Integrative Analysis of Single-Cell and Bulk Sequencing Data Depicting the Expression and Function of P2ry12 in Microglia Post Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24076772. [PMID: 37047745 PMCID: PMC10095011 DOI: 10.3390/ijms24076772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
P2ry12 is a microglial marker gene. Recently, increasing evidence has demonstrated that its expression levels can vary in response to different CNS disorders and can affect microglial functions, such as polarization, plasticity, and migration. However, the expression and function of P2ry12 in microglia during ischemia–reperfusion injury (IRI) remain unclear. Here, we developed a computational method to obtain microglia-specific P2ry12 genes (MSPGs) using sequencing data associated with IRI. We evaluated the change in comprehensive expression levels of MSPGs during IRI and compared it to the expression of P2ry12 to determine similarity. Subsequently, the MSPGs were used to explore the P2ry12 functions in microglia through bioinformatics. Moreover, several animal experiments were also conducted to confirm the reliability of the results. The expression of P2ry12 was observed to decrease gradually within 24 h post injury. In response, microglia with reduced P2ry12 expression showed an increase in the expression of one receptor-encoding gene (Flt1) and three ligand-encoding genes (Nampt, Igf1, and Cxcl2). Furthermore, double-labeling immunofluorescence staining revealed that inhibition of P2ry12 blocked microglial migration towards vessels during IRI. Overall, we employ a combined computational and experimental approach to successfully explore P2ry12 expression and function in microglia during IRI.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Xue
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tianyi Chen
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yishan Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Yu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
40
|
Aloi MS, Prater KE, Sánchez REA, Beck A, Pathan JL, Davidson S, Wilson A, Keene CD, de la Iglesia H, Jayadev S, Garden GA. Microglia specific deletion of miR-155 in Alzheimer's disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures. J Neuroinflammation 2023; 20:60. [PMID: 36879321 PMCID: PMC9990295 DOI: 10.1186/s12974-023-02745-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) as well as CNS and systemic inflammation. Microglia, the myeloid cells resident in the CNS, use microRNAs to rapidly respond to inflammatory signals. MicroRNAs (miRNAs) modulate inflammatory responses in microglia, and miRNA profiles are altered in Alzheimer's disease (AD) patients. Expression of the pro-inflammatory miRNA, miR-155, is increased in the AD brain. However, the role of miR-155 in AD pathogenesis is not well-understood. We hypothesized that miR-155 participates in AD pathophysiology by regulating microglia internalization and degradation of Aβ. We used CX3CR1CreER/+ to drive-inducible, microglia-specific deletion of floxed miR-155 alleles in two AD mouse models. Microglia-specific inducible deletion of miR-155 in microglia increased anti-inflammatory gene expression while reducing insoluble Aβ1-42 and plaque area. Yet, microglia-specific miR-155 deletion led to early-onset hyperexcitability, recurring spontaneous seizures, and seizure-related mortality. The mechanism behind hyperexcitability involved microglia-mediated synaptic pruning as miR-155 deletion altered microglia internalization of synaptic material. These data identify miR-155 as a novel modulator of microglia Aβ internalization and synaptic pruning, influencing synaptic homeostasis in the setting of AD pathology.
Collapse
Affiliation(s)
- Macarena S Aloi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | | | - Asad Beck
- Department of Biology, University of Washington, Seattle, WA, 98109, USA
| | - Jasmine L Pathan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie Davidson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Angela Wilson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Gwenn A Garden
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Drive, Chapel Hill, NC, 27517, USA.
| |
Collapse
|
41
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
42
|
Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell Mol Neurobiol 2023; 43:455-467. [PMID: 35107690 DOI: 10.1007/s10571-022-01200-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Neuroinflammation plays a crucial role in the development and progression of neurological disorders. MicroRNA-155 (miR-155), a miR is known to play in inflammatory responses, is associated with susceptibility to inflammatory neurological disorders and neurodegeneration, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis as well as epilepsy, stroke, and brain malignancies. MiR-155 damages the central nervous system (CNS) by enhancing the expression of pro-inflammatory cytokines, like IL-1β, IL-6, TNF-α, and IRF3. It also disturbs the blood-brain barrier by decreasing junctional complex molecules such as claudin-1, annexin-2, syntenin-1, and dedicator of cytokinesis 1 (DOCK-1), a hallmark of many neurological disorders. This review discusses the molecular pathways which involve miR-155 as a critical component in the progression of neurological disorders, representing miR-155 as a viable therapeutic target.
Collapse
Affiliation(s)
- Seyed Hamidreza Rastegar-Moghaddam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Mashhad, Iran.
| |
Collapse
|
43
|
Wang C, Lu J, Sha X, Qiu Y, Chen H, Yu Z. TRPV1 regulates ApoE4-disrupted intracellular lipid homeostasis and decreases synaptic phagocytosis by microglia. Exp Mol Med 2023; 55:347-363. [PMID: 36720919 PMCID: PMC9981624 DOI: 10.1038/s12276-023-00935-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 02/02/2023] Open
Abstract
Although the ε4 allele of the apolipoprotein E (ApoE4) gene has been established as a genetic risk factor for many neurodegenerative diseases, including Alzheimer's disease, the mechanism of action remains poorly understood. Transient receptor potential vanilloid 1 (TRPV1) was reported to regulate autophagy to protect against foam cell formation in atherosclerosis. Here, we show that ApoE4 leads to lipid metabolism dysregulation in microglia, resulting in enhanced MHC-II-dependent antigen presentation and T-cell activation. Lipid accumulation and inflammatory reactions were accelerated in microglia isolated from TRPV1flox/flox; Cx3cr1cre-ApoE4 mice. We showed that metabolic boosting by treatment with the TRPV1 agonist capsaicin rescued lipid metabolic impairments in ApoE4 neurons and defects in autophagy caused by disruption of the AKT-mTOR pathway. TRPV1 activation with capsaicin reversed ApoE4-induced microglial immune dysfunction and neuronal autophagy impairment. Capsaicin rescued memory impairment, tau pathology, and neuronal autophagy in ApoE4 mice. Activation of TRPV1 decreased microglial phagocytosis of synapses in ApoE4 mice. TRPV1 gene deficiency exacerbated recognition memory impairment and tau pathology in ApoE4 mice. Our study suggests that TRPV1 regulation of lipid metabolism could be a therapeutic approach to alleviate the consequences of the ApoE4 allele.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xudong Sha
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
45
|
Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Front Neurosci 2023; 17:1131758. [PMID: 36895420 PMCID: PMC9989161 DOI: 10.3389/fnins.2023.1131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
46
|
Rey F, Messa L, Maghraby E, Casili G, Ottolenghi S, Barzaghini B, Raimondi MT, Cereda C, Cuzzocrea S, Zuccotti G, Esposito E, Paterniti I, Carelli S. Oxygen Sensing in Neurodegenerative Diseases: Current Mechanisms, Implication of Transcriptional Response, and Pharmacological Modulation. Antioxid Redox Signal 2023; 38:160-182. [PMID: 35793106 DOI: 10.1089/ars.2022.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Oxygen (O2) sensing is the fundamental process through which organisms respond to changes in O2 levels. Complex networks exist allowing the maintenance of O2 levels through the perception, capture, binding, transport, and delivery of molecular O2. The brain extreme sensitivity to O2 balance makes the dysregulation of related processes crucial players in the pathogenesis of neurodegenerative diseases (NDs). In this study, we wish to review the most relevant advances in O2 sensing in relation to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Recent Advances: Over the years, it has been clarified that most NDs share common pathways, a great number of which are in relation to O2 imbalance. These include hypoxia, hyperoxia, reactive oxygen species production, metabolism of metals, protein misfolding, and neuroinflammation. Critical Issues: There is still a gap in knowledge concerning how O2 sensing plays a role in the above indicated neurodegenerations. Specifically, O2 concentrations are perceived in body sites that are not limited to the brain, but primarily reside in other organs. Moreover, the mechanisms of O2 sensing, gene expression, and signal transduction seem to correlate with neurodegeneration, but many aspects are mechanistically still unexplained. Future Directions: Future studies should focus on the precise characterization of O2 level disruption and O2 sensing mechanisms in NDs. Moreover, advances need to be made also concerning the techniques used to assess O2 sensing dysfunctions in these diseases. There is also the need to develop innovative therapies targeting this precise mechanism rather than its secondary effects, as early intervention is necessary. Antioxid. Redox Signal. 38, 160-182.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Letizia Messa
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Erika Maghraby
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Cristina Cereda
- Department of Women, Mothers and Neonatal Care, Children's Hospital "V. Buzzi," Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi," Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| |
Collapse
|
47
|
MicroRNA-155 is a main part of proinflammatory puzzle during severe coronavirus disease 2019 (COVID-19). Allergol Immunopathol (Madr) 2023; 51:115-119. [PMID: 36916095 DOI: 10.15586/aei.v51i2.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/28/2022] [Indexed: 03/08/2023]
Abstract
Genetic and epigenetic parameters play critical roles in determining the outcomes of the severe acute respiratory syndrome coronavirus type 19 (SARS-CoV-2) infection. MicroRNAs (miRNAs) are an important part of the epigenetic factors that regulate several functions of the immune cells and also viruses. Accordingly, the molecules can regulate expression of the immune cell proteins and virus in the host cells. Among the miRNAs, miRNA-155 (miR-155) is well-studied in patients suffering from severe coronavirus disease 2019 (COVID-19). It has been reported that the SARS-CoV-2 infected patients may be directed to induce a cytokine storm or severe proinflammatory responses. This review article discusses the pathological roles of miR-155 during COVID-19 infection.
Collapse
|
48
|
Rudan Njavro J, Vukicevic M, Fiorini E, Dinkel L, Müller SA, Berghofer A, Bordier C, Kozlov S, Halle A, Buschmann K, Capell A, Giudici C, Willem M, Feederle R, Lichtenthaler SF, Babolin C, Montanari P, Pfeifer A, Kosco-Vilbois M, Tahirovic S. Beneficial Effect of ACI-24 Vaccination on Aβ Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model. Cells 2022; 12:cells12010079. [PMID: 36611872 PMCID: PMC9818422 DOI: 10.3390/cells12010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Amyloid-β (Aβ) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Aβ plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aβ targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aβ plaque load, Aβ plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aβ plaques, we observed a more ramified morphology of Aβ plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aβ plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aβ targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 80333 Munich, Germany
| | - Anna Berghofer
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 80333 Munich, Germany
| | - Chiara Bordier
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Stanislav Kozlov
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Katrin Buschmann
- Biomedical Center (BMC), Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Anja Capell
- Biomedical Center (BMC), Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 80333 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | | | | | | | | | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
49
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
50
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|