1
|
Bartolomei F. The epileptogenic network concept: Applications in the SEEG exploration of lesional focal epilepsies. Neurophysiol Clin 2024; 54:103023. [PMID: 39481212 DOI: 10.1016/j.neucli.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
The advent of advanced brain imaging techniques has significantly enhanced the understanding and treatment of focal epilepsies, with identifiable brain lesions present in 80 % of cases. Despite this, surgical outcomes remain varied, often influenced by lesion type and location. Traditional lesion-centric approaches may overlook the complex organization of the epileptogenic zone (EZ), which often extends beyond the visible lesion, emphasizing the need for comprehensive presurgical evaluations like stereo-electroencephalography (SEEG) in some cases. This article delves into the concept of epileptogenic networks, moving beyond the notion of a lesional epileptic focus. Through SEEG, three primary network types have been identified: the Epileptogenic Zone Network (EZN), characterized by regions with heightened epileptogenicity and seizure initiation; the Propagation Zone Network (PZN), involving regions with delayed and less intense epileptic activity; and Non-Involved networks (NI). Quantitative measures, such as the epileptogenicity index (EI), aid in delineating these networks, revealing that EZN can be focal or networked, with the latter being more prevalent. The relationship between epilepsy-associated lesions and network organization is complex. Intrinsically epileptogenic lesions, like focal cortical dysplasia and periventricular nodular heterotopias, often generate epileptiform activities but may still involve broader epileptogenic networks. Non-intrinsically epileptogenic lesions, such as cavernomas and post-stroke lesions, typically lack inherent neuronal activity but can facilitate the development of extensive epileptogenic networks. Understanding the intricacies of these networks is crucial for optimizing surgical interventions. Recognizing that lesions may represent just one node within a broader epileptogenic network underscores the importance of comprehensive SEEG evaluations to achieve better surgical outcomes.
Collapse
Affiliation(s)
- Fabrice Bartolomei
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
2
|
Aung T, Bo J, Bingaman W, Najm I, Alexopoulos A, Bulacio JC. Seizure outcome in drug-resistant epilepsy in the setting of polymicrogyria. Seizure 2024; 121:226-234. [PMID: 39244950 DOI: 10.1016/j.seizure.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE We aimed to analyze seizure outcomes and define ictal onset with intracranial electroencephalography (ICEEG) in patients with polymicrogyria (PMG)-related drug-resistant epilepsy (DRE), considering surrounding cortex and extent of surgical resection. METHODS Retrospective study of PMG-diagnosed patients (2001 to June 2018) at a single epilepsy center was performed. Primary outcome was complete seizure freedom (SF), based on Engel classification with follow-up of ≥ 1 year. Univariate analyses identified predictive clinical variables, later integrated into multivariate Cox proportional hazards models. RESULTS Thirty-five patients with PMG-related DRE (19 adults/16 pediatric: 20 unilateral/15 bilateral) were studied. In surgical group (n = 23), 52 % achieved SF (mean follow-up:47 months), whereas none in non-resective treatment group (n = 12) attained SF (mean follow-up:39.3 months) (p = 0.002). In surgical group, there were no significant differences in SF, based on the laterality of the PMG [uni or bilateral,p = 0.35], involvement of perisylvian region(p = 0.714), and extent of the PMG resection [total vs. partial,p = 0.159]. Patients with ictal ICEEG onset in both PMG and non-PMG cortices, and those limited to non- PMG cortices had a greater chance of achieving SF compared to those limited to the PMG cortices. CONCLUSION Resective surgery guided by ICEEG for defining the epileptogenic zone (EZ), in DRE patients with PMG, leads to favorable seizure outcomes. ICEEG-guided focal surgical resection(s) may lead to SF in patients with bilateral or extensive unilateral PMG. ICEEG aids in EZ localization within and/or outside the MRI-identified PMG. Complete removal of PMG identified on MRI does not guarantee SF. Hence, developing preimplantation hypotheses based on epileptogenic networks evaluation during presurgical assessment is crucial in this patient population.
Collapse
Affiliation(s)
- Thandar Aung
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S60, Cleveland, OH 44195, United States; University of Pittsburgh Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jin Bo
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S60, Cleveland, OH 44195, United States; Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - William Bingaman
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S60, Cleveland, OH 44195, United States
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S60, Cleveland, OH 44195, United States
| | - Andreas Alexopoulos
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S60, Cleveland, OH 44195, United States
| | - Juan C Bulacio
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S60, Cleveland, OH 44195, United States.
| |
Collapse
|
3
|
Wu P, Liu Q, Liu X, Sun Y, Zhang J, Wang R, Ji T, Wang S, Liu X, Jiang Y, Cai L, Wu Y. Clinical features of unilateral multilobar and hemispheric polymicrogyria (PMG)-related epilepsy and seizure outcome with different treatment options. Epilepsia Open 2024; 9:1480-1492. [PMID: 38898786 PMCID: PMC11296091 DOI: 10.1002/epi4.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To provide evidence for choosing surgical or nonsurgical treatment for epilepsy in patients with unilateral multilobar and hemispheric polymicrogyria (PMG). METHODS We searched published studies until September 2022 related to unilateral multilobar and hemispheric PMG and included patients who were followed up at the Pediatric Epilepsy Centre of Peking University First Hospital in the past 10 years. We summarized the clinical characteristics and compared the long-term outcomes after surgical or nonsurgical (anti-seizure medications, ASMs) treatment. RESULTS A total of 70 patients (49 surgical, 21 non-surgical) with unilateral multilobar and hemispheric PMG were included. The median age at epilepsy onset was 2.5 years (1.0-4.1). The most common seizure types were focal and atypical absence seizures. In the whole cohort, 87.3% had hemiparesis and 67.1% had electrical status epilepticus during slow sleep (ESES). There were significant differences in age at epilepsy onset, extent of lesion, and EEG interictal discharges between the two groups. At the last follow-up (median 14.1 years), the rates of seizure-freedom (81.6% vs. 57.1%, p = 0.032) and ASM discontinuation (44.4% vs. 6.3%, p = 0.006) were higher in the surgical group than in the nonsurgical group. Patients in the surgical group had a higher rate of seizure-freedom with complete resection/disconnection than with subtotal resection (87.5% vs. 55.6%, p = 0.078), but with no statistically significant difference. In the nonsurgical group, more extensive lesions were associated with worse seizure outcomes. Cognition improved postoperatively in 90% of surgical patients. SIGNIFICANCE In patients with unilateral multilobar and hemispheric PMG, the age of seizure onset, the extent of the lesion and EEG features can help determine whether surgery should be performed early. Additionally, surgery could be more favorable for achieving seizure freedom and cognitive improvement sooner. PLAIN LANGUAGE SUMMARY We aim to summarize clinical characteristics and compare the long-term outcomes after surgical and nonsurgical (ASM) treatment to provide a basis for treatment decisions for patients with unilateral multilobar and hemispheric polymicrogyria (PMG)-related epilepsy. We found that patients with unilateral hemispheric and multilobar PMG had significantly higher rates of seizure freedom and ASM discontinuation with surgical treatment than with nonsurgical treatment. In the surgical group, seizure outcomes were better in patients treated with complete resection/disconnection than in those treated with subtotal resection, but the difference was not statistically significant.
Collapse
Affiliation(s)
- Pengxia Wu
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Qingzhu Liu
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Xianyu Liu
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Yu Sun
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Jie Zhang
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Ruofan Wang
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Taoyun Ji
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Shuang Wang
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Xiaoyan Liu
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Yuwu Jiang
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Lixin Cai
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Ye Wu
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| |
Collapse
|
4
|
Gennari AG, Bicciato G, Lo Biundo SP, Kottke R, Stefanos-Yakoub I, Cserpan D, O'Gorman Tuura R, Ramantani G. Lesion volume and spike frequency on EEG impact perfusion values in focal cortical dysplasia: a pediatric arterial spin labeling study. Sci Rep 2024; 14:7601. [PMID: 38556543 PMCID: PMC10982306 DOI: 10.1038/s41598-024-58352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Arterial spin labelling (ASL), an MRI sequence non-invasively imaging brain perfusion, has yielded promising results in the presurgical workup of children with focal cortical dysplasia (FCD)-related epilepsy. However, the interpretation of ASL-derived perfusion patterns remains unclear. Hence, we compared ASL qualitative and quantitative findings to their clinical, EEG, and MRI counterparts. We included children with focal structural epilepsy related to an MRI-detectable FCD who underwent single delay pseudo-continuous ASL. ASL perfusion changes were assessed qualitatively by visual inspection and quantitatively by estimating the asymmetry index (AI). We considered 18 scans from 15 children. 16 of 18 (89%) scans showed FCD-related perfusion changes: 10 were hypoperfused, whereas six were hyperperfused. Nine scans had perfusion changes larger than and seven equal to the FCD extent on anatomical images. Hyperperfusion was associated with frequent interictal spikes on EEG (p = 0.047). Perfusion changes in ASL larger than the FCD corresponded to larger lesions (p = 0.017). Higher AI values were determined by frequent interictal spikes on EEG (p = 0.004). ASL showed FCD-related perfusion changes in most cases. Further, higher spike frequency on EEG may increase ASL changes in affected children. These observations may facilitate the interpretation of ASL findings, improving treatment management, counselling, and prognostication in children with FCD-related epilepsy.
Collapse
Affiliation(s)
- Antonio Giulio Gennari
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
- MR-Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giulio Bicciato
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Santo Pietro Lo Biundo
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
| | - Raimund Kottke
- Department of Radiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ilona Stefanos-Yakoub
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
| | - Dorottya Cserpan
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
| | - Ruth O'Gorman Tuura
- MR-Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Ramantani G, Cserpan D, Tisdall M, Otte WM, Dorfmüller G, Cross JH, van Schooneveld M, van Eijsden P, Nees F, Reuner G, Krayenbühl N, Zentner J, Bulteau C, Braun KPJ. Determinants of Functional Outcome after Pediatric Hemispherotomy. Ann Neurol 2024; 95:377-387. [PMID: 37962290 DOI: 10.1002/ana.26830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE We aimed to evaluate determinants of functional outcome after pediatric hemispherotomy in a large and recent multicenter cohort. METHODS We retrospectively investigated the functional outcomes of 455 children who underwent hemispherotomy at 5 epilepsy centers in 2000-2016. We identified determinants of unaided walking, voluntary grasping with the hemiplegic hand, and speaking through Bayesian multivariable regression modeling using missing data imputation. RESULTS Seventy-five percent of children were seizure-free, and 44% stopped antiseizure medication at a 5.1-year mean follow-up (range = 1-17.1). Seventy-seven percent of children could walk unaided, 8% could grasp voluntarily, and 68% could speak at the last follow-up. Children were unlikely to walk when they had contralateral magnetic resonance imaging (MRI) abnormalities (40/73, p = 0.04), recurrent seizures following hemispherotomy (62/109, p = 0.04), and moderately (50/61, p = 0.03) or severely impaired (127/199, p = 0.001) postsurgical intellectual functioning, but were likely to walk when they were older at outcome determination (p = 0.01). Children were unlikely to grasp voluntarily with the hand contralateral to surgery when they had Rasmussen encephalitis (0/61, p = 0.001) or Sturge-Weber syndrome (0/32, p = 0.007). Children were unlikely to speak when they had contralateral MRI abnormalities (30/69, p = 0.002) and longer epilepsy duration (p = 0.01), but likely to speak when they had Sturge-Weber syndrome (29/35, p = 0.01), were older at surgery (p = 0.04), and were older at outcome determination (p < 0.001). INTERPRETATION Etiology and bilaterality of structural brain abnormalities were key determinants of functional outcome after hemispherotomy. Longer epilepsy duration affected language outcomes. Not surprisingly, walking and talking ability increased with older age at outcome evaluation. ANN NEUROL 2024;95:377-387.
Collapse
Affiliation(s)
- Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dorottya Cserpan
- Department of Neuropediatrics, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martin Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Willem M Otte
- Department of Child Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Member of European Reference Network EpiCARE, Utrecht, the Netherlands
| | - Georg Dorfmüller
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Member of European Reference Network EpiCARE, Paris, France
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Great Ormond Street and University College London National Institute for Health and Care Research Biomedical Research Centre Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Monique van Schooneveld
- Department of Child Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Member of European Reference Network EpiCARE, Utrecht, the Netherlands
| | - Pieter van Eijsden
- Department of Child Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Member of European Reference Network EpiCARE, Utrecht, the Netherlands
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Gitta Reuner
- Institute of Education Studies, Faculty of Behavioral and Cultural Studies, University of Heidelberg, Heidelberg, Germany
| | - Niklaus Krayenbühl
- Department of Neurosurgery, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Josef Zentner
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christine Bulteau
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Member of European Reference Network EpiCARE, Paris, France
- University of Paris, MC2Lab, Institute of Psychology, Boulogne-Billancourt, France
| | - Kees P J Braun
- Department of Child Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Member of European Reference Network EpiCARE, Utrecht, the Netherlands
| |
Collapse
|
6
|
Zheng Y, Xu C, Sun J, Ming W, Dai S, Shao Y, Qiu X, Li M, Shen C, Xu J, Fei F, Fang J, Jiang X, Zheng G, Hu W, Wang Y, Wang S, Ding M, Chen Z. Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia. Signal Transduct Target Ther 2023; 8:186. [PMID: 37193687 DOI: 10.1038/s41392-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023] Open
Abstract
Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cenglin Xu
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jinyi Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjie Ming
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Sijie Dai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuying Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunhong Shen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinghong Xu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xuhong Jiang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoqing Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhong Chen
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Ferrand M, Baumann C, Aron O, Vignal JP, Jonas J, Tyvaert L, Colnat-Coulbois S, Koessler L, Maillard L. Intracerebral Correlates of Scalp EEG Ictal Discharges Based on Simultaneous Stereo-EEG Recordings. Neurology 2023; 100:e2045-e2059. [PMID: 36963841 PMCID: PMC10186237 DOI: 10.1212/wnl.0000000000207135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/18/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES It remains unknown to what extent ictal scalp EEG can accurately predict the localization of the intracerebral seizure onset in presurgical evaluation of drug-resistant epilepsies. In this study, we aimed to define homogeneous ictal scalp EEG profiles (based on their first ictal abnormality) and assess their localizing value using simultaneously recorded scalp EEG and stereo-EEG. METHODS We retrospectively included consecutive patients with drug-resistant focal epilepsy who had simultaneous stereo-EEG and scalp EEG recordings of at least 1 seizure in the epileptology unit in Nancy, France. We analyzed 1 seizure per patient and used hierarchical cluster analysis to group similar seizure profiles on scalp EEG and then performed a descriptive analysis of their intracerebral correlates. RESULTS We enrolled 129 patients in this study. The hierarchical cluster analysis showed 6 profiles on scalp EEG first modification. None were specific to a single intracerebral localization. The "normal EEG" and "blurred EEG" clusters (early muscle artifacts) comprised only 5 patients each and corresponded to no preferential intracerebral localization. The "temporal discharge" cluster (n = 46) was characterized by theta or delta discharges on ipsilateral anterior temporal scalp electrodes and corresponded to a preferential mesial temporal intracerebral localization. The "posterior discharge" cluster (n = 42) was characterized by posterior ipsilateral or contralateral rhythmic alpha discharges or slow waves on scalp and corresponded to a preferential temporal localization. However, this profile was the statistically most frequent scalp EEG correlate of occipital and parietal seizures. The "diffuse suppression" cluster (n = 9) was characterized by a bilateral and diffuse background activity suppression on scalp and corresponded to mesial, and particularly insulo-opercular, localization. Finally, the "frontal discharge" cluster (n = 22) was characterized by bilateral frontal rhythmic fast activity or preictal spike on scalp and corresponded to preferential ventrodorsal frontal intracerebral localizations. DISCUSSION The hierarchical cluster analysis identified 6 seizure profiles regarding the first abnormality on scalp EEG. None of them were specific of a single intracerebral localization. Nevertheless, the strong relationships between the "temporal," "frontal," "diffuse suppression," and "posterior" profiles and intracerebral discharge localizations may contribute to hierarchize hypotheses derived from ictal scalp EEG analysis regarding intracerebral seizure onset.
Collapse
Affiliation(s)
- Mickaël Ferrand
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Cédric Baumann
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Olivier Aron
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Jean-Pierre Vignal
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Jacques Jonas
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Louise Tyvaert
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Sophie Colnat-Coulbois
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Laurent Koessler
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France
| | - Louis Maillard
- From the Department of Neurology (M.F., O.A., J.-P.V., J.J., L.T., L.M.), and University Hospital of Nancy, Lorraine University; Department of Epidemiology and Clinical Evaluation (C.B.), INSERM CIC-EC CIE6, Lorraine University, Vandoeuvre; Neurosciences of Systems and Cognition Project (O.A., J.J., L.T., L.K., L.M.), BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre; and Department of Neurosurgery (S.C.-C.), University Hospital of Nancy, Lorraine University, Nancy, France.
| |
Collapse
|
8
|
Liu PC, Chen HH, Chou CC, Chen CJ, Chen YH, Lin CF, Chen C, Yu HY, Lee CC. Stereo-EEG for Epileptogenic Focus Localization in Schizencephaly: A Single-center Experience in Four Patients. World Neurosurg 2023; 172:e319-e325. [PMID: 36632895 DOI: 10.1016/j.wneu.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Schizencephaly is a congenital cerebral malformation characterized by clefts in the hemispheres of the brain, where variations in semiology often make it difficult to localize epileptogenic focus. Here, we report on a series of patients who underwent stereo-encephalography (SEEG) for epileptogenic focus localization and subsequent SEEG-guided surgical intervention. METHODS Four patients (ages 27, 33, 27, 25 years) with a mean seizure history of 16 years (range 8-22 years) were analyzed. Data pertaining to semiology, video encephalography (EEG), magnetic resonance imaging, positron emission tomography, and invasive EEG studies, surgical intervention and post-surgery outcome were collected and analyzed. RESULTS All seizure onset zones were within the extent of schizencephaly; however, the limbic system (including the hippocampus, amygdala, cingulate gyrus, or insula) was involved in early spreading. Two patients underwent SEEG-guided radiofrequency thermo-ablation (RFTA) in the seizure onset zone, 1 patient underwent lesionectomy via craniotomy, and 1 underwent neither RFTA nor lesionectomy. At 2 years post-surgery, the outcomes were as follows: Engel grade Ia (n = 2), Ib (n = 1), and III (n = 1). CONCLUSIONS This article reports on a precise approach to treating patients with schizencephaly dependent of seizure onset zone and functional cortex mapping. Subsequent SEEG-guided surgical interventions (radiofrequency thermo-ablation and lesionectomy) were shown to reduce seizure frequency, while preserving the neurologic functions in drug-resistant epilepsy patients with schizencephaly.
Collapse
Affiliation(s)
- Ping-Chuan Liu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Hung Chen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chen Chou
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Jen Chen
- Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas, USA
| | - Yi-Hsiu Chen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Yu Yu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Santos MV, Garcia CAB, Hamad APA, Costa UT, Sakamoto AC, Dos Santos AC, Machado HR. Clinical and Surgical Approach for Cerebral Cortical Dysplasia. Adv Tech Stand Neurosurg 2023; 48:327-354. [PMID: 37770690 DOI: 10.1007/978-3-031-36785-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The present article describes pathophysiological and clinical aspects of congenital malformations of the cerebral tissue (cortex and white matter) that cause epilepsy and very frequently require surgical treatment. A particular emphasis is given to focal cortical dysplasias, the most common pathology among these epilepsy-related malformations. Specific radiological and surgical features are also highlighted, so a thorough overview of cortical dysplasias is provided.
Collapse
Affiliation(s)
- Marcelo Volpon Santos
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil.
- Department of Surgery and Anantomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil.
| | - Camila Araujo Bernardino Garcia
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Andrade Hamad
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Ursula Thome Costa
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Americo Ceiki Sakamoto
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio Carlos Dos Santos
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Helio Rubens Machado
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Moorhouse FJ, Cornell S, Gerstl L, Wagner J, Tacke M, Roser T, Heinen F, von Stülpnagel C, Vollmar C, Kunz M, Ramantani G, Borggraefe I. Cognitive profiles in pediatric unilobar vs. multilobar epilepsy. Eur J Paediatr Neurol 2022; 41:48-54. [PMID: 36265333 DOI: 10.1016/j.ejpn.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We aimed to determine how cognitive impairment relates to the extent of the presumed epileptogenic zone in pediatric focal epilepsies. We analyzed the cognitive functions in unilobar compared to multilobar focal epilepsy patients that underwent neuropsychological testing at a tertiary epilepsy center. METHODS We assessed cognitive functions of pediatric focal epilepsy patients with the German version of the Wechsler Intelligence Scales that measures full-scale IQ and subcategories. We assessed differences in IQ and epilepsy-related variables between unilobar and multilobar epilepsy patients. RESULTS We included 62 patients (37 unilobar, 25 multilobar), aged 10.6 ± 3.7 years. Full-scale IQ values were significantly higher in unilobar (93.6 ± 17.7, 95% CI 87.7-99.6) than in multilobar epilepsy patients (77.3 ± 17.2, 95% CI 69.3-85.0; p = 0.001). In all but one IQ subcategory (working memory), significantly higher values were measured in unilobar than in multilobar epilepsy patients. The proportion of unilobar epilepsy patients with severe cognitive impairment (8.3%) and below-average intelligence (30.5%) was lower compared to multilobar epilepsy patients (47.6% and 61.9%; p = 0.002 and p = 0.021, respectively). Epilepsy onset occurred earlier in multilobar (4.0 years, 95% CI 2.6-5.5, SD ± 3.4 years) than in unilobar epilepsy patients (7.0 years, 95% CI 5.5-8.5, SD ± 4.4 years, p = 0.008). CONCLUSIONS Pediatric multilobar epilepsy patients face more cognitive issues than unilobar epilepsy patients on average. Our findings should help to identify children and adolescents who are most at risk for impaired cognitive development. A limitation of our study is the simple division into unilobar and multilobar epilepsies, with no specific account being taken of etiology/epilepsy syndrome, which can have a profound effect on cognition.
Collapse
Affiliation(s)
- Frederik Jan Moorhouse
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Sonia Cornell
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Lucia Gerstl
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Johanna Wagner
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Moritz Tacke
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Celina von Stülpnagel
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; Paracelsus Medical University, Salzburg, Austria
| | - Christian Vollmar
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Kunz
- Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany; Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
11
|
Toledano R, Martínez-Alvarez R, Jiménez-Huete A, García-Morales I, Aledo-Serrano Á, Cabrera W, Rey G, Campo P, Gómez-Angulo JC, Blumcke I, Álvarez-Linera J, Del Pozo JM, Gil-Nagel A. Stereoelectroencephalography in the preoperative assessment of patients with refractory focal epilepsy: experience at an epilepsy centre. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:334-345. [PMID: 35672120 DOI: 10.1016/j.nrleng.2019.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is a technique for preoperative evaluation of patients with difficult-to-localise refractory focal epilepsy (DLRFE), enabling the study of deep cortical structures. The procedure, which is increasingly used in international epilepsy centres, has not been fully developed in Spain. We describe our experience with SEEG in the preoperative evaluation of DLRFE. MATERIAL AND METHODS In the last 8 years, 71 patients with DLRFE were evaluated with SEEG in our epilepsy centre. We prospectively analysed our results in terms of localisation of the epileptogenic zone (EZ), surgical outcomes, and complications associated with the procedure. RESULTS The median age of the sample was 30 years (range, 4-59 years); 27 patients (38%) were women. Forty-five patients (63.4%) showed no abnormalities on brain MR images. A total of 627 electrodes were implanted (median, 9 electrodes per patient; range, 1-17), and 50% of implantations were multilobar. The EZ was identified in 64 patients (90.1%), and was extratemporal or temporal plus in 66% of the cases. Follow-up was over one year in 55 of the 61 patients undergoing surgery: in the last year of follow-up, 58.2% were seizure-free (Engel Epilepsy Surgery Outcome Scale class I) and 76.4% had good outcomes (Engel I-II). Three patients (4.2%) presented brain haemorrhages. CONCLUSION SEEG enables localisation of the EZ in patients in whom this was previously impossible, offering better surgical outcomes than other invasive techniques while having a relatively low rate of complications.
Collapse
Affiliation(s)
- R Toledano
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain; Programa de Epilepsia, Servicio de Neurología, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| | - R Martínez-Alvarez
- Servicio de Neurocirugía Funcional y Radiocirugía, Hospital Ruber Internacional, Madrid, Spain
| | - A Jiménez-Huete
- Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain
| | - I García-Morales
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain; Programa de Epilepsia, Servicio de Neurología, Hospital Clínico San Carlos, Madrid, Spain
| | - Á Aledo-Serrano
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain
| | - W Cabrera
- Departamento de Anatomía y Embriología, Universidad Complutense de Madrid, Spain
| | - G Rey
- Servicio de Física Médica y Protección Radiológica, Hospital Ruber Internacional, Madrid, Spain
| | - P Campo
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, Spain
| | - J C Gómez-Angulo
- Servicio de Neurocirugía, Hospital Universitario de Getafe, Spain; Servicio de Neurocirugía, Hospital Ruber Internacional, Madrid, Spain
| | - I Blumcke
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Alemania
| | - J Álvarez-Linera
- Servicio de Neuroradiología, Hospital Ruber Internacional, Madrid, Spain
| | - J M Del Pozo
- Servicio de Neurocirugía, Hospital Ruber Internacional, Madrid, Spain
| | - A Gil-Nagel
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
12
|
Toledano R, Martínez-Álvarez R, Jiménez-Huete A, García-Morales I, Aledo-Serrano Á, Cabrera W, Rey G, Campo P, Gómez-Angulo JC, Blumcke I, Álvarez-Linera J, Del Pozo JM, Gil-Nagel A. Stereoelectroencephalography in the preoperative assessment of patients with refractory focal epilepsy: Experience at an epilepsy centre. Neurologia 2022; 37:334-345. [PMID: 31337558 DOI: 10.1016/j.nrl.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is a technique for preoperative evaluation of patients with difficult-to-localise refractory focal epilepsy (DLRFE), enabling the study of deep cortical structures. The procedure, which is increasingly used in international epilepsy centres, has not been fully developed in Spain. We describe our experience with SEEG in the preoperative evaluation of DLRFE. MATERIAL AND METHODS In the last 8 years, 71 patients with DLRFE were evaluated with SEEG in our epilepsy centre. We prospectively analysed our results in terms of localisation of the epileptogenic zone (EZ), surgical outcomes, and complications associated with the procedure. RESULTS The median age of the sample was 30 years (range, 4-59 years); 27 patients (38%) were women. Forty-five patients (63.4%) showed no abnormalities on brain MR images. A total of 627 electrodes were implanted (median, 9 electrodes per patient; range, 1-17), and 50% of implantations were multilobar. The EZ was identified in 64 patients (90.1%), and was extratemporal or temporal plus in 66% of the cases. Follow-up was over one year in 55 of the 61 patients undergoing surgery: in the last year of follow-up, 58.2% were seizure-free (Engel Epilepsy Surgery Outcome Scale class I) and 76.4% had good outcomes (Engel I-II). Three patients (4.2%) presented brain haemorrhages. CONCLUSION SEEG enables localisation of the EZ in patients in whom this was previously impossible, offering better surgical outcomes than other invasive techniques while having a relatively low rate of complications.
Collapse
Affiliation(s)
- R Toledano
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, España; Programa de Epilepsia, Servicio de Neurología, Hospital Universitario Ramón y Cajal, Madrid, España.
| | - R Martínez-Álvarez
- Servicio de Neurocirugía Funcional y Radiocirugía, Hospital Ruber Internacional, Madrid, España
| | - A Jiménez-Huete
- Servicio de Neurología, Hospital Ruber Internacional, Madrid, España
| | - I García-Morales
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, España; Programa de Epilepsia, Servicio de Neurología, Hospital Clínico San Carlos, Madrid, España
| | - Á Aledo-Serrano
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, España
| | - W Cabrera
- Departamento de Anatomía y Embriología, Universidad Complutense de Madrid, España
| | - G Rey
- Servicio de Física Médica y Protección Radiológica, Hospital Ruber Internacional, Madrid, España
| | - P Campo
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, España
| | - J C Gómez-Angulo
- Servicio de Neurocirugía, Hospital Universitario de Getafe, España; Servicio de Neurocirugía, Hospital Ruber Internacional, Madrid, España
| | - I Blumcke
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Alemania
| | - J Álvarez-Linera
- Servicio de Neurorradiología, Hospital Ruber Internacional, Madrid, España
| | - J M Del Pozo
- Servicio de Neurocirugía, Hospital Ruber Internacional, Madrid, España
| | - A Gil-Nagel
- Programa de Epilepsia, Servicio de Neurología, Hospital Ruber Internacional, Madrid, España
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW More than 20 new antiseizure medications have been approved by the US Food and Drug Administration (FDA) in the past 3 decades; however, outcomes in newly diagnosed epilepsy have not improved, and epilepsy remains drug resistant in up to 40% of patients. Evidence supports improved seizure outcomes and quality of life in those who have undergone epilepsy surgery, but epilepsy surgery remains underutilized. This article outlines indications for epilepsy surgery, describes the presurgical workup, and summarizes current available surgical approaches. RECENT FINDINGS Class I evidence has demonstrated the superiority of resective surgery compared to medical therapy for seizure control and quality of life in patients with drug-resistant epilepsy. The use of minimally invasive options, such as laser interstitial thermal therapy and stereotactic radiosurgery, are alternatives to resective surgery in well-selected patients. Neuromodulation techniques, such as responsive neurostimulation, deep brain stimulation, and vagus nerve stimulation, offer a suitable alternative, especially in those where resective surgery is contraindicated or where patients prefer nonresective surgery. Although neuromodulation approaches reduce seizure frequency, they are less likely to be associated with seizure freedom than resective surgery. SUMMARY Appropriate patients with drug-resistant epilepsy benefit from epilepsy surgery. If two well-chosen and tolerated medication trials do not achieve seizure control, referral to a comprehensive epilepsy center for a thorough presurgical workup and discussion of surgical options is appropriate. Mounting Class I evidence supports a significantly higher chance of stopping disabling seizures with surgery than with further medication trials.
Collapse
|
14
|
Scalp HFO rates decrease after successful epilepsy surgery and are not impacted by the skull defect resulting from craniotomy. Sci Rep 2022; 12:1301. [PMID: 35079091 PMCID: PMC8789862 DOI: 10.1038/s41598-022-05373-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epilepsy surgery can achieve seizure freedom in selected pediatric candidates, but reliable postsurgical predictors of seizure freedom are missing. High frequency oscillations (HFO) in scalp EEG are a new and promising biomarker of treatment response. However, it is unclear if the skull defect resulting from craniotomy interferes with HFO detection in postsurgical recordings. We considered 14 children with focal lesional epilepsy who underwent presurgical evaluation, epilepsy surgery, and postsurgical follow-up of ≥ 1 year. We identified the nearest EEG electrodes to the skull defect in the postsurgical MRI. We applied a previously validated automated HFO detector to determine HFO rates in presurgical and postsurgical EEG. Overall, HFO rates showed a positive correlation with seizure frequency (p < 0.001). HFO rates in channels over the HFO area decreased following successful epilepsy surgery, irrespective of their proximity to the skull defect (p = 0.005). HFO rates in channels outside the HFO area but near the skull defect showed no increase following surgery (p = 0.091) and did not differ from their contralateral channels (p = 0.726). Our observations show that the skull defect does not interfere with postsurgical HFO detection. This supports the notion that scalp HFO can predict postsurgical seizure freedom and thus guide therapy management in focal lesional epilepsy.
Collapse
|
15
|
Abdallah C, Brissart H, Colnat-Coulbois S, Pierson L, Aron O, Forthoffer N, Vignal JP, Tyvaert L, Jonas J, Maillard L. Stereoelectroencephalographic language mapping of the basal temporal cortex predicts postoperative naming outcome. J Neurosurg 2021; 135:1466-1476. [PMID: 33636700 DOI: 10.3171/2020.8.jns202431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In drug-resistant temporal lobe epilepsy (TLE) patients, the authors evaluated early and late outcomes for decline in visual object naming after dominant temporal lobe resection (TLR) according to the resection status of the basal temporal language area (BTLA) identified by cortical stimulation during stereoelectroencephalography (SEEG). METHODS Twenty patients who underwent SEEG for drug-resistant TLE met the inclusion criteria. During language mapping, a site was considered positive when stimulation of two contiguous contacts elicited at least one naming impairment during two remote sessions. After TLR ipsilateral to their BTLA, patients were classified as BTLA+ when at least one positive language site was resected and as BTLA- when all positive language sites were preserved. Outcomes in naming and verbal fluency tests were assessed using pre- and postoperative (means of 7 and 25 months after surgery) scores at the group level and reliable change indices (RCIs) for clinically meaningful changes at the individual level. RESULTS BTLA+ patients (n = 7) had significantly worse naming scores than BTLA- patients (n = 13) within 1 year after surgery but not at the long-term evaluation. No difference in verbal fluency tests was observed. When RCIs were used, 5 of 18 patients (28%) had naming decline within 1 year postoperatively (corresponding to 57% of BTLA+ and 9% of BTLA- patients). A significant correlation was found between BTLA resection and naming decline. CONCLUSIONS BTLA resection is associated with a specific and early naming decline. Even if this decline is transient, naming scores in BTLA+ patients tend to remain lower compared to their baseline. SEEG mapping helps to predict postoperative language outcome after dominant TLR.
Collapse
Affiliation(s)
- Chifaou Abdallah
- Departments of1Neurology and
- 4Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | - Louise Tyvaert
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| | - Jacques Jonas
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| | - Louis Maillard
- Departments of1Neurology and
- 3Neurosciences of Systems and Cognition Project, BioSiS Department (Department Biologie, Signaux et Systèmes en Cancérologie et Neurosciences), Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR 7039, Vandoeuvre, France; and
| |
Collapse
|
16
|
Guglielmi G, Eschbach KL, Alexander AL. Smaller Knife, Fewer Seizures? Recent Advances in Minimally Invasive Techniques in Pediatric Epilepsy Surgery. Semin Pediatr Neurol 2021; 39:100913. [PMID: 34620456 DOI: 10.1016/j.spen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
Children with drug-resistant epilepsy are at high risk for developmental delay, increased mortality, psychiatric comorbidities, and requiring assistance with activities of daily living. Despite the advent of new and effective pharmacologic therapies, about one in 5 children will develop drug-resistant epilepsy, and most of these children continue to have seizures despite trials of other medication. Epilepsy surgery is often a safe and effective option which may offer seizure freedom or at least a significant reduction in seizure burden in many children. However, despite published evidence of safety and efficacy, epilepsy surgery remains underutilized in the pediatric population. Patient and family fears about the risks of surgery may contribute to this gap. Less invasive surgical techniques may be more palatable to children with epilepsy and their caregivers. In this review, we present recent advances in minimally invasive techniques for the surgical treatment of epilepsy as well as intriguing possibilities for the future. We describe the indications for, benefits of, and limits to minimally-invasive techniques including Stereo-encephalography, laser interstitial thermal ablation, deep brain stimulation, focused ultrasound, stereo-encephalography-guided radiofrequency ablation, endoscopic disconnections, and responsive neurostimulation.
Collapse
Affiliation(s)
- Gina Guglielmi
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Krista L Eschbach
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Allyson L Alexander
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO.
| |
Collapse
|
17
|
Taylor KN, Joshi AA, Hirfanoglu T, Grinenko O, Liu P, Wang X, Gonzalez‐Martinez JA, Leahy RM, Mosher JC, Nair DR. Validation of semi-automated anatomically labeled SEEG contacts in a brain atlas for mapping connectivity in focal epilepsy. Epilepsia Open 2021; 6:493-503. [PMID: 34033267 PMCID: PMC8408609 DOI: 10.1002/epi4.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Stereotactic electroencephalography (SEEG) has been widely used to explore the epileptic network and localize the epileptic zone in patients with medically intractable epilepsy. Accurate anatomical labeling of SEEG electrode contacts is critically important for correctly interpreting epileptic activity. We present a method for automatically assigning anatomical labels to SEEG electrode contacts using a 3D-segmented cortex and coregistered postoperative CT images. METHOD Stereotactic electroencephalography electrode contacts were spatially localized relative to the brain volume using a standard clinical procedure. Each contact was then assigned an anatomical label by clinical epilepsy fellows. Separately, each contact was automatically labeled by coregistering the subject's MRI to the USCBrain atlas using the BrainSuite software and assigning labels from the atlas based on contact locations. The results of both labeling methods were then compared, and a subsequent vetting of the anatomical labels was performed by expert review. RESULTS Anatomical labeling agreement between the two methods for over 17 000 SEEG contacts was 82%. This agreement was consistent in patients with and without previous surgery (P = .852). Expert review of contacts in disagreement between the two methods resulted in agreement with the atlas based over manual labels in 48% of cases, agreement with manual over atlas-based labels in 36% of cases, and disagreement with both methods in 16% of cases. Labels deemed incorrect by the expert review were then categorized as either in a region directly adjacent to the correct label or as a gross error, revealing a lower likelihood of gross error from the automated method. SIGNIFICANCE The method for semi-automated atlas-based anatomical labeling we describe here demonstrates potential to assist clinical workflow by reducing both analysis time and the likelihood of gross anatomical error. Additionally, it provides a convenient means of intersubject analysis by standardizing the anatomical labels applied to SEEG contact locations across subjects.
Collapse
Affiliation(s)
| | - Anand A. Joshi
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Tugba Hirfanoglu
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
- Department of Pediatric NeurologyGazi University School of MedicineAnkaraTurkey
| | | | - Ping Liu
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
| | - Xiaofeng Wang
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
| | - Jorge A. Gonzalez‐Martinez
- Department of Neurological Surgery and Epilepsy CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Richard M. Leahy
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - John C. Mosher
- Department of NeurologyMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Dileep R. Nair
- Epilepsy CenterNeurological InstituteCleveland ClinicClevelandOHUSA
| |
Collapse
|
18
|
Jehi L, Braun K. Does etiology really matter for epilepsy surgery outcome? Brain Pathol 2021; 31:e12965. [PMID: 34196987 PMCID: PMC8412085 DOI: 10.1111/bpa.12965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple factors influence the outcomes of epilepsy surgery. Prognostic indicators varying from clinical characteristics, imaging findings, ictal, and interictal electrophysiological activity have been linked to surgical outcomes. In this review, we focus on the relatively under‐studied role of the underlying epilepsy histopathology in driving post‐surgical outcomes, specifically focusing on the broad categories of seizure outcomes and cognitive outcomes. For each of these two outcomes of interest, we answer two questions: 1)‐ does etiology matter? and 2)‐ how could it matter? The goal is to review the existing literature on the relationship between etiology and surgical outcomes to provide the best possible judgment as to whether a causal relationship exists between histopathology and the ultimate surgical outcome as an initial step. Then, we delve into the possible mechanisms via which such relationships can be explained. We conclude with a call to action to the epilepsy surgery and histopathology research community to push the mechanistic understanding of the pathology‐outcome interaction and identify actionable knowledge and biomarkers that could inform patient care in a timely fashion. In this review, we focus on the relatively under‐studied role of the underlying epilepsy histopathology in driving post‐surgical outcomes, specifically focusing on the broad categories of seizure outcomes and cognitive outcomes. For each of these two outcomes of interest, we answer two questions: (1) does etiology matter? and (2) how could it matter? We then delve into the mechanisms of these answers.
Collapse
Affiliation(s)
- Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Kees Braun
- Dept. of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
19
|
Cohen N, Ebrahimi Y, Medvedovsky M, Gurevitch G, Aizenstein O, Hendler T, Fahoum F, Gazit T. Interictal Epileptiform Discharge Dynamics in Peri-sylvian Polymicrogyria Using EEG-fMRI. Front Neurol 2021; 12:658239. [PMID: 34149595 PMCID: PMC8212705 DOI: 10.3389/fneur.2021.658239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Polymicrogyria (PMG) is a common malformation of cortical development associated with a higher susceptibility to epileptic seizures. Seizures secondary to PMG are characterized by difficult-to-localize cerebral sources due to the complex and widespread lesion structure. Tracing the dynamics of interictal epileptiform discharges (IEDs) in patients with epilepsy has been shown to reveal the location of epileptic activity sources, crucial for successful treatment in cases of focal drug-resistant epilepsy. In this case series IED dynamics were evaluated with simultaneous EEG-fMRI recordings in four patients with unilateral peri-sylvian polymicrogyria (PSPMG) by tracking BOLD activations over time: before, during and following IED appearance on scalp EEG. In all cases, focal BOLD activations within the lesion itself preceded the activity associated with the time of IED appearance on EEG, which showed stronger and more widespread activations. We therefore propose that early hemodynamic activity corresponding to IEDs may hold important localizing information potentially leading to the cerebral sources of epileptic activity. IEDs are suggested to develop within a small area in the PSPMG lesion with structural properties obscuring the appearance of their electric field on the scalp and only later engage widespread structures which allow the production of large currents which are recognized as IEDs on EEG.
Collapse
Affiliation(s)
- Noa Cohen
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Ebrahimi
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Gurevitch
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Aizenstein
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Department of Diagnostic Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Science, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Electroencephalography and Epilepsy Unit, Sourasky Medical Center, Tel Aviv, Israel
| | - Tomer Gazit
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Kleen JK, Speidel BA, Baud MO, Rao VR, Ammanuel SG, Hamilton LS, Chang EF, Knowlton RC. Accuracy of omni-planar and surface casting of epileptiform activity for intracranial seizure localization. Epilepsia 2021; 62:947-959. [PMID: 33634855 PMCID: PMC8276628 DOI: 10.1111/epi.16841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Intracranial electroencephalography (ICEEG) recordings are performed for seizure localization in medically refractory epilepsy. Signal quantifications such as frequency power can be projected as heatmaps on personalized three-dimensional (3D) reconstructed cortical surfaces to distill these complex recordings into intuitive cinematic visualizations. However, simultaneously reconciling deep recording locations and reliably tracking evolving ictal patterns remain significant challenges. METHODS We fused oblique magnetic resonance imaging (MRI) slices along depth probe trajectories with cortical surface reconstructions and projected dynamic heatmaps using a simple mathematical metric of epileptiform activity (line-length). This omni-planar and surface casting of epileptiform activity approach (OPSCEA) thus illustrated seizure onset and spread among both deep and superficial locations simultaneously with minimal need for signal processing supervision. We utilized the approach on 41 patients at our center implanted with grid, strip, and/or depth electrodes for localizing medically refractory seizures. Peri-ictal data were converted into OPSCEA videos with multiple 3D brain views illustrating all electrode locations. Five people of varying expertise in epilepsy (medical student through epilepsy attending level) attempted to localize the seizure-onset zones. RESULTS We retrospectively compared this approach with the original ICEEG study reports for validation. Accuracy ranged from 73.2% to 97.6% for complete or overlapping onset lobe(s), respectively, and ~56.1% to 95.1% for the specific focus (or foci). Higher answer certainty for a given case predicted better accuracy, and scorers had similar accuracy across different training levels. SIGNIFICANCE In an era of increasing stereo-EEG use, cinematic visualizations fusing omni-planar and surface functional projections appear to provide a useful adjunct for interpreting complex intracranial recordings and subsequent surgery planning.
Collapse
Affiliation(s)
- Jonathan K Kleen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Benjamin A Speidel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Maxime O Baud
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Simon G Ammanuel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Liberty S Hamilton
- Department of Speech, Language, and Hearing Sciences and Department of Neurology, The University of Texas at Austin, Austin, Texas, USA
| | - Edward F Chang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert C Knowlton
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Wang ZI, Oh SH, Lowe M, Larvie M, Ruggieri P, Hill V, Statsevych V, Moon D, Lee J, Emch T, Bena J, Blümcke I, Bingaman W, Gonzalez-Martinez JA, Najm I, Jones SE. Radiological and Clinical Value of 7T MRI for Evaluating 3T-Visible Lesions in Pharmacoresistant Focal Epilepsies. Front Neurol 2021; 12:591586. [PMID: 33737901 PMCID: PMC7960771 DOI: 10.3389/fneur.2021.591586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The recent FDA approval of the first 7T MRI scanner for clinical diagnostic use in October 2017 will likely increase the utilization of 7T for epilepsy presurgical evaluation. This study aims at accessing the radiological and clinical value of 7T in patients with pharmacoresistant focal epilepsy and 3T-visible lesions. Methods: Patients with pharmacoresistant focal epilepsy were included if they had a lesion on pre-operative standard-of-care 3T MRI and also a 7T research MRI. An epilepsy protocol was used for the acquisition of the 7T MRI. Prospective visual analysis of 7T MRI was performed by an experienced board-certified neuroradiologist and communicated to the patient management team. The clinical significance of the additional 7T findings was assessed by intracranial EEG (ICEEG) ictal onset, surgical resection, post-operative seizure outcome and histopathology. A subset of lesions were demarked with arrows for subsequent, retrospective comparison between 3T and 7T by 7 neuroradiologists using a set of quantitative scales: lesion presence, conspicuity, boundary, gray-white tissue contrast, artifacts, and the most helpful sequence for diagnosis. Conger's kappa for multiple raters was performed for chance-adjusted agreement statistics. Results: A total of 47 patients were included, with the main pathology types of focal cortical dysplasia (FCD), hippocampal sclerosis, periventricular nodular heterotopia (PVNH), tumor and polymicrogyria (PMG). 7T detected additional smaller lesions in 19% (9/47) of patients, who had extensive abnormalities such as PMG and PVNH; however, these additional findings were not necessarily epileptogenic. 3T-7T comparison by the neuroradiologist team showed that lesion conspicuity and lesion boundary were significantly better at 7T (p < 0.001), particularly for FCD, PVNH and PMG. Chance-adjusted agreement was within the fair range for lesion presence, conspicuity and boundary. Gray-white contrast was significantly improved at 7T (p < 0.001). Significantly more artifacts were encountered at 7T (p < 0.001). Significance: For patients with 3T-visible lesions, 7T MRI may better elucidate the extent of multifocal abnormalities such as PVNH and PMG, providing potential targets to improve ICEEG implantation. Patients with FCD, PVNH and PMG would likely benefit the most from 7T due to improved lesion conspicuity and boundary. Pathologies in the antero-inferior temporal regions likely benefit less due to artifacts.
Collapse
Affiliation(s)
- Z Irene Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, South Korea.,Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Mark Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Mykol Larvie
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Paul Ruggieri
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Virginia Hill
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Doksu Moon
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jonathan Lee
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Todd Emch
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - James Bena
- Department of Quantitative Health Science, Cleveland Clinic, Cleveland, OH, United States
| | - Ingmar Blümcke
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States.,Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - William Bingaman
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | | | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
| | - Stephen E Jones
- Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
22
|
Sculier C, Taussig D, David O, Blustajn J, Ayoubian L, Bonheur J, Bulteau C, Chipaux M, Dorison N, Raffo E, Ferrand-Sorbets S, Dorfmüller G, Fohlen M. Focal polymicrogyria in children: Contribution of invasive explorations and epileptogenicity mapping in the surgical decision. Seizure 2021; 86:19-28. [PMID: 33517238 DOI: 10.1016/j.seizure.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Report of the contribution of invasive EEG (iEEG) and epileptogenicity mappings (EM) in a pediatric cohort of patients with epilepsy associated with focal polymicrogyria (PMG) and candidates for resective surgery. METHOD Retrospective pediatric case series of patients presenting focal PMG-related refractory epilepsy undergoing an invasive exploration (iEEG) at Fondation Rothschild Hospital. We reviewed clinical data, structural MRI, and visual analysis of iEEG recordings. Moreover, time-frequency analysis of SEEG signals with a neuroimaging approach (epileptogenicity maps) was used to support visual analysis. RESULTS Between 2012 and 2019, eight patients were selected. Five patients were explored with stereoelectroencephalography (SEEG) only, one patient with subdural exploration (SDE) only and two patients first underwent SEEG and then SDE. The mean age at seizure onset was 40.3 months (range 3-120), and the mean age for the iEEG 10.8 years (range 7-15). The epileptogenic zone (EZ) appeared concordant to the PMG lesion in only one case, was larger in three cases, smaller in two cases and different in one case. Four cases were selected for tailored resective surgery and one for total callosotomy. Two patients remained seizure-free at their last follow-up (mean 32.6 months, range 7-98). Epileptogenicity mapping (EM) refined the qualitative analysis, showing in four patients an EZ larger than visually defined. CONCLUSION This study is the first pediatric study to analyze the value of iEEG and EM as well as operability in focal PMG-related refractory epilepsy. The results illustrate the complexity of this pathology with variable concordance between the EZ and the lesion and mixed response to surgery.
Collapse
Affiliation(s)
- Claudine Sculier
- Département de Neurologie pédiatrique, Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Delphine Taussig
- Université Paris Saclay-APHP, Neurophysiologie et Epileptologie, Le Kremlin Bicêtre, France.
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, 38000, Grenoble, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Jerry Blustajn
- Hôpital Fondation Rothschild, Imagerie médicale, Paris, France
| | - Leila Ayoubian
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Julie Bonheur
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France
| | - Christine Bulteau
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France; University of Paris, MC2Lab, Boulogne-Billancourt, France
| | - Mathilde Chipaux
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France
| | - Nathalie Dorison
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France
| | - Emmanuel Raffo
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France
| | | | - Georg Dorfmüller
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France
| | - Martine Fohlen
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique, Paris, France
| |
Collapse
|
23
|
Pisani F, Spagnoli C, Falsaperla R, Nagarajan L, Ramantani G. Seizures in the neonate: A review of etiologies and outcomes. Seizure 2021; 85:48-56. [PMID: 33418166 DOI: 10.1016/j.seizure.2020.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neonatal seizures occur in their majority in close temporal relation to an acute brain injury or systemic insult, and are accordingly defined as acute symptomatic or provoked seizures. However less frequently, unprovoked seizures may also present in the neonatal period as secondary to structural brain abnormalities, thus corresponding to structural epilepsies, or to genetic conditions, thus corresponding to genetic epilepsies. Unprovoked neonatal seizures should be thus considered as the clinical manifestation of early onset structural or genetic epilepsies that often have the characteristics of early onset epileptic encephalopathies. In this review, we address the conundrum of neonatal seizures including acute symptomatic, remote symptomatic, provoked, and unprovoked seizures, evolving to post-neonatal epilepsies, and neonatal onset epilepsies. The different clinical scenarios involving neonatal seizures, each with their distinct post-neonatal evolution are presented. The structural and functional impact of neonatal seizures on brain development and the concept of secondary epileptogenesis, with or without a following latent period after the acute seizures, are addressed. Finally, we underline the need for an early differential diagnosis between an acute symptomatic seizure and an unprovoked seizure, since it is associated with fundamental differences in clinical evolution. These are crucial aspects for neonatal management, counselling and prognostication. In view of the above aspects, we provide an outlook on future strategies and potential lines of research in this field.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Medicine and Surgery Department, University of Parma, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit, University-Hospital Policlinico Vittorio Emanuele, Catania, Italy
| | - Lakshmi Nagarajan
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Australia
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland.
| |
Collapse
|
24
|
Arévalo-Astrada M, McLachlan RS, Suller-Marti A, Parrent AG, MacDougall KW, Mirsattari SM, Diosy D, Steven DA, Burneo JG. All that glitters: Contribution of stereo-EEG in patients with lesional epilepsy. Epilepsy Res 2021; 170:106546. [PMID: 33422972 DOI: 10.1016/j.eplepsyres.2020.106546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/05/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine the contribution of stereo-EEG for localization purpose in patients with a visible lesion on MRI. BACKGROUND Intracranial EEG is often used to localize the epileptogenic focus in patients with non-lesional focal epilepsy. Its role in cases where a lesion is visible on MRI can be even more complex and the relationship between the lesion and the seizure onset has rarely been addressed. METHODS All consecutive patients between February 2013 and May 2018 who underwent stereo-EEG and had a lesion visible on MRI were included. We assessed the localization of the seizure onset and its relationship with the lesion. Clinical, radiological, and electrographic analyses were performed. RESULTS Stereo-EEG revealed a seizure onset with either partial or no overlap with the lesion seen on MRI in 42 (56 %) of the 75 lesions included. Mesial temporal sclerosis was the only lesion type associated with an exclusively lesional seizure onset (p = 0.003). CONCLUSION Epilepsy surgery in MRI-positive cases should rely not only the results of lesions seen on MRI, which might be potentially misleading; SEEG is a gold standard method in these cases to define resective borders.
Collapse
Affiliation(s)
- Miguel Arévalo-Astrada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard S McLachlan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller-Marti
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Diosy
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Neuro-Epidemiology Unit, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
25
|
Jobst BC, Bartolomei F, Diehl B, Frauscher B, Kahane P, Minotti L, Sharan A, Tardy N, Worrell G, Gotman J. Intracranial EEG in the 21st Century. Epilepsy Curr 2020; 20:180-188. [PMID: 32677484 PMCID: PMC7427159 DOI: 10.1177/1535759720934852] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula. To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.
Collapse
Affiliation(s)
- Barbara C Jobst
- Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Hanover, NH, USA
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone hospital, Epileptology department, Marseille, France
| | - Beate Diehl
- National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Birgit Frauscher
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| | - Philippe Kahane
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | - Lorella Minotti
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | - Ashwini Sharan
- National Hospital for Neurology and Neurosurgery, Jefferson University, Philadelphia, PA, USA
| | - Nastasia Tardy
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | | | - Jean Gotman
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol 2020; 11:320. [PMID: 32477236 PMCID: PMC7238877 DOI: 10.3389/fneur.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex. We also summarize clinical data on the efficacy of SEEG stimulation in surgical outcomes and functional mapping. Finally, we briefly highlight future applications of SEEG ESM, including novel functional mapping approaches, identifying rare seizure semiologies, neurophysiologic investigations for understanding cognitive function, and its role in SEEG-guided radiofrequency thermal coagulation.
Collapse
Affiliation(s)
- Derek D George
- School of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cornelia Drees
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
27
|
Rikir E, Maillard LG, Abdallah C, Gavaret M, Bartolomei F, Vignal JP, Colnat-Coulbois S, Koessler L. Respective Contribution of Ictal and Inter-ictal Electrical Source Imaging to Epileptogenic Zone Localization. Brain Topogr 2020; 33:384-402. [DOI: 10.1007/s10548-020-00768-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
|
28
|
Taussig D, Chipaux M, Fohlen M, Dorison N, Bekaert O, Ferrand-Sorbets S, Dorfmüller G. Invasive evaluation in children (SEEG vs subdural grids). Seizure 2020; 77:43-51. [DOI: 10.1016/j.seizure.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022] Open
|
29
|
Neal A, Ostrowsky-Coste K, Jung J, Lagarde S, Maillard L, Kahane P, Touraine R, Catenoix H, Montavont A, Isnard J, Arzimanoglou A, Bartolomei F, Guenot M, Rheims S. Epileptogenicity in tuberous sclerosis complex: A stereoelectroencephalographic study. Epilepsia 2019; 61:81-95. [PMID: 31860139 DOI: 10.1111/epi.16410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE In tuberous sclerosis complex (TSC)-associated drug-resistant epilepsy, the optimal invasive electroencephalographic (EEG) and operative approach remains unclear. We examined the role of stereo-EEG in TSC and used stereo-EEG data to investigate tuber and surrounding cortex epileptogenicity. METHODS We analyzed 18 patients with TSC who underwent stereo-EEG (seven adults). One hundred ten seizures were analyzed with the epileptogenicity index (EI). In 13 patients with adequate tuber sampling, five anatomical regions of interest (ROIs) were defined: dominant tuber (tuber with highest median EI), perituber cortex, secondary tuber (tuber with second highest median EI), nearby cortex (normal-appearing cortex in the same lobe as dominant tuber), and distant cortex (in other lobes). At the seizure level, epileptogenicity of ROIs was examined by comparing the highest EI recorded within each anatomical region. At the patient level, epileptogenic zone (EZ) organization was separated into focal tuber (EZ confined to dominant tuber) and complex (all other patterns). RESULTS The most epileptogenic ROI was the dominant tuber, with higher EI than perituber cortex, secondary tuber, nearby cortex, and distant cortex (P < .001). A focal tuber EZ organization was identified in seven patients. This group had 80% Engel IA postsurgical outcome and distinct dominant tuber characteristics: continuous interictal discharges (IEDs; 100%), fluid-attenuated inversion recovery (FLAIR) hypointense center (86%), center-to-rim EI gradient, and stimulation-induced seizures (71%). In contrast, six patients had a complex EZ organization, characterized by nearby cortex as the most epileptogenic region and 40% Engel IA outcome. At the intratuber level, the combination of FLAIR hypointense center, continuous IEDs, and stimulation-induced seizures offered 98% specificity for a focal tuber EZ organization. SIGNIFICANCE Tubers with focal EZ organization have a striking similarity to type II focal cortical dysplasia. The presence of distinct EZ organizations has significant implications for EZ hypothesis generation, invasive EEG approach, and resection strategy.
Collapse
Affiliation(s)
- Andrew Neal
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France.,Department of Neuroscience, Faculty of Medicine, Nursing, and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karine Ostrowsky-Coste
- Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France.,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional Neurology, Member of the ERN EpiCARE Lyon University Hospital, Lyon, France
| | - Julien Jung
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Stanislas Lagarde
- Epileptology Department, Public Assistance Hospitals of Marseille, National Institute of Health and Medical Research, Institute of Systems Neuroscience, Timone Hospital, Aix Marseille University, Marseille, France
| | - Louis Maillard
- Neurology Department, University Hospital of Nancy, Nancy, France
| | - Philippe Kahane
- Department of Neurology, Grenoble-Alpes University Hospital, Grenoble Institute of Neurosciences, National Institute of Health and Medical Research U1216, Grenoble Alpes University, Grenoble, France
| | - Renaud Touraine
- Department of Genetics, University Hospital Center-North Hospital, Saint Etienne, France
| | - Helene Catenoix
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Alexandra Montavont
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Jean Isnard
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Alexis Arzimanoglou
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional Neurology, Member of the ERN EpiCARE Lyon University Hospital, Lyon, France
| | - Fabrice Bartolomei
- Epileptology Department, Public Assistance Hospitals of Marseille, National Institute of Health and Medical Research, Institute of Systems Neuroscience, Timone Hospital, Aix Marseille University, Marseille, France
| | - Marc Guenot
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurosurgery, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Sylvain Rheims
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France.,Idée Epilepsy Institute, Lyon, France
| |
Collapse
|
30
|
Liu Y, Zhou W, Hong B, Zhao T, Xu C, Ruan J, Bai J, Wang S. Multiple Stereoelectroencephalography-Guided Radiofrequency Thermocoagulations for Polymicrogyria With Startle Seizures: A Case Report. Front Neurol 2019; 10:1095. [PMID: 31681156 PMCID: PMC6813566 DOI: 10.3389/fneur.2019.01095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
The best results of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RF-TC) were observed in epilepsies with more limited lesions, but this procedure is rarely used in a wide range of brain malformation. We report a rare case of polymicrogyria (PMG) combined with drug-resistant startle seizures. Presurgical monitoring was performed using SEEG owing to the large lesion and complexity of PMG. According to the intracranial electrode results, the seizure onset was extensive, with the onset starting earlier in the cingulate sulcus and insular pole than in other sites of the other electrodes. Multi-point and multi-step SEEG-guided RF-TC was used for diffuse lesion and functional protection. RF-TC was first applied to the cingulate sulcus and insular pole, and our patient was rendered free from startle seizures after 2 weeks. Two weeks of observation helped us to observe the efficacy of RF-TC and the changes of SEEG, so as to make the next TC scheme. The patient still had spontaneous seizures after the first treatment. RF-TC was then applied to other sites involved earlier. Finally, the patient reached Engel class IIa for a follow-up period of 1 year. There were no additional startle seizures, and important functional areas were protected.
Collapse
Affiliation(s)
- Yi'Ou Liu
- Tsinghua University Yuquan Hospital, Beijing, China
| | - Wenjing Zhou
- Tsinghua University Yuquan Hospital, Beijing, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Tong Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Chengwei Xu
- Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Jing Ruan
- Tsinghua University Yuquan Hospital, Beijing, China
| | - Jianjun Bai
- Tsinghua University Yuquan Hospital, Beijing, China
| | - Siyu Wang
- Tsinghua University Yuquan Hospital, Beijing, China
| |
Collapse
|
31
|
Parasagittal hemispherotomy in hemispheric polymicrogyria with electrical status epilepticus during slow sleep: Indications, results and follow-up. Seizure 2019; 71:190-200. [DOI: 10.1016/j.seizure.2019.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/04/2019] [Accepted: 07/20/2019] [Indexed: 11/17/2022] Open
|
32
|
Dührsen L, Sauvigny T, Ricklefs FL, Hamel W, Koeppen JA, Hebel JM, Lanz M, Martens T. Decision-making in temporal lobe epilepsy surgery based on invasive stereo-electroencephalography (sEEG). Neurosurg Rev 2019; 43:1403-1408. [PMID: 31502028 DOI: 10.1007/s10143-019-01175-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022]
Abstract
In medical refractory temporal lobe epilepsy (TLE), the epileptogenic zone can be difficult to identify and therefore difficult to treat, especially in the absence of clear MRI pathologies and specific results from presurgical evaluation. Invasive monitoring with stereo-electroencephalography (sEEG) is a tool for a better determination of the epileptogenic zone. Here, we investigate the impact of sEEG on decision-making in temporal lobe epilepsy surgery. We reviewed patients with TLE who underwent further investigation with sEEG in our epilepsy unit. We examined specifically how sEEG findings influenced our decision regarding indication for a surgical procedure and resection volume. From 2013 to 2017, we performed 152 temporal resections in epilepsy patients. Twenty-one of these patients were designated for further preoperative investigation with sEEG due to incongruent findings in presurgical evaluation. Six patients were implanted bitemporally. In five cases, the hypothesis for the epileptogenic zone and localization had to be changed due to sEEG findings and resulted in a different tailored resection than intended. In three cases, sEEG findings led to the cancelation of the originally intended temporal resection as the epileptogenic zone was not definable or bilateral. In another three cases, the prognosis for reduction of seizures postoperatively had to be reduced due to the sEEG findings. However, the resection was performed after interdisciplinary discussion and informed consent of the patient. The examination by sEEG led to a change of plan for further treatment in 13 patients (61.9%) suffering TLE in total. Invasive monitoring with sEEG electrodes had a strong impact on decision-making for further treatment in patients suffering from temporal lobe epilepsy with incongruent findings in presurgical examination designated for epilepsy surgery. This applies to resection volumes as well as to prediction of seizure outcome.
Collapse
Affiliation(s)
- Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Molecular Neurobiology, Institute for Molecular and Cellular Cognition, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes A Koeppen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jonas M Hebel
- Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Hamburg, Germany
| | - Michael Lanz
- Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Hamburg, Germany
| | - Tobias Martens
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
33
|
Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: A systematic review and meta-analysis. Seizure 2019; 70:12-19. [DOI: 10.1016/j.seizure.2019.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
|
34
|
Tomlinson SB, Buch VP, Armstrong D, Kennedy BC. Stereoelectroencephalography in Pediatric Epilepsy Surgery. J Korean Neurosurg Soc 2019; 62:302-312. [PMID: 31085956 PMCID: PMC6514312 DOI: 10.3340/jkns.2019.0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Stereoelectroencephalography (SEEG) is an invasive technique used during the surgical management of medically refractory epilepsy. The utility of SEEG rests in its ability to survey the three-dimensional organization of the epileptogenic zone as well as nearby eloquent cortices. Once concentrated to specialized centers in Europe and Canada, the SEEG methodology has gained worldwide popularity due to its favorable morbidity profile, superior coverage of deep structures, and ability to perform multilobar explorations without the need for craniotomy. This rapid shift in practice represents both a challenge and an opportunity for pediatric neurosurgeons familiar with the subdural grid approach. The purpose of this review is to discuss the indications, technique, and safety of long-term SEEG monitoring in children. In addition to reviewing the conceptual and technical points of the diagnostic evaluation, attention will also be given to SEEG-based interventions (e.g., radiofrequency thermo-coagulation).
Collapse
Affiliation(s)
- Samuel B Tomlinson
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Vivek P Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dallas Armstrong
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
35
|
Malformazioni dello sviluppo corticale. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Guye M, Bartolomei F, Ranjeva JP. Malformations of cortical development: The role of 7-Tesla magnetic resonance imaging in diagnosis. Rev Neurol (Paris) 2019; 175:157-162. [DOI: 10.1016/j.neurol.2019.01.393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
|
37
|
Steriade C, Martins W, Bulacio J, Morita-Sherman ME, Nair D, Gupta A, Bingaman W, Gonzalez-Martinez J, Najm I, Jehi L. Localization yield and seizure outcome in patients undergoing bilateral SEEG exploration. Epilepsia 2018; 60:107-120. [PMID: 30588603 DOI: 10.1111/epi.14624] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We aimed to determine the rates and predictors of resection and seizure freedom after bilateral stereo-electroencephalography (SEEG) implantation. METHODS We reviewed 184 patients who underwent bilateral SEEG implantation (2009-2015). Noninvasive and invasive evaluation findings were collected. Outcomes of interest included subsequent resection and seizure freedom. Statistical analyses employed multivariable logistic regression and proportional hazard modeling. Preoperative and postoperative seizure frequency, severity, and quality of life scales were also compared. RESULTS Following bilateral SEEG implantation, 106 of 184 patients (58%) underwent resection. Single seizure type (P = 0.007), a family history of epilepsy (P = 0.003), 10 or more seizures per month (P = 0.004), lower number of electrodes (P = 0.02), or sentinel electrode placement (P = 0.04) was predictive of undergoing a resection, as were lack of nonlocalized (P < 0.0001) or bilateral (P < 0.0001) ictal-onset zones on SEEG. Twenty-six of 81 patients (32% with follow-up greater than 1 year) remained seizure-free. Predictors of seizure freedom were single seizure type (P = 0.01), short epilepsy duration (P = 0.008), use of 2 or fewer antiepileptic drugs (AEDs) at the time of surgery (P = 0.0006), primary localization hypothesis involving the frontal lobe (P = 0.002), sentinel electrode placement only (P = 0.02), and lack of overlap between ictal-onset zone and eloquent cortex (P = 0.04), along with epilepsy substrate histopathology (P = 0.007). Complete resection of a suspected focal cortical dysplasia showed a trend to increased likelihood of seizure freedom (P = 0.09). The 44 of 55 patients (80%) who underwent resection and experienced seizure recurrence had >50% seizure reduction, as opposed to 26 of 45 patients (58%) who continued medical therapy alone (P = 0.003). Seventy-two percent of patients had a clinically meaningful quality of life improvement (>10% decrease in the Quality of Life in Epilepsy [QOLIE-10] score) at 1 year. SIGNIFICANCE A strong preimplantation hypothesis of a suspected unifocal epilepsy increases the odds of resection and seizure freedom. We discuss a tailored approach, taking into account localization hypothesis and suspected epilepsy etiology in guiding implantation and subsequent surgical strategy.
Collapse
Affiliation(s)
- Claude Steriade
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - William Martins
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio.,Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Porto Alegre, Brazil
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ajay Gupta
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | - Imad Najm
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
38
|
Jalloh I, Cho N, Nga VD, Whitney R, Jain P, Al-Mehmadi S, Yau I, Okura H, Widjaja E, Otsubo H, Ochi A, Donner E, McCoy B, Drake J, Go C, Rutka JT. The role of surgery in refractory epilepsy secondary to polymicrogyria in the pediatric population. Epilepsia 2018; 59:1982-1996. [DOI: 10.1111/epi.14556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| | - Newton Cho
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| | - Vincent D.W. Nga
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
- Division of Neurosurgery; National University Hospital; Singapore City Singapore
| | - Robyn Whitney
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Puneet Jain
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
- Division of Pediatric Neurology; Department of Pediatrics; BLK Super Speciality Hospital; New Delhi India
| | - Sameer Al-Mehmadi
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Ivanna Yau
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Hidehiro Okura
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
- Department of Neurosurgery; Juntendo University School of Medicine; Tokyo Japan
| | - Elysa Widjaja
- Division of Diagnostic Imaging; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Hiroshi Otsubo
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Ayako Ochi
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Elizabeth Donner
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Blathnaid McCoy
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - James Drake
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| | - Cristina Go
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - James T. Rutka
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| |
Collapse
|