1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Laitila J, Seaborne RAE, Ranu N, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Zanoteli E, Palmio J, Huovinen S, Granzier H, Ochala J. Myosin ATPase inhibition fails to rescue the metabolically dysregulated proteome of nebulin-deficient muscle. J Physiol 2024; 602:5229-5245. [PMID: 39216086 DOI: 10.1113/jp286870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Nemaline myopathy (NM) is a genetic muscle disease, primarily caused by mutations in the NEB gene (NEB-NM) and with muscle myosin dysfunction as a major molecular pathogenic mechanism. Recently, we have observed that the myosin biochemical super-relaxed state was significantly impaired in NEB-NM, inducing an aberrant increase in ATP consumption and remodelling of the energy proteome in diseased muscle fibres. Because the small-molecule Mavacamten is known to promote the myosin super-relaxed state and reduce the ATP demand, we tested its potency in the context of NEB-NM. We first conducted in vitro experiments in isolated single myofibres from patients and found that Mavacamten successfully reversed the myosin ATP overconsumption. Following this, we assessed its short-term in vivo effects using the conditional nebulin knockout (cNeb KO) mouse model and subsequently performing global proteomics profiling in dissected soleus myofibres. After a 4 week treatment period, we observed a remodelling of a large number of proteins in both cNeb KO mice and their wild-type siblings. Nevertheless, these changes were not related to the energy proteome, indicating that short-term Mavacamten treatment is not sufficient to properly counterbalance the metabolically dysregulated proteome of cNeb KO mice. Taken together, our findings emphasize Mavacamten potency in vitro but challenge its short-term efficacy in vivo. KEY POINTS: No cure exists for nemaline myopathy, a type of genetic skeletal muscle disease mainly derived from mutations in genes encoding myofilament proteins. Applying Mavacamten, a small molecule directly targeting the myofilaments, to isolated membrane-permeabilized muscle fibres from human patients restored myosin energetic disturbances. Treating a mouse model of nemaline myopathy in vivo with Mavacamten for 4 weeks, remodelled the skeletal muscle fibre proteome without any noticeable effects on energetic proteins. Short-term Mavacamten treatment may not be sufficient to reverse the muscle phenotype in nemaline myopathy.
Collapse
Affiliation(s)
- Jenni Laitila
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert A E Seaborne
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Natasha Ranu
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Justin S Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, MO, USA
| | - Carina Wallgren-Pettersson
- The Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Johanna Palmio
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Henk Granzier
- The Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dugdale HF, Levy Y, Jungbluth H, Oldfors A, Ochala J. Aberrant myonuclear domains and impaired myofiber contractility despite marked hypertrophy in MYMK-related, Carey-Fineman-Ziter Syndrome. Acta Neuropathol Commun 2024; 12:80. [PMID: 38790073 PMCID: PMC11127446 DOI: 10.1186/s40478-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.
Collapse
Affiliation(s)
- Hannah F Dugdale
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Piga D, Rimoldi M, Magri F, Zanotti S, Napoli L, Ripolone M, Pagliarani S, Ciscato P, Velardo D, D’Amico A, Bertini E, Comi GP, Ronchi D, Corti S. Case report: A novel ACTA1 variant in a patient with nemaline rods and increased glycogen deposition. Front Neurol 2024; 15:1340693. [PMID: 38500810 PMCID: PMC10944937 DOI: 10.3389/fneur.2024.1340693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.
Collapse
Affiliation(s)
- Daniela Piga
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Martina Rimoldi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Francesca Magri
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Simona Zanotti
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Laura Napoli
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Michela Ripolone
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Serena Pagliarani
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Patrizia Ciscato
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Daniele Velardo
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu’ Children’s Research Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu’ Children’s Research Hospital, IRCCS, Rome, Italy
| | - Giacomo Pietro Comi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Dario Ronchi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Stefania Corti
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Cai W, Wang Y, Luo Y, Gao L, Zhang J, Jiang Z, Fan X, Li F, Xie Y, Wu X, Li Y, Yuan W. asb5a/ asb5b Double Knockout Affects Zebrafish Cardiac Contractile Function. Int J Mol Sci 2023; 24:16364. [PMID: 38003559 PMCID: PMC10671462 DOI: 10.3390/ijms242216364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Ankyrin repeat and suppression-of-cytokine-signaling box (Asb) proteins, a subset of ubiquitin ligase E3, include Asb5 with six ankyrin-repeat domains. Zebrafish harbor two asb5 gene isoforms, asb5a and asb5b. Currently, the effects of asb5 gene inactivation on zebrafish embryonic development and heart function are unknown. Using CRISPR/Cas9, we generated asb5a-knockout zebrafish, revealing no abnormal phenotypes at 48 h post-fertilization (hpf). In situ hybridization showed similar asb5a and asb5b expression patterns, indicating the functional redundancy of these isoforms. Morpholino interference was used to target asb5b in wild-type and asb5a-knockout zebrafish. Knocking down asb5b in the wild-type had no phenotypic impact, but simultaneous asb5b knockdown in asb5a-knockout homozygotes led to severe pericardial cavity enlargement and atrial dilation. RNA-seq and cluster analyses identified significantly enriched cardiac muscle contraction genes in the double-knockout at 48 hpf. Moreover, semi-automatic heartbeat analysis demonstrated significant changes in various heart function indicators. STRING database/Cytoscape analyses confirmed that 11 cardiac-contraction-related hub genes exhibited disrupted expression, with three modules containing these genes potentially regulating cardiac contractile function through calcium ion channels. This study reveals functional redundancy in asb5a and asb5b, with simultaneous knockout significantly impacting zebrafish early heart development and contraction, providing key insights into asb5's mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yongqing Li
- The Laboratary of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.C.); (Y.W.); (Y.L.); (L.G.); (J.Z.); (Z.J.); (X.F.); (F.L.); (Y.X.); (X.W.)
| | - Wuzhou Yuan
- The Laboratary of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (W.C.); (Y.W.); (Y.L.); (L.G.); (J.Z.); (Z.J.); (X.F.); (F.L.); (Y.X.); (X.W.)
| |
Collapse
|
6
|
Gineste C, Laporte J. Therapeutic approaches in different congenital myopathies. Curr Opin Pharmacol 2023; 68:102328. [PMID: 36512981 DOI: 10.1016/j.coph.2022.102328] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Congenital myopathies are rare and severe genetic diseases affecting the skeletal muscle function in children and adults. They present a variable spectrum of phenotypes and a genetic heterogeneity. Subgroups are defined according to the clinical and histopathological features and encompass core myopathy, centronuclear myopathy, nemaline myopathy and other rare congenital myopathies. No approved treatment exists to date for any congenital myopathies. To tackle this important unmet need, an increased number of proof-of-concept studies recently assessed the therapeutic potential of various strategies, either pharmacological or genetic-based, aiming at counteracting muscle weakness or/and cure the pathology. Here, we list the implicated genes and cellular pathways, and review the therapeutic approaches preclinically tested and the ongoing/completed clinical trials for the different types of congenital myopathies.
Collapse
Affiliation(s)
- Charlotte Gineste
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Strasbourg University, Illkirch 67404, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Strasbourg University, Illkirch 67404, France.
| |
Collapse
|
7
|
Antonovic AK, Ochala J, Fornili A. Comparative study of binding pocket structure and dynamics in cardiac and skeletal myosin. Biophys J 2023; 122:54-62. [PMID: 36451546 PMCID: PMC9822794 DOI: 10.1016/j.bpj.2022.11.2942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The development of small molecule myosin modulators has seen an increased effort in recent years due to their possible use in the treatment of cardiac and skeletal myopathies. Omecamtiv mecarbil (OM) is the first-in-class cardiac myotrope and the first to enter clinical trials. Its selectivity toward slow/beta-cardiac myosin lies at the heart of its function; however, little is known about the underlying reasons for selectivity to this isoform as opposed to other closely related ones such as fast-type skeletal myosins. In this work, we compared the structure and dynamics of the OM binding site in cardiac and in fasttype IIa skeletal myosin to identify possible reasons for OM selectivity. We found that the different shape, size, and composition of the binding pocket in skeletal myosin directly affects the binding mode and related affinity of OM, which is potentially a result of weaker interactions and less optimal molecular recognition. Moreover, we identified a side pocket adjacent to the OM binding site that shows increased accessibility in skeletal myosin compared with the cardiac isoform. These findings could pave the way to the development of skeletal-selective compounds that can target this region of the protein and potentially be used to treat congenital myopathies where muscle weakness is related to myosin loss of function.
Collapse
Affiliation(s)
- Anna Katarina Antonovic
- School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, København N 2200, Denmark; Centre of Human and Applied Physiological Sciences, King's College London, London SE1 9RT, United Kingdom
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
8
|
Ranu N, Laitila J, Dugdale HF, Mariano J, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Fiorillo C, Zanoteli E, Auranen M, Jokela M, Tasca G, Claeys KG, Voermans NC, Palmio J, Huovinen S, Moggio M, Beck TN, Kontrogianni-Konstantopoulos A, Granzier H, Ochala J. NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy. Acta Neuropathol Commun 2022; 10:185. [PMID: 36528760 PMCID: PMC9758823 DOI: 10.1186/s40478-022-01491-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.
Collapse
Affiliation(s)
- Natasha Ranu
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jenni Laitila
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannah F. Dugdale
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK ,grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jennifer Mariano
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Justin S. Kolb
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Carina Wallgren-Pettersson
- grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- grid.84393.350000 0001 0360 9602Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Chiara Fiorillo
- grid.5606.50000 0001 2151 3065Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Edmar Zanoteli
- grid.11899.380000 0004 1937 0722Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Mari Auranen
- grid.7737.40000 0004 0410 2071Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, NeurologyHelsinki, Finland
| | - Manu Jokela
- grid.1374.10000 0001 2097 1371Neurology, Clinical Medicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland ,grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Kristl G. Claeys
- grid.410569.f0000 0004 0626 3338Department of Neurology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nicol C. Voermans
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Palmio
- grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- grid.412330.70000 0004 0628 2985Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Maurizio Moggio
- grid.414818.00000 0004 1757 8749Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Nyegaard Beck
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henk Granzier
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Julien Ochala
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
10
|
Myofibre Hyper-Contractility in Horses Expressing the Myosin Heavy Chain Myopathy Mutation, MYH1E321G. Cells 2021; 10:cells10123428. [PMID: 34943936 PMCID: PMC8699922 DOI: 10.3390/cells10123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Myosinopathies are defined as a group of muscle disorders characterized by mutations in genes encoding myosin heavy chains. Their exact molecular and cellular mechanisms remain unclear. In the present study, we have focused our attention on a MYH1-related E321G amino acid substitution within the head region of the type IIx skeletal myosin heavy chain, associated with clinical signs of atrophy, inflammation and/or profound rhabdomyolysis, known as equine myosin heavy chain myopathy. We performed Mant-ATP chase experiments together with force measurements on isolated IIx myofibres from control horses (MYH1E321G−/−) and Quarter Horses homozygous (MYH1E321G+/+) or heterozygous (MYH1E321G+/−) for the E321G mutation. The single residue replacement did not affect the relaxed conformations of myosin molecules. Nevertheless, it significantly increased its active behaviour as proven by the higher maximal force production and Ca2+ sensitivity for MYH1E321G+/+ in comparison with MYH1E321G+/− and MYH1E321G−/− horses. Altogether, these findings indicate that, in the presence of the E321G mutation, a molecular and cellular hyper-contractile phenotype occurs which could contribute to the development of the myosin heavy chain myopathy.
Collapse
|
11
|
Laitila J, Wallgren-Pettersson C. Recent advances in nemaline myopathy. Neuromuscul Disord 2021; 31:955-967. [PMID: 34561123 DOI: 10.1016/j.nmd.2021.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
The nemaline myopathies constitute a large proportion of the congenital or structural myopathies. Common to all patients is muscle weakness and the presence in the muscle biopsy of nemaline rods. The causative genes are at least twelve, encoding structural or regulatory proteins of the thin filament, and the clinical picture as well as the histological appearance on muscle biopsy vary widely. Here, we suggest a renewed clinical classification to replace the original one, summarise what is known about the pathogenesis from mutations in each causative gene to the forms of nemaline myopathy described to date, and provide perspectives on pathogenetic mechanisms possibly open to therapeutic modalities.
Collapse
Affiliation(s)
- Jenni Laitila
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland
| |
Collapse
|
12
|
van de Locht M, Borsboom TC, Winter JM, Ottenheijm CAC. Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics. Int J Mol Sci 2021; 22:ijms22179187. [PMID: 34502093 PMCID: PMC8430961 DOI: 10.3390/ijms22179187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of treatment strategies.
Collapse
|
13
|
Laitila JM, McNamara EL, Wingate CD, Goullee H, Ross JA, Taylor RL, van der Pijl R, Griffiths LM, Harries R, Ravenscroft G, Clayton JS, Sewry C, Lawlor MW, Ottenheijm CAC, Bakker AJ, Ochala J, Laing NG, Wallgren-Pettersson C, Pelin K, Nowak KJ. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun 2020; 8:18. [PMID: 32066503 PMCID: PMC7027239 DOI: 10.1186/s40478-020-0893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Collapse
|
14
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
15
|
Ross JA, Levy Y, Ripolone M, Kolb JS, Turmaine M, Holt M, Lindqvist J, Claeys KG, Weis J, Monforte M, Tasca G, Moggio M, Figeac N, Zammit PS, Jungbluth H, Fiorillo C, Vissing J, Witting N, Granzier H, Zanoteli E, Hardeman EC, Wallgren-Pettersson C, Ochala J. Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathol 2019; 138:477-495. [PMID: 31218456 PMCID: PMC6689292 DOI: 10.1007/s00401-019-02034-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.
Collapse
|
16
|
Abstract
Nemaline myopathy (NM) is among the most common non-dystrophic congenital myopathies (incidence 1:50.000). Hallmark features of NM are skeletal muscle weakness and the presence of nemaline bodies in the muscle fiber. The clinical phenotype of NM patients is quite diverse, ranging from neonatal death to normal lifespan with almost normal motor function. As the respiratory muscles are involved as well, severely affected patients are ventilator-dependent. The mechanisms underlying muscle weakness in NM are currently poorly understood. Therefore, no therapeutic treatment is available yet. Eleven implicated genes have been identified: ten genes encode proteins that are either components of thin filament, or are thought to contribute to stability or turnover of thin filament proteins. The thin filament is a major constituent of the sarcomere, the smallest contractile unit in muscle. It is at this level of contraction – thin-thick filament interaction – where muscle weakness originates in NM patients. This review focusses on how sarcomeric gene mutations directly compromise sarcomere function in NM. Insight into the contribution of sarcomeric dysfunction to muscle weakness in NM, across the genes involved, will direct towards the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Coen A.C. Ottenheijm
- Correspondence to: Coen Ottenheijm, PhD, Department of Physiology, VU University Medical Center, O|2 building, 12W-51, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands. Tel.: +31 20 4448123; Fax: +31 20 4448124; E-mail:
| |
Collapse
|
17
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Ravenscroft G, Bryson-Richardson RJ, Nowak KJ, Laing NG. Recent advances in understanding congenital myopathies. F1000Res 2018; 7. [PMID: 30631434 PMCID: PMC6290972 DOI: 10.12688/f1000research.16422.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
By definition, congenital myopathy typically presents with skeletal muscle weakness and hypotonia at birth. Traditionally, congenital myopathy subtypes have been predominantly distinguished on the basis of the pathological hallmarks present on skeletal muscle biopsies. Many genes cause congenital myopathies when mutated, and a burst of new causative genes have been identified because of advances in gene sequencing technology. Recent discoveries include extending the disease phenotypes associated with previously identified genes and determining that genes formerly known to cause only dominant disease can also cause recessive disease. The more recently identified congenital myopathy genes account for only a small proportion of patients. Thus, the congenital myopathy genes remaining to be discovered are predicted to be extremely rare causes of disease, which greatly hampers their identification. Significant progress in the provision of molecular diagnoses brings important information and value to patients and their families, such as possible disease prognosis, better disease management, and informed reproductive choice, including carrier screening of parents. Additionally, from accurate genetic knowledge, rational treatment options can be hypothesised and subsequently evaluated
in vitro and in animal models. A wide range of potential congenital myopathy therapies have been investigated on the basis of improved understanding of disease pathomechanisms, and some therapies are in clinical trials. Although large hurdles remain, promise exists for translating treatment benefits from preclinical models to patients with congenital myopathy, including harnessing proven successes for other genetic diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | | | - Kristen J Nowak
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,School of Biological Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia.,Office of Population Health Genomics, Western Australian Department of Health, East Perth, WA, Australia
| | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
19
|
Fan J, Chan C, McNamara EL, Nowak KJ, Iwamoto H, Ochala J. Molecular Consequences of the Myopathy-Related D286G Mutation on Actin Function. Front Physiol 2018; 9:1756. [PMID: 30564146 PMCID: PMC6288369 DOI: 10.3389/fphys.2018.01756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Myopathies are notably associated with mutations in genes encoding proteins known to be essential for the force production of skeletal muscle fibers, such as skeletal alpha-actin. The exact molecular mechanisms by which these specific defects induce myopathic phenotypes remain unclear. Hence, in the present study, to better understand actin dysfunction, we conducted a molecular dynamic simulation together with ex vivo experiments of the specific muscle disease-causing actin mutation, D286G located in the actin-actin interface. Our computational study showed that D286G impairs the flexural rigidity of actin filaments. However, upon activation, D286G did not have any direct consequences on actin filament extension. Hence, D286G may alter the structure of actin filaments but, when expressed together with normal actin molecules, it may only have minor effects on the ex vivo mechanics of actin filaments upon skeletal muscle fiber contraction.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chun Chan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elyshia L McNamara
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia.,Department of Health, Office of Population Health Genomics, Public and Aboriginal Health Division, Government of Western Australia, East Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Levy Y, Ross JA, Niglas M, Snetkov VA, Lynham S, Liao CY, Puckelwartz MJ, Hsu YM, McNally EM, Alsheimer M, Harridge SD, Young SG, Fong LG, Español Y, Lopez-Otin C, Kennedy BK, Lowe DA, Ochala J. Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight 2018; 3:120920. [PMID: 30282816 PMCID: PMC6237469 DOI: 10.1172/jci.insight.120920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023] Open
Abstract
Physiological and premature aging are frequently associated with an accumulation of prelamin A, a precursor of lamin A, in the nuclear envelope of various cell types. Here, we aimed to underpin the hitherto unknown mechanisms by which prelamin A alters myonuclear organization and muscle fiber function. By experimentally studying membrane-permeabilized myofibers from various transgenic mouse lines, our results indicate that, in the presence of prelamin A, the abundance of nuclei and myosin content is markedly reduced within muscle fibers. This leads to a concept by which the remaining myonuclei are very distant from each other and are pushed to function beyond their maximum cytoplasmic capacity, ultimately inducing muscle fiber weakness.
Collapse
Affiliation(s)
- Yotam Levy
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Marili Niglas
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Vladimir A Snetkov
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, United Kingdom
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yueh-Mei Hsu
- Buck Institute for Research on Aging, Novato, California, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Stephen Dr Harridge
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Stephen G Young
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Loren G Fong
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yaiza Español
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California, USA.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Ageing, National University Health System, Singapore.,Singapore Institute for Clinical Sciences, Singapore
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| |
Collapse
|
21
|
Do Actomyosin Single-Molecule Mechanics Data Predict Mechanics of Contracting Muscle? Int J Mol Sci 2018; 19:ijms19071863. [PMID: 29941816 PMCID: PMC6073448 DOI: 10.3390/ijms19071863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
In muscle, but not in single-molecule mechanics studies, actin, myosin and accessory proteins are incorporated into a highly ordered myofilament lattice. In view of this difference we compare results from single-molecule studies and muscle mechanics and analyze to what degree data from the two types of studies agree with each other. There is reasonable correspondence in estimates of the cross-bridge power-stroke distance (7–13 nm), cross-bridge stiffness (~2 pN/nm) and average isometric force per cross-bridge (6–9 pN). Furthermore, models defined on the basis of single-molecule mechanics and solution biochemistry give good fits to experimental data from muscle. This suggests that the ordered myofilament lattice, accessory proteins and emergent effects of the sarcomere organization have only minor modulatory roles. However, such factors may be of greater importance under e.g., disease conditions. We also identify areas where single-molecule and muscle data are conflicting: (1) whether force generation is an Eyring or Kramers process with just one major power-stroke or several sub-strokes; (2) whether the myofilaments and the cross-bridges have Hookean or non-linear elasticity; (3) if individual myosin heads slip between actin sites under certain conditions, e.g., in lengthening; or (4) if the two heads of myosin cooperate.
Collapse
|
22
|
Joureau B, de Winter JM, Conijn S, Bogaards SJP, Kovacevic I, Kalganov A, Persson M, Lindqvist J, Stienen GJM, Irving TC, Ma W, Yuen M, Clarke NF, Rassier DE, Malfatti E, Romero NB, Beggs AH, Ottenheijm CAC. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 2018; 83:269-282. [PMID: 29328520 DOI: 10.1002/ana.25144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.
Collapse
Affiliation(s)
- Barbara Joureau
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Conijn
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindqvist
- Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Michaela Yuen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Edoardo Malfatti
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
23
|
Ochala J, Sun YB. Novel myosin-based therapies for congenital cardiac and skeletal myopathies. J Med Genet 2016; 53:651-4. [PMID: 27412953 PMCID: PMC5099184 DOI: 10.1136/jmedgenet-2016-103881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
The dysfunction in a number of inherited cardiac and skeletal myopathies is primarily due to an altered ability of myofilaments to generate force and motion. Despite this crucial knowledge, there are, currently, no effective therapeutic interventions for these diseases. In this short review, we discuss recent findings giving strong evidence that genetically or pharmacologically modulating one of the myofilament proteins, myosin, could alleviate the muscle pathology. This should constitute a research and clinical priority.
Collapse
Affiliation(s)
- Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|