1
|
Akbari Ahangar A, Elhanafy E, Blanton H, Li J. Mapping structural distribution and gating-property impacts of disease-associated mutations in voltage-gated sodium channels. iScience 2024; 27:110678. [PMID: 39286500 PMCID: PMC11404175 DOI: 10.1016/j.isci.2024.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, cardiac arrhythmia, and pain disorders. Yet, the effects of more variants remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications are frequently employed to interpret mutations' effects and guide therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar GoF/LoF effects can stem from unique molecular mechanisms. Utilizing UniProt data, we mapped over 2,400 disease-associated missense mutations across Nav channels. This analysis pinpoints key mutation hotspots and maps patterns of gating-property impacts for the mutations, respectively, located around the selectivity filter, activation gate, fast inactivation region, and voltage-sensing domains. This study shows great potential to enhance prediction accuracy for mutational effects based on the structural context, paving the way for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
2
|
Ahangar AA, Elhanafy E, Blanton H, Li J. Mapping Structural Distribution and Gating-Property Impacts of Disease-Associated Missense Mutations in Voltage-Gated Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558623. [PMID: 37781633 PMCID: PMC10541146 DOI: 10.1101/2023.09.20.558623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, autism, cardiac arrhythmia, and pain disorders. Yet variant effects of more mutations remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications is frequently employed to interpret of variant effects on function and guide precision therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar phenotypic effects can stem from unique molecular mechanisms. Our results show a high biophysical agreement (86%) between homologous disease-associated variants in different Nav genes, significantly surpassing the 60% phenotype (GoFo/LoFo) agreement among homologous mutants, suggesting the need for more nuanced disease categorization and treatment based on specific gating-property changes. Using UniProt data, we mapped over 2,400 disease-associated missense variants across nine human Nav channels and identified three clusters of mutation hotspots. Our findings indicate that mutations near the selectivity filter generally diminish the maximal current amplitude, while those in the fast inactivation region lean towards a depolarizing shift in half-inactivation voltage in steady-state activation, and mutations in the activation gate commonly enhance persistent current. In contrast to mutations in the PD, those within the VSD exhibit diverse impacts and subtle preferences on channel activity. This study shows great potential to enhance prediction accuracy for variant effects based on the structural context, laying the groundwork for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
3
|
Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds JD, Zuberi SM, Lal D, Schorge S. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 2022; 145:4275-4286. [PMID: 35037686 PMCID: PMC9897196 DOI: 10.1093/brain/awac006] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).
Collapse
Affiliation(s)
- Andreas Brunklaus
- Correspondence to: Dr Andreas Brunklaus, MD Fraser of Allander Neurosciences Unit Office Block, Ground Floor, Zone 2 Royal Hospital for Children 1345 Govan Road Glasgow G51 4TF, UK E-mail:
| | | | | | - Eduardo Perez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Henrike Heyne
- Genomic and Personalized Medicine, Digital Health Center, Hasso Plattner Institute, Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, USA
- Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland
| | - Emma Matthews
- Atkinson Morley Neuromuscular Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Sydney Medical School Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Schorge
- Correspondence may also be addressed to: Professor Stephanie Schorge, PhD Department of Neuroscience Physiology and Pharmacology UCL, London WC1E 6BT, UK E-mail:
| |
Collapse
|
4
|
OUP accepted manuscript. Brain 2022; 145:e28-e30. [DOI: 10.1093/brain/awac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/14/2022] Open
|
5
|
Peng BW, Tian Y, Chen L, Duan LF, Wang XY, Zhu HX, Shi KL, Zheng KL, Shen HL, Liang W, Li XJ, Chen WX. OUP accepted manuscript. Brain 2022; 145:e24-e27. [PMID: 35230384 PMCID: PMC9129090 DOI: 10.1093/brain/awac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/23/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bing-wei Peng
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Chen
- Epilepsy Treatment Center, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Li-fen Duan
- Division of Neurology, The Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xiu-ying Wang
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai-xia Zhu
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai-li Shi
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ke-lu Zheng
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui-ling Shen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liang
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-jing Li
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Correspondence to: Prof. Xiao-Jing Li
Department of Neurology
Guangzhou Women and Children’s Medical Center
Guangzhou Medical University
318# Ren Min Road, 510120, Guangzhou City
Guangdong Province, China
E-mail:
| | - Wen-xiong Chen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Correspondence may also be addressed to: Prof. Wen-Xiong Chen, PhD, MD
E-mail:
| |
Collapse
|
6
|
Wong JC, Butler KM, Shapiro L, Thelin JT, Mattison KA, Garber KB, Goldenberg PC, Kubendran S, Schaefer GB, Escayg A. Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Front Pharmacol 2021; 12:748415. [PMID: 34867351 PMCID: PMC8635767 DOI: 10.3389/fphar.2021.748415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, United States.,Greenwood Genetic Center, Greenwood, SC, United States
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Paula C Goldenberg
- Department of Pediatrics and Medical Genetics, Harvard Medical School, Boston, MA, United States
| | - Shobana Kubendran
- Department of Pediatrics, Kansas University School of Medicine-Wichita, Wichita, KS, United States
| | - G Bradley Schaefer
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Heyne HO, Baez-Nieto D, Iqbal S, Palmer DS, Brunklaus A, May P, Johannesen KM, Lauxmann S, Lemke JR, Møller RS, Pérez-Palma E, Scholl UI, Syrbe S, Lerche H, Lal D, Campbell AJ, Wang HR, Pan J, Daly MJ. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci Transl Med 2020; 12:eaay6848. [PMID: 32801145 DOI: 10.1126/scitranslmed.aay6848] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes.
Collapse
Affiliation(s)
- Henrike O Heyne
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 5WR36M Helsinki, Finland
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sumaiya Iqbal
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow G51 4TF, UK
- School of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, Belvaux, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Eduardo Pérez-Palma
- Cologne Center for Genomics (CCG), University of Cologne, 50923, Germany
- Genomic Medicine Institute, Lemer Research Institute Cleveland Clinic, OH G92J47, USA
| | - Ute I Scholl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care and BIH Center for Regenerative Therapies, 10178 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Dennis Lal
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), University of Cologne, 50923, Germany
- Genomic Medicine Institute, Lemer Research Institute Cleveland Clinic, OH G92J47, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH G92J47, USA
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jen Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 5WR36M Helsinki, Finland
| |
Collapse
|
8
|
Brunklaus A, Lal D. Sodium channel epilepsies and neurodevelopmental disorders: from disease mechanisms to clinical application. Dev Med Child Neurol 2020; 62:784-792. [PMID: 32227486 DOI: 10.1111/dmcn.14519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Genetic variants in brain-expressed voltage-gated sodium channels (SCNs) have emerged as one of the most frequent causes of Mendelian forms of epilepsy and neurodevelopmental disorders (NDDs). This review explores the biological concepts that underlie sodium channel NDDs, explains their phenotypic heterogeneity, and appraises how this knowledge may inform clinical practice. We observe that excitatory/inhibitory neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain development, homeostasis, and neurological diseases. We hypothesize that a detailed understanding of gene expression, variant tolerance, location, and function, as well as timing of seizure onset can aid the understanding of how variants in SCN1A, SCN2A, SCN3A, and SCN8A contribute to seizure aetiology and inform treatment choice. We propose a model in which variant type, development-specific gene expression, and functions of SCNs explain the heterogeneity of sodium channel associated NDDs. Understanding of basic disease mechanisms and detailed knowledge of variant characteristics have increasing influence on clinical decision making, enabling us to stratify treatment and move closer towards precision medicine in sodium channel epilepsy and NDDs. WHAT THIS PAPER ADDS: Sodium-channel disorder heterogeneity is explained by variant-specific gene expression timing and function. Gene tolerance and location analyses aid sodium channel variant interpretation. Sodium-channel variant characteristics can contribute to clinical decision making.
Collapse
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Cologne Center for Genomics, University Hospital Cologne, University of Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, Schorge S, Baez-Nieto D, Wang HR, Allen A, Pan JQ, Lerche H, Heyne H, Symonds JD, Zuberi SM, Sanders S, Sheidley BR, Craiu D, Olson HE, Weckhuysen S, DeJonge P, Helbig I, Van Esch H, Busa T, Milh M, Isidor B, Depienne C, Poduri A, Campbell AJ, Dimidschstein J, Møller RS, Lal D. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020; 61:387-399. [PMID: 32090326 DOI: 10.1111/epi.16438] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Felix Steckler
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Ismael I Ghanty
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Katrine M Johannesen
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Amplexa Genetics, Odense, Denmark
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Henrike Heyne
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Pediatric Neurology Discipline, Bucharest, Romania.,Alexandru Obregia Hospital, Pediatric Neurology Clinic, Bucharest, Romania
| | - Heather E Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter DeJonge
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neuropediatrics, University of Kiel, Kiel, Germany
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, Leuven, Belgium
| | - Tiffany Busa
- Genetics Department, Timone Enfants University Hospital Center, Public Assistance-Marseille Hospitals, Marseille, France
| | - Matthieu Milh
- Medical Genetics and Functional Genomics, National Institute of Health and Medical Research, Mixed Unit of Research S910, Aix-Marseille University, Marseille, France.,Hematology Laboratory, Le Mans Hospital Center, Le Mans, France
| | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital Center, Nantes, France
| | - Christel Depienne
- Institute of Human Genetics, Essen University Hospital, Essen, Germany.,Brain and Spinal Cord Institute, National Institute of Health and Medical Research, Unit 1127, National Center for Scientific Research, Mixed Unit of Research 7225, Sorbonne Universities, Pierre and Marie Curie University, Mixed Unit of Research S 1127, Brain & Spine Institute, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Rikke S Møller
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
10
|
Brunklaus A, Schorge S, Smith AD, Ghanty I, Stewart K, Gardiner S, Du J, Pérez‐Palma E, Symonds JD, Collier AC, Lal D, Zuberi SM. SCN1A
variants from bench to bedside—improved clinical prediction from functional characterization. Hum Mutat 2019; 41:363-374. [PMID: 31782251 DOI: 10.1002/humu.23943] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondon UK
- School of PharmacyUniversity College LondonLondon UK
| | - Alexander D. Smith
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Ismael Ghanty
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Kirsty Stewart
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Sarah Gardiner
- West of Scotland Genetic Services, Level 2B, Laboratory MedicineQueen Elizabeth University HospitalGlasgow UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Eduardo Pérez‐Palma
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
| | - Joseph D. Symonds
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouver British Columbia Canada
| | - Dennis Lal
- Cologne Center for Genomics, University Hospital CologneUniversity of CologneCologne Germany
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridge Massachusetts
- Analytic and Translational Genetics UnitMassachusetts General HospitalBoston Massachusetts
- Epilepsy Center, Neurological InstituteCleveland ClinicCleveland Ohio
- Genomic Medicine InstituteLerner Research Institute Cleveland ClinicCleveland Ohio
| | - Sameer M. Zuberi
- The Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgow UK
- School of MedicineUniversity of GlasgowGlasgow UK
| |
Collapse
|
11
|
Denis J, Villeneuve N, Cacciagli P, Mignon-Ravix C, Lacoste C, Lefranc J, Napuri S, Damaj L, Villega F, Pedespan JM, Moutton S, Mignot C, Doummar D, Lion-François L, Gataullina S, Dulac O, Martin M, Gueden S, Lesca G, Julia S, Cances C, Journel H, Altuzarra C, Ben Zeev B, Afenjar A, Barth M, Villard L, Milh M. Clinical study of 19 patients with SCN8A-related epilepsy: Two modes of onset regarding EEG and seizures. Epilepsia 2019; 60:845-856. [PMID: 31026061 DOI: 10.1111/epi.14727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To describe the mode of onset of SCN8A-related severe epilepsy in order to facilitate early recognition, and eventually early treatment with sodium channel blockers. METHODS We reviewed the phenotype of patients carrying a mutation in the SCN8A gene, among a multicentric cohort of 638 patients prospectively followed by several pediatric neurologists. We focused on the way clinicians made the diagnosis of epileptic encephalopathy, the very first symptoms, electroencephalography (EEG) findings, and seizure types. We made genotypic/phenotypic correlation based on epilepsy-associated missense variant localization over the protein. RESULTS We found 19 patients carrying a de novo mutation of SCN8A, representing 3% of our cohort, with 9 mutations being novel. Age at onset of epilepsy was 1 day to 16 months. We found two modes of onset: 12 patients had slowly emerging onset with rare and/or subtle seizures and normal interictal EEG (group 1). The first event was either acute generalized tonic-clonic seizure (GTCS; Group 1a, n = 6) or episodes of myoclonic jerks that were often mistaken for sleep-related movements or other movement disorders (Group 1b, n = 6). Seven patients had a sudden onset of frequent tonic seizures or epileptic spasms with abnormal interictal EEG leading to rapid diagnosis of epileptic encephalopathy. Sodium channel blockers were effective or nonaggravating in most cases. SIGNIFICANCE SCN8A is the third most prevalent early onset epileptic encephalopathy gene and is associated with two modes of onset of epilepsy.
Collapse
Affiliation(s)
- Julien Denis
- Pediatric Neurology Department, Timone Children Hospital, Reference Center for Rare Epilepsies, APHM, Marseille, France
| | - Nathalie Villeneuve
- Pediatric Neurology Department, Timone Children Hospital, Reference Center for Rare Epilepsies, APHM, Marseille, France
| | - Pierre Cacciagli
- Medical Genetics Department, Timone Children Hospital, Marseille, France
| | | | - Caroline Lacoste
- Medical Genetics Department, Timone Children Hospital, Marseille, France
| | - Jeremie Lefranc
- Pediatrics and Medical Genetics Department, CHU Brest, Brest, France
| | - Sylvia Napuri
- Department of Pediatrics, Rennes University Hospital, Rennes, France
| | - Lena Damaj
- Department of Pediatrics, Rennes University Hospital, Rennes, France
| | - Frederic Villega
- Department of Pediatric Neurology, University Children's Hospital of Bordeaux, Bordeaux, France
| | - Jean-Michel Pedespan
- Department of Pediatric Neurology, University Children's Hospital of Bordeaux, Bordeaux, France
| | - Sebastien Moutton
- Medical Genetics Department, University Hospital of Bordeaux, Bordeaux, France
| | - Cyril Mignot
- Pediatric Neurology Department, Trousseau Hospital, AP-HP, Paris, France
| | - Diane Doummar
- Pediatric Neurology Department, Trousseau Hospital, AP-HP, Paris, France
| | | | - Svetlana Gataullina
- Paediatric Neurology Department, Paris-Sud University, Bicêtre Hospital, Kremlin-Bicêtre, France.,Inserm U1129, Necker Hospital, Paris, France
| | | | - Melanie Martin
- Department of Histology, Cytology, Cytogenetics and Cell Biology, University Hospital of Limoges, Limoges, France
| | - Sophie Gueden
- Pediatric Neurology Department, Angers Hospital and University, Angers, France
| | - Gaetan Lesca
- Department of Medical Genetics, Groupement Hospitalier Est, and ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France.,Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon, France
| | - Sophie Julia
- Genetics Unit, Toulouse University Hospital, Toulouse, France
| | - Claude Cances
- Department of Pediatric Neurology, Toulouse Children Hospital, Toulouse University Hospital, Toulouse, France
| | - Hubert Journel
- Department of Genetics, Vannes Bretagne-Atlantique Hospital, Vannes, France
| | | | - Bruria Ben Zeev
- Chaim Sheba Medical Center, Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexandra Afenjar
- Medical Genetics Department, AP-HP, University hospital Armand Trousseau, Paris, France
| | - Magalie Barth
- Department of Genetics, Angers Hospital and University, Angers, France
| | - Laurent Villard
- Medical Genetics Department, Timone Children Hospital, Marseille, France.,Aix Marseille University, INSERM, UMR-S 1251, MMG, Marseille, France
| | - Mathieu Milh
- Pediatric Neurology Department, Timone Children Hospital, Reference Center for Rare Epilepsies, APHM, Marseille, France.,Aix Marseille University, INSERM, UMR-S 1251, MMG, Marseille, France
| |
Collapse
|