1
|
Zheng Z, Chen J, Xu J, Jiang B, Li L, Li Y, Dai Y, Wang B. Peripheral blood RNA biomarkers can predict lesion severity in degenerative cervical myelopathy. Neural Regen Res 2025; 20:1764-1775. [PMID: 39104114 PMCID: PMC11688566 DOI: 10.4103/nrr.nrr-d-23-01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00027/figure1/v/2024-08-05T133530Z/r/image-tiff Degenerative cervical myelopathy is a common cause of spinal cord injury, with longer symptom duration and higher myelopathy severity indicating a worse prognosis. While numerous studies have investigated serological biomarkers for acute spinal cord injury, few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy. This study involved 30 patients with degenerative cervical myelopathy (51.3 ± 7.3 years old, 12 women and 18 men), seven healthy controls (25.7 ± 1.7 years old, one woman and six men), and nine patients with cervical spondylotic radiculopathy (51.9 ± 8.6 years old, three women and six men). Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics. Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities. Using least absolute shrinkage and selection operator analysis, we constructed a five-gene model (TBCD, TPM2, PNKD, EIF4G2, and AP5Z1) to diagnose degenerative cervical myelopathy with an accuracy of 93.5%. One-gene models (TCAP and SDHA) identified mild and severe degenerative cervical myelopathy with accuracies of 83.3% and 76.7%, respectively. Signatures of two immune cell types (memory B cells and memory-activated CD4+ T cells) predicted levels of lesions in degenerative cervical myelopathy with 80% accuracy. Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
Collapse
Affiliation(s)
- Zhenzhong Zheng
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jialin Chen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yuliang Dai
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Kandemirli SG, Al-Dasuqi K, Aslan B, Goldstein A, Alves CAPF. Overview of neuroimaging in primary mitochondrial disorders. Pediatr Radiol 2025; 55:765-791. [PMID: 39937244 DOI: 10.1007/s00247-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Advancements in understanding the clinical, biochemical, and genetic aspects of primary mitochondrial disorders, along with the identification of a broad range of phenotypes frequently involving the central nervous system, have opened a new and crucial area in neuroimaging. This expanding knowledge presents significant challenges for radiologists in clinical settings, as the neuroimaging features and their associated metabolic abnormalities become more complex. This review offers a comprehensive overview of the key neuroimaging features associated with the common primary mitochondrial disorders. It highlights both the classical imaging findings and the emerging diagnostic insights related to several previously identified causative genes for these diseases. The review also provides an in-depth description of the clinicoradiologic presentations and potential underlying mitochondrial defects, aiming to enhance diagnostic abilities of radiologists in identifying primary mitochondrial diseases in their clinical practice.
Collapse
Affiliation(s)
- Sedat Giray Kandemirli
- Duke University Hospital, 2301 Erwin Rd, Durham, NC, 27710, USA.
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Sidra Medical and Research Center, Doha, Qatar
| | - Bulent Aslan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Sadeesh EM, Malik A, Lahamge MS, Singh P. Differential expression of nuclear-derived mitochondrial succinate dehydrogenase genes in metabolically active buffalo tissues. Mol Biol Rep 2024; 51:1071. [PMID: 39425877 DOI: 10.1007/s11033-024-10022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Buffaloes are crucial to agriculture, yet mitochondrial biology in these animals is less studied compared to humans and laboratory animals. This research examines tissue-specific variations in mitochondrial succinate dehydrogenase (SDH) gene expression across buffalo kidneys, hearts, brains, and ovaries. Understanding these variations sheds light on mitochondrial energy metabolism and its impact on buffalo health and productivity, revealing insights into enzyme regulation and potential improvements in livestock management. MATERIALS AND METHODS RNA-seq data from buffalo kidney, heart, brain, and ovary tissues were reanalyzed to explore mitochondrial SDH gene expression. The expression of SDH subunits (SDHA, SDHB, SDHC, SDHD) and assembly factors (SDHAF1, SDHAF2, SDHAF3, SDHAF4) was assessed using a log2 fold-change threshold of + 1 for up-regulated and - 1 for down-regulated transcripts, with significance set at p < 0.05. Hierarchical clustering and differential expression analyses were performed to identify tissue-specific expression patterns and regulatory mechanisms, while Gene Ontology and KEGG pathway analyses were conducted to uncover functional attributes and pathway enrichments across different tissues. RESULTS Reanalysis of RNA-seq data from different tissues of healthy female buffaloes revealed distinct expression patterns for SDH subunits and assembly factors. While SDHA, SDHB, and SDHC showed variable expression across tissues, SDHAF2, SDHAF3, and SDHAF4 exhibited tissue-specific profiles. Significant up-regulation of SDHA, SDHB, and several assembly factors was observed in specific tissue comparisons, with fewer down-regulated transcripts. Gene ontology and KEGG pathway analyses linked the up-regulated transcripts to mitochondrial ATP synthesis and the respiratory electron transport chain. Notably, tissue-specific variations in mitochondrial function were particularly evident in the ovary. CONCLUSION This study identifies distinct SDH gene expression patterns in buffalo tissues, highlighting significant down-regulation of SDHA, SDHB, SDHC, and assembly factors in the ovary. These findings underscore the critical role of mitochondria in tissue-specific energy production and metabolic regulation, suggest potential metabolic adaptations, and emphasize the importance of mitochondrial complex II. The insights gained offer valuable implications for improving feed efficiency and guiding future research and therapies for energy metabolism disorders.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
- University of Bonn, Institute of Animal Sciences, Katzenburgweg 7-9, 53115, Bonn, Germany
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pratiksha Singh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
4
|
Gupta PK, Barak S, Feuermann Y, Goobes G, Kaphzan H. 1H-NMR-based metabolomics reveals metabolic alterations in early development of a mouse model of Angelman syndrome. Mol Autism 2024; 15:31. [PMID: 39049050 PMCID: PMC11267930 DOI: 10.1186/s13229-024-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental genetic disorder caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, affecting approximately 1:15,000 live births. We have recently shown that mitochondrial function in AS is altered during mid to late embryonic brain development leading to increased oxidative stress and enhanced apoptosis of neural precursor cells. However, the overall alterations of metabolic processes are still unknown. Hence, as a follow-up, we aim to investigate the metabolic profiles of wild-type (WT) and AS littermates and to identify which metabolic processes are aberrant in the brain of AS model mice during embryonic development. METHODS We collected brain tissue samples from mice embryos at E16.5 and performed metabolomic analyses using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Multivariate and Univariate analyses were performed to determine the significantly altered metabolites in AS mice. Pathways associated with the altered metabolites were identified using metabolite set enrichment analysis. RESULTS Our analysis showed that overall, the metabolomic fingerprint of AS embryonic brains differed from those of their WT littermates. Moreover, we revealed a significant elevation of distinct metabolites, such as acetate, lactate, and succinate in the AS samples compared to the WT samples. The elevated metabolites were significantly associated with the pyruvate metabolism and glycolytic pathways. LIMITATIONS Only 14 metabolites were successfully identified and investigated in the present study. The effect of unidentified metabolites and their unresolved peaks was not determined. Additionally, we conducted the metabolomic study on whole brain tissue samples. Employing high-resolution NMR studies on different brain regions could further expand our knowledge regarding metabolic alterations in the AS brain. Furthermore, increasing the sample size could reveal the involvement of more significantly altered metabolites in the pathophysiology of the AS brain. CONCLUSIONS Ube3a loss of function alters bioenergy-related metabolism in the AS brain during embryonic development. Furthermore, these neurochemical changes could be linked to the mitochondrial reactive oxygen species and oxidative stress that occurs during the AS embryonic development.
Collapse
Affiliation(s)
- Pooja Kri Gupta
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Sharon Barak
- Department of Chemistry and The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Gil Goobes
- Department of Chemistry and The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel.
| |
Collapse
|
5
|
Wolf NI, Engelen M, van der Knaap MS. MRI pattern recognition in white matter disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:37-50. [PMID: 39322391 DOI: 10.1016/b978-0-323-99209-1.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Magnetic resonance imaging (MRI) pattern recognition is a powerful tool for quick diagnosis of genetic and acquired white matter disorders. In many cases, distribution and character of white matter abnormalities directly point to a specific diagnosis and guide confirmatory testing. Knowledge of normal brain development is essential to interpret white matter changes in young children. MRI is also used for disease staging and treatment decisions in leukodystrophies and acquired disorders as multiple sclerosis, and as a biomarker to follow treatment effects.
Collapse
Affiliation(s)
- Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Alves CAPF, Whitehead MT. Advancing the neuroimaging diagnosis and understanding of mitochondrial disorders. Neurotherapeutics 2024; 21:e00324. [PMID: 38306952 PMCID: PMC10903090 DOI: 10.1016/j.neurot.2024.e00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Mitochondrial diseases, a diverse and intricate group of disorders, result from both nuclear DNA and mitochondrial DNA malfunctions, leading to a decrease in cellular energy (ATP) production. The increasing understanding of molecular, biochemical, and genetic irregularities associated with mitochondrial dysfunction has led to a wider recognition of varying mitochondrial disease phenotypes. This broadening landscape has led to a diverse array of neuroimaging findings, posing a challenge to radiologists in identifying the extensive range of possible patterns. This review meticulously describes the central imaging features of mitochondrial diseases in children, as revealed by neuroimaging. It spans from traditional imaging findings to more recent and intricate diagnoses, offering insights and highlighting advancements in neuroimaging technology that can potentially guide a more efficient and accurate diagnostic approach.
Collapse
Affiliation(s)
- César Augusto P F Alves
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital - BCH Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Matthew T Whitehead
- Division of Neuroradiology, Department of Radiology, The Children's Hospital of Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine of Philadelphia, United States.
| |
Collapse
|
7
|
Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, Zou X, Liu J, Feng Z. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med 2023; 207:247-259. [PMID: 37490987 DOI: 10.1016/j.freeradbiomed.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Mitochondrial succinate dehydrogenase (SDH), also known as electron transport chain (ETC) Complex II, is the only enzyme complex engaged in both oxidative phosphorylation and the tricarboxylic acid (TCA) cycle. SDH has received increasing attention due to its crucial role in regulating mitochondrial metabolism and human health. Despite having the fewest subunits among the four ETC complexes, functional SDH is formed via a sequential and well-coordinated assembly of subunits. Along with the discovery of subunit-specific assembly factors, the dynamic involvement of the SDH assembly process in a broad range of diseases has been revealed. Recently, we reported that perturbation of SDH assembly in different tissues leads to interesting and distinct pathophysiological changes in mice, indicating a need to understand the intricate SDH assembly process in human health and diseases. Thus, in this review, we summarize recent findings on SDH pathogenesis with respect to disease and a focus on SDH assembly.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
8
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Du Z, Zhou X, Lai Y, Xu J, Zhang Y, Zhou S, Feng Z, Yu L, Tang Y, Wang W, Yu L, Tian C, Ran T, Chen H, Guddat LW, Liu F, Gao Y, Rao Z, Gong H. Structure of the human respiratory complex II. Proc Natl Acad Sci U S A 2023; 120:e2216713120. [PMID: 37098072 PMCID: PMC10161127 DOI: 10.1073/pnas.2216713120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Human complex II is a key protein complex that links two essential energy-producing processes: the tricarboxylic acid cycle and oxidative phosphorylation. Deficiencies due to mutagenesis have been shown to cause mitochondrial disease and some types of cancers. However, the structure of this complex is yet to be resolved, hindering a comprehensive understanding of the functional aspects of this molecular machine. Here, we have determined the structure of human complex II in the presence of ubiquinone at 2.86 Å resolution by cryoelectron microscopy, showing it comprises two water-soluble subunits, SDHA and SDHB, and two membrane-spanning subunits, SDHC and SDHD. This structure allows us to propose a route for electron transfer. In addition, clinically relevant mutations are mapped onto the structure. This mapping provides a molecular understanding to explain why these variants have the potential to produce disease.
Collapse
Affiliation(s)
- Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Xiaoting Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Ziyan Feng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Long Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ting Ran
- Innovative Center For Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Hongming Chen
- Innovative Center For Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fengjiang Liu
- Innovative Center For Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| |
Collapse
|
10
|
Tonduti D, Zambon AA, Ghezzi D, Lamantea E, Izzo R, Parazzini C, Baldoli C, van der Knaap MS, Fumagalli F. Expanding the Spectrum of NUBPL-Related Leukodystrophy. Neuropediatrics 2023; 54:161-166. [PMID: 36868263 DOI: 10.1055/s-0043-1764214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Mitochondrial leukodystrophies constitute a group of different conditions presenting with a wide range of clinical presentation but with some shared neuroradiological features. Genetic defects in NUBPL have been recognized as cause of a pediatric onset mitochondrial leukodystrophy characterized by onset at the end of the first year of life with motor delay or regression and cerebellar signs, followed by progressive spasticity. Early magnetic resonance imagings (MRIs) show white matter abnormalities with predominant involvement of frontoparietal regions and corpus callosum. A striking cerebellar involvement is usually observed. Later MRIs show spontaneous improvement of white matter abnormalities but worsening of the cerebellar involvement evolving to global atrophy and progressive involvement of brainstem. After the 7 cases initially described, 11 more subjects were reported. Some of them were similar to patients from the original series while few others broadened the phenotypic spectrum. We performed a literature review and report on a new patient who further expand the spectrum of NUBPL-related leukodystrophy. With our study we confirm that the association of cerebral white matter and cerebellar cortex abnormalities is a feature commonly observed in early stages of the disease but beside the original and so far prevalent presentation, there are also uncommon phenotypes: clinical onset can be earlier and more severe than previously thought and signs of extraneurological involvement can be observed. Brain white matter can be diffusely abnormal without anteroposterior gradient, can progressively worsen, and cystic degeneration can be present. Thalami can be involved. Basal ganglia can also become involved during disease evolution.
Collapse
Affiliation(s)
- Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Alberto A Zambon
- Neuromuscular Repair Unit, Division of Neuroscience, Institute of Experimental Neurology (InSpe), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Parazzini
- Pediatric Radiology and Neuroradiology Unit, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Vrije Universiteit, Amsterdam, Netherlands
| | - Francesca Fumagalli
- Units of Neurology and Neurophysiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Lai LM, Gropman AL, Whitehead MT. MR Neuroimaging in Pediatric Inborn Errors of Metabolism. Diagnostics (Basel) 2022; 12:diagnostics12040861. [PMID: 35453911 PMCID: PMC9027484 DOI: 10.3390/diagnostics12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Inborn errors of metabolism (IEM) are a group of disorders due to functional defects in one or more metabolic pathways that can cause considerable morbidity and death if not diagnosed early. While individually rare, the estimated global prevalence of IEMs comprises a substantial number of neonatal and infantile disorders affecting the central nervous system. Clinical manifestations of IEMs may be nonspecific. Newborn metabolic screens do not capture all IEMs, and likewise, genetic testing may not always detect pathogenic variants. Neuroimaging is a critical component of the work-up, given that imaging sometimes occurs before prenatal screen results are available, which may allow for recognition of imaging patterns that lead to early diagnosis and treatment of IEMs. This review will demonstrate the role of magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) in the evaluation of IEMs. The focus will be on scenarios where MRI and 1H MRS are suggestive of or diagnostic for IEMs, or alternatively, refute the diagnosis.
Collapse
Affiliation(s)
- Lillian M. Lai
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Andrea L. Gropman
- Department of Neurology, Children’s National, Washington, DC 20010, USA;
| | - Matthew T. Whitehead
- Department of Radiology, Children’s National, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-202-476-5000
| |
Collapse
|
13
|
Whitehead MT, Lai LM, Blüml S. Clinical 1H MRS in childhood neurometabolic diseases — part 2: MRS signatures. Neuroradiology 2022; 64:1111-1126. [DOI: 10.1007/s00234-022-02918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
|
14
|
Ece Solmaz A, Pariltay E, Talim B, Onay H. A novel bi-allelic variant in the SDHB gene causes a severe mitochondrial complex II deficiency: a case report. Clin Neurol Neurosurg 2021; 212:107039. [PMID: 34839152 DOI: 10.1016/j.clineuro.2021.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022]
Abstract
Isolated deficiency of complex II is a rare inborn error of metabolism, accounting for approximately 2% of mitochondrial diseases. Mitochondrial complex II deficiency is predominantly seen in cases with bi-allelic SDHA mutations. To our knowledge, only 11 patients and five pathogenic variants have been reported for the SDHB gene. Our patient had a severe clinical presentation with seizures and sepsis, and died at the age of 2 months. Muscle biopsy analysis was compatible with mitochondrial myopathy with complex II deficiency. The family was given a molecular diagnosis for their child 2 years after his death via a clinical exome test of a frozen muscle biopsy specimen and a novel homozygous missense variant c.592 A>G (p.Ser198Gly) in SDHB gene was detected by next-generation sequencing. Here, we present another patient with a novel homozygous SDHB variant causing severe complex II deficiency and early death.
Collapse
Affiliation(s)
- Asli Ece Solmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey.
| | - Erhan Pariltay
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Beril Talim
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Huseyin Onay
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
15
|
Whitehead MT, Bluml S. Proton and Multinuclear Spectroscopy of the Pediatric Brain. Magn Reson Imaging Clin N Am 2021; 29:543-555. [PMID: 34717844 DOI: 10.1016/j.mric.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a valuable adjunct to structural brain imaging. State-of-the-art MRS has benefited greatly from recent technical advancements. Neurometabolic alterations in pediatric brain diseases have implications for diagnosis, prognosis, and therapy. Herein, the authors discuss MRS technical considerations and applications in the setting of various pediatric disease processes including tumors, metabolic diseases, hypoxic/ischemic encephalopathy/stroke, epilepsy, demyelinating disease, and infection.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Radiology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Stefan Bluml
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 450 Sunset Boulevard, Los Angeles, CA 90027, USA; Rudi Schulte Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Gonçalves FG, Alves CAPF, Heuer B, Peterson J, Viaene AN, Reis Teixeira S, Martín-Saavedra JS, Andronikou S, Goldstein A, Vossough A. Primary Mitochondrial Disorders of the Pediatric Central Nervous System: Neuroimaging Findings. Radiographics 2021; 40:2042-2067. [PMID: 33136487 DOI: 10.1148/rg.2020200052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - César Augusto Pinheiro Ferreira Alves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Beth Heuer
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - James Peterson
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Angela N Viaene
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Sara Reis Teixeira
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Juan Sebastián Martín-Saavedra
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Savvas Andronikou
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Amy Goldstein
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Arastoo Vossough
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| |
Collapse
|
17
|
A variant of uncertain significance in SDHAF1, the succinate dehydrogenase chaperone protein, in an adult patient with spastic paraparesis and leukoencephalopathy. Mult Scler Relat Disord 2021; 54:103132. [PMID: 34289436 DOI: 10.1016/j.msard.2021.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Succinate dehydrogenase (SDH), or respiratory complex II, consists of four nuclear-encoded subunits. The chaperone protein succinate dehydrogenase assembly factor 1 (SDHAF1) plays an essential role in the assembly of SDH, and in the incorporation of iron-sulfur clusters into the SDHB subunit. SDHB couples the oxidation of succinate to fumarate with the reduction of ubiquinone (coenzyme Q) to ubiquinol. Previously reported mutations in SDHAF1 have been associated with infantile leukoencephalopathy. We report an adult case with a homozygous variant of uncertain significance (VUS) mutation in SDHAF1, presenting with dementia, spastic paraparesis, and cardiomyopathy, initially diagnosed as multiple sclerosis.
Collapse
|
18
|
Roosendaal SD, van de Brug T, Alves CAPF, Blaser S, Vanderver A, Wolf NI, van der Knaap MS. Imaging Patterns Characterizing Mitochondrial Leukodystrophies. AJNR Am J Neuroradiol 2021; 42:1334-1340. [PMID: 34255734 PMCID: PMC8324261 DOI: 10.3174/ajnr.a7097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Achieving a specific diagnosis in leukodystrophies is often difficult due to clinical and genetic heterogeneity. Mitochondrial defects cause 5%-10% of leukodystrophies. Our objective was to define MR imaging features commonly shared by mitochondrial leukodystrophies and to distinguish MR imaging patterns related to specific genetic defects. MATERIALS AND METHODS One hundred thirty-two patients with a mitochondrial leukodystrophy with known genetic defects were identified in the data base of the Amsterdam Leukodystrophy Center. Numerous anatomic structures were systematically assessed on brain MR imaging. Additionally, lesion characteristics were scored. Statistical group analysis was performed for 57 MR imaging features by hierarchic testing on clustered genetic subgroups. RESULTS MR imaging features indicative of mitochondrial disease that were frequently found included white matter rarefaction (n = 50 patients), well-delineated cysts (n = 20 patients), T2 hyperintensity of the middle blade of the corpus callosum (n = 85 patients), and symmetric abnormalities in deep gray matter structures (n = 42 patients). Several disorders or clusters of disorders had characteristic features. The combination of T2 hyperintensity in the brain stem, middle cerebellar peduncles, and thalami was associated with complex 2 deficiency. Predominantly periventricular localization of T2 hyperintensities and cystic lesions with a distinct border was associated with defects in complexes 3 and 4. T2-hyperintense signal of the cerebellar cortex was specifically associated with variants in the gene NUBPL. T2 hyperintensities predominantly affecting the directly subcortical cerebral white matter, globus pallidus, and substantia nigra were associated with Kearns-Sayre syndrome. CONCLUSIONS In a large group of patients with a mitochondrial leukodystrophy, general MR imaging features suggestive of mitochondrial disease were found. Additionally, we identified several MR imaging patterns correlating with specific genotypes. Recognition of these patterns facilitates the diagnosis in future patients.
Collapse
Affiliation(s)
| | - T van de Brug
- Epidemiology and Biostatistics (T.v.d.B.), Amsterdam UMC, Amsterdam, the Netherlands
| | | | - S Blaser
- Division of Neuroradiology (S.B.), Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - A Vanderver
- Department of Radiology and Division of Neurology (A.V.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - N I Wolf
- Department of Pediatric Neurology (M.S.v.d.K, N.I.W.), Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M S van der Knaap
- Department of Pediatric Neurology (M.S.v.d.K, N.I.W.), Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 2021; 254:430-442. [PMID: 33586140 PMCID: PMC8600955 DOI: 10.1002/path.5641] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction – manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at‐risk families. Next‐generation sequencing strategies, particularly exome and whole‐genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally‐invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary ‘omics’ technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next‐generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi‐omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Fullerton M, McFarland R, Taylor RW, Alston CL. The genetic basis of isolated mitochondrial complex II deficiency. Mol Genet Metab 2020; 131:53-65. [PMID: 33162331 PMCID: PMC7758838 DOI: 10.1016/j.ymgme.2020.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Abstract
Mitochondrial complex II (succinate:ubiquinone oxidoreductase) is the smallest complex of the oxidative phosphorylation system, a tetramer of just 140 kDa. Despite its diminutive size, it is a key complex in two coupled metabolic pathways - it oxidises succinate to fumarate in the tricarboxylic acid cycle and the electrons are used to reduce FAD to FADH2, ultimately reducing ubiquinone to ubiquinol in the respiratory chain. The biogenesis and assembly of complex II is facilitated by four ancillary proteins, all of which are autosomally-encoded. Numerous pathogenic defects have been reported which describe two broad clinical manifestations, either susceptibility to cancer in the case of single, heterozygous germline variants, or a mitochondrial disease presentation, almost exclusively due to bi-allelic recessive variants and associated with an isolated complex II deficiency. Here we present a compendium of pathogenic gene variants that have been documented in the literature in patients with an isolated mitochondrial complex II deficiency. To date, 61 patients are described, harbouring 32 different pathogenic variants in four distinct complex II genes: three structural subunit genes (SDHA, SDHB and SDHD) and one assembly factor gene (SDHAF1). Many pathogenic variants result in a null allele due to nonsense, frameshift or splicing defects however, the missense variants that do occur tend to induce substitutions at highly conserved residues in regions of the proteins that are critical for binding to other subunits or substrates. There is phenotypic heterogeneity associated with defects in each complex II gene, similar to other mitochondrial diseases.
Collapse
Affiliation(s)
- Millie Fullerton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
21
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
22
|
Sciacovelli M, Schmidt C, Maher ER, Frezza C. Metabolic Drivers in Hereditary Cancer Syndromes. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033612] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is a multifaceted disease in which inherited genetic variants can be important drivers of tumorigenesis. The discovery that germline mutations of metabolic genes predispose to familial forms of cancer caused a shift in our understanding of how metabolism contributes to tumorigenesis, providing evidence that metabolic alterations can be oncogenic. In this review, we focus on mitochondrial enzymes whose mutations predispose to familial cancer, and we fully appraise their involvement in cancer formation and progression. Elucidating the molecular mechanisms that orchestrate transformation in these diverse tumors may answer key biological questions about tumor formation and evolution, leading to the identification of new therapeutic targets of intervention.
Collapse
Affiliation(s)
- Marco Sciacovelli
- MRC (Medical Research Council) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom;,
| | - Christina Schmidt
- MRC (Medical Research Council) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom;,
| | - Eamonn R. Maher
- Department of Medical Genetics, NIHR (National Institute of Health Research) Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Christian Frezza
- MRC (Medical Research Council) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom;,
| |
Collapse
|
23
|
Kaur P, Sharma S, Kadavigere R, Girisha KM, Shukla A. Novel variant p.(Ala102Thr) in
SDHB
causes mitochondrial complex II deficiency: Case report and review of the literature. Ann Hum Genet 2020; 84:345-351. [DOI: 10.1111/ahg.12377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics Kasturba Medical College, Manipal Manipal Academy of Higher Education Manipal India
| | - Suvasini Sharma
- Neurology Division Department of Pediatrics Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital New Delhi India
| | - Rajagopal Kadavigere
- Department of Radiodiagnosis & Imaging Kasturba Medical College, Manipal Manipal Academy of Higher Education Manipal India
| | - Katta Mohan Girisha
- Department of Medical Genetics Kasturba Medical College, Manipal Manipal Academy of Higher Education Manipal India
| | - Anju Shukla
- Department of Medical Genetics Kasturba Medical College, Manipal Manipal Academy of Higher Education Manipal India
| |
Collapse
|
24
|
Karimzadeh P, Keramatipour M, Karamzade A, Pourbakhtyaran E. Succinate Dehydrogenase Deficiency: A Treatable Neurometabolic Disorder. IRANIAN JOURNAL OF CHILD NEUROLOGY 2020; 14:111-116. [PMID: 33193791 PMCID: PMC7660022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/18/2020] [Indexed: 11/02/2022]
Abstract
Succinate dehydrogenase (SDH) deficiency is a rare autosomal recessive neurometabolic disorder that causes brain insult, neurodevelopmental delay, exercise intolerance, and cardiomyopathy. A 25-month-old boy was referred to our neurometabolic center due to developmental regression after injecting the influenza vaccine when he was 10 months old. Magnetic resonance imaging (MRI) showed high signal changes in the brain white matter, and magnetic resonance spectroscopy (MRS) detected a high succinate peak at 2.4 parts per million (ppm). The evaluation of urine organic acids showed a significant elevated succinic acid and whole exome sequencing, confirming SDH. Treatment with a mitochondrial cocktail was initiated, and remarkable improvement was observed. SDH deficiency as a treatable neurometabolic disorder should be considered in any patients with developmental disorders, accompanied by hyperintensity in white matter (as similar to leukodystrophia). Further evaluation is recommended since outcomes depend on early diagnosis and treatment.
Collapse
Affiliation(s)
- Parvaneh Karimzadeh
- Pediatric Neurology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Karamzade
- PhD candidate, Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Pediatric Neurology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS One 2019; 14:e0224132. [PMID: 31697708 PMCID: PMC6837341 DOI: 10.1371/journal.pone.0224132] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Succinate dehydrogenase (SDH) inhibitors (SDHIs) are used worldwide to limit the proliferation of molds on plants and plant products. However, as SDH, also known as respiratory chain (RC) complex II, is a universal component of mitochondria from living organisms, highly conserved through evolution, the specificity of these inhibitors toward fungi warrants investigation. We first establish that the human, honeybee, earthworm and fungal SDHs are all sensitive to the eight SDHIs tested, albeit with varying IC50 values, generally in the micromolar range. In addition to SDH, we observed that five of the SDHIs, mostly from the latest generation, inhibit the activity of RC complex III. Finally, we show that the provision of glucose ad libitum in the cell culture medium, while simultaneously providing sufficient ATP and reducing power for antioxidant enzymes through glycolysis, allows the growth of RC-deficient cells, fully masking the deleterious effect of SDHIs. As a result, when glutamine is the major carbon source, the presence of SDHIs leads to time-dependent cell death. This process is significantly accelerated in fibroblasts derived from patients with neurological or neurodegenerative diseases due to RC impairment (encephalopathy originating from a partial SDH defect) and/or hypersensitivity to oxidative insults (Friedreich ataxia, familial Alzheimer’s disease).
Collapse
|
26
|
Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ, Urtizberea JA, Saran RK, Taft RJ, van der Knaap MS, Simons C. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. Neurology 2019; 92:e587-e593. [PMID: 30635494 DOI: 10.1212/wnl.0000000000006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.
Collapse
Affiliation(s)
- Guy Helman
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Suvasini Sharma
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Joanna Crawford
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Bijoy Patra
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Puneet Jain
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Stephen J Bent
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - J Andoni Urtizberea
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ravindra K Saran
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ryan J Taft
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| | - Cas Simons
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Huang Y, Wang LA, Xie Q, Pang J, Wang L, Yi Y, Zhang J, Zhang Y, Chen R, Lan W, Zhang D, Jiang J. Germline SDHB and SDHD mutations in pheochromocytoma and paraganglioma patients. Endocr Connect 2018; 7:1217-1225. [PMID: 30352407 PMCID: PMC6240141 DOI: 10.1530/ec-18-0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Pheochromocytoma and paragangliomas (PCC/PGL) are neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla and sympathetic/parasympathetic ganglia, respectively. Of clinical relevance regarding diagnosis is the highly variable presentation of symptoms in PCC/PGL patients. To date, the clear-cut correlations between the genotypes and phenotypes of PCC/PGL have not been entirely established. In this study, we reviewed the medical records of PCC/PGL patients with pertinent clinical, laboratory and genetic information. Next-generation sequencing (NGS) performed on patient samples revealed specific germline mutations in the SDHB (succinate dehydrogenase complex iron-sulfur subunit B) and SDHD (succinate dehydrogenase complex subunit D) genes and these mutations were validated by Sanger sequencing. Of the 119 patients, two were identified with SDHB mutation and one with SDHD mutation. Immunohistochemical (IHC) staining was used to analyze the expression of these mutated genes. The germline mutations identified in the SDH genes were c343C>T and c.541-542A>G in the SDHB gene and c.334-337delACTG in the SDHD gene. IHC staining of tumors from the c.343C>T and c.541-2A>G carriers showed positive expression of SDHB. Tumors from the c.334-337delACTG carrier showed no expression of SDHD and a weak diffused staining pattern for SDHB. We strongly recommend genetic testing for suspected PCC/PGL patients with a positive family history, early onset of age, erratic hypertension, recurrence or multiple tumor sites and loss of SDHB and/or SDHD expression. Tailored personal management should be conducted once a patient is confirmed as an SDHB and/or SDHD mutation carrier or diagnosed with PCC/PGL.
Collapse
Affiliation(s)
- Yiqiang Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Lin-ang Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qiubo Xie
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jian Pang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Luofu Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, People’s Republic of China
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Rongrong Chen
- Geneplus-Beijing Institute, Beijing, People’s Republic of China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
28
|
Alves CAPF, Gonçalves FG, Grieb D, Lucato LT, Goldstein AC, Zuccoli G. Neuroimaging of Mitochondrial Cytopathies. Top Magn Reson Imaging 2018; 27:219-240. [PMID: 30086109 DOI: 10.1097/rmr.0000000000000173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mitochondrial diseases are a complex and heterogeneous group of genetic disorders that occur as a result of either nuclear DNA or mitochondrial DNA pathogenic variants, leading to a decrease in oxidative phosphorylation and cellular energy (ATP) production. Increasing knowledge about molecular, biochemical, and genetic abnormalities related to mitochondrial dysfunction has expanded the neuroimaging phenotypes of mitochondrial disorders. As a consequence of this growing field, the imaging recognition patterns of mitochondrial cytopathies are continually evolving. In this review, we describe the main neuroimaging characteristics of pediatric mitochondrial diseases, ranging from classical to more recent and challenging features. Due to the increased knowledge about the imaging findings of mitochondrial cytopathies, the pediatric neuroradiologist plays a crucial role in the diagnosis and evaluation of these patients.
Collapse
Affiliation(s)
| | | | - Dominik Grieb
- Department of Radiology and Neuroradiology, Sana Kliniken Duisburg, Germany
| | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clínicas- HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Amy C Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Giulio Zuccoli
- Department of Radiology, University of Pittsburgh School of Medicine, Director of Pediatric Neuroradiology, Children Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Stutterd CA, Lake NJ, Peters H, Lockhart PJ, Taft RJ, van der Knaap MS, Vanderver A, Thorburn DR, Simons C, Leventer RJ. Severe Leukoencephalopathy with Clinical Recovery Caused by Recessive BOLA3 Mutations. JIMD Rep 2018; 43:63-70. [PMID: 29654549 PMCID: PMC6323033 DOI: 10.1007/8904_2018_100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 03/10/2023] Open
Abstract
AIM To identify the genetic aetiology of a distinct leukoencephalopathy causing acute neurological regression in infancy with apparently complete clinical recovery. METHODS We performed trio whole genome sequencing (WGS) to determine the genetic basis of the disorder. Mitochondrial function analysis in cultured patient fibroblasts was undertaken to confirm the pathogenicity of candidate variants. RESULTS The patient presented at 18 months with acute hemiplegia and cognitive regression without obvious trigger. This was followed by clinical recovery over 4 years. MRI at disease onset revealed bilateral T2 hyperintensity involving the periventricular and deep white matter and MR spectroscopy of frontal white matter demonstrated a lactate doublet. Lactate levels and mitochondrial respiratory chain enzyme activity in muscle, liver and fibroblasts were normal. Plasma glycine was elevated. The MRI abnormalities improved. WGS identified compound heterozygous variants in BOLA3: one previously reported (c.136C>T, p.Arg46*) and one novel variant (c.176G>A, p.Cys59Tyr). Analysis of cultured patient fibroblasts demonstrated deficient pyruvate dehydrogenase (PDH) activity and reduced quantity of protein subunits of mitochondrial complexes I and II, consistent with BOLA3 dysfunction. Previously reported cases of multiple mitochondrial dysfunctions syndrome 2 (MMDS2) with hyperglycinaemia caused by BOLA3 mutations have leukodystrophy with severe, progressive neurological and multisystem disease. CONCLUSIONS We report a novel phenotype for MMDS2 associated with apparently complete clinical recovery and partial resolution of MRI abnormalities. We have identified a novel disease-causing variant in BOLA3 validated by functional cellular studies. Our patient's clinical course broadens the phenotypic spectrum of MMDS2 and highlights the potential for some genetic leukoencephalopathies to spontaneously improve.
Collapse
Affiliation(s)
- C A Stutterd
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - N J Lake
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Mitochondrial Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - H Peters
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Parkville, VIC, Australia
- Metabolic Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - P J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - R J Taft
- Illumina Inc, San Diego, CA, USA
| | - M S van der Knaap
- Department of Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - A Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Mitochondrial Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - C Simons
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Translational Bioinformatics Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - R J Leventer
- Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
30
|
Snezhkina AV, Lukyanova EN, Kalinin DV, Pokrovsky AV, Dmitriev AA, Koroban NV, Pudova EA, Fedorova MS, Volchenko NN, Stepanov OA, Zhevelyuk EA, Kharitonov SL, Lipatova AV, Abramov IS, Golovyuk AV, Yegorov YE, Vishnyakova KS, Moskalev AA, Krasnov GS, Melnikova NV, Shcherbo DS, Kiseleva MV, Kaprin AD, Alekseev BY, Zaretsky AR, Kudryavtseva AV. Exome analysis of carotid body tumor. BMC Med Genomics 2018; 11:17. [PMID: 29504908 PMCID: PMC5836820 DOI: 10.1186/s12920-018-0327-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Carotid body tumor (CBT) is a form of head and neck paragangliomas (HNPGLs) arising at the bifurcation of carotid arteries. Paragangliomas are commonly associated with germline and somatic mutations involving at least one of more than thirty causative genes. However, the specific functionality of a number of these genes involved in the formation of paragangliomas has not yet been fully investigated. Methods Exome library preparation was carried out using Nextera® Rapid Capture Exome Kit (Illumina, USA). Sequencing was performed on NextSeq 500 System (Illumina). Results Exome analysis of 52 CBTs revealed potential driver mutations (PDMs) in 21 genes: ARNT, BAP1, BRAF, BRCA1, BRCA2, CDKN2A, CSDE1, FGFR3, IDH1, KIF1B, KMT2D, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SETD2, TP53BP1, TP53BP2, and TP53I13. In many samples, more than one PDM was identified. There are also 41% of samples in which we did not identify any PDM; in these cases, the formation of CBT was probably caused by the cumulative effect of several not highly pathogenic mutations. Estimation of average mutation load demonstrated 6–8 mutations per megabase (Mb). Genes with the highest mutation rate were identified. Conclusions Exome analysis of 52 CBTs for the first time revealed the average mutation load for these tumors and also identified potential driver mutations as well as their frequencies and co-occurrence with the other PDMs. Electronic supplementary material The online version of this article (10.1186/s12920-018-0327-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Elena N Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anatoly V Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda V Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda N Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Oleg A Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ekaterina A Zhevelyuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Khava S Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Shcherbo
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
31
|
Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease: Identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data. Am J Med Genet A 2017; 173:1502-1513. [PMID: 28402605 PMCID: PMC10506158 DOI: 10.1002/ajmg.a.38189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/03/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease is an inborn error of metabolism caused by mutations in SLC19A3, encoding a transporter of thiamine across the plasma membrane. We report a novel mutation identified in the homozygous state in a patient with typical brain MRI changes. In addition, this patient had markedly elevated CSF pyruvate, a low lactate-to-pyruvate molar ratio, and an abnormal pyruvate peak at 2.4 ppm on brain magnetic resonance spectroscopy. Using aggregated exome sequencing data, we calculate the carrier frequency of mutations in SLC19A3 as 1 in 232 individuals in the general population, for an estimated prevalence of the disease of approximately 1 in 215,000 individuals. The disease is thus more frequent than previously recognized, and the presence of a pyruvate peak on spectroscopy could serve as an important diagnostic clue.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
- The George Washington University School of Medicine, Washington, District of Columbia
| | - Matthew T. Whitehead
- The George Washington University School of Medicine, Washington, District of Columbia
- Division of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, District of Columbia
| | - Eyby Leon
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
| |
Collapse
|
32
|
Grønborg S, Darin N, Miranda MJ, Damgaard B, Cayuela JA, Oldfors A, Kollberg G, Hansen TVO, Ravn K, Wibrand F, Østergaard E. Leukoencephalopathy due to Complex II Deficiency and Bi-Allelic SDHB Mutations: Further Cases and Implications for Genetic Counselling. JIMD Rep 2016; 33:69-77. [PMID: 27604842 DOI: 10.1007/8904_2016_582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023] Open
Abstract
Isolated complex II deficiency is a rare cause of mitochondrial disease and bi-allelic mutations in SDHB have been identified in only a few patients with complex II deficiency and a progressive neurological phenotype with onset in infancy. On the other hand, heterozygous SDHB mutations are a well-known cause of familial paraganglioma/pheochromocytoma and renal cell cancer. Here, we describe two additional patients with respiratory chain deficiency due to bi-allelic SDHB mutations. The patients' clinical, neuroradiological, and biochemical phenotype is discussed according to current knowledge on complex II and SDHB deficiency and is well in line with previously described cases, thus confirming the specific neuroradiological presentation of complex II deficiency that recently has emerged. The patients' genotype revealed one novel SDHB mutation, and one SDHB mutation, which previously has been described in heterozygous form in patients with familial paraganglioma/pheochromocytoma and/or renal cell cancer. This is only the second example in the literature where one specific SDHx mutation is associated with both recessive mitochondrial disease in one patient and familial paraganglioma/pheochromocytoma in others. Due to uncertainties regarding penetrance of different heterozygous SDHB mutations, we argue that all heterozygous SDHB mutation carriers identified in relation to SDHB-related leukoencephalopathy should be referred to relevant surveillance programs for paraganglioma/pheochromocytoma and renal cell cancer. The diagnosis of complex II deficiency due to SDHB mutations therefore raises implications for genetic counselling that go beyond the recurrence risk in the family according to an autosomal recessive inheritance.
Collapse
Affiliation(s)
- Sabine Grønborg
- Center for Rare Diseases, Department of Clinical Genetics, Juliane Marie Center, University Hospital Copenhagen, Copenhagen, Denmark
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Maria J Miranda
- Department of Pediatrics, Pediatric Neurology, Herlev University Hospital, Copenhagen University, Herlev, Denmark
| | - Bodil Damgaard
- Department of Diagnostic Imaging, Nordsjællands Hospital, Hillerød, Denmark
| | - Jorge Asin Cayuela
- Department of Clinical Chemistry, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gittan Kollberg
- Department of Clinical Chemistry, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Ravn
- Department of Clinical Genetics 4062, Juliane Marie Center, University Hospital Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Flemming Wibrand
- Department of Clinical Genetics 4062, Juliane Marie Center, University Hospital Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Elsebet Østergaard
- Department of Clinical Genetics 4062, Juliane Marie Center, University Hospital Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|