1
|
Ma J, Li M, Bao Y, Huang W, He X, Hong Y, Wei W, Liu Z, Gao X, Yang Y, Cui Z, Wang W, Wang J, Zhu W, Zheng N, Pan L, Wang D, Ke Z, Zhou B, Sheng L, Li H. Gut microbiota-brain bile acid axis orchestrates aging-related neuroinflammation and behavior impairment in mice. Pharmacol Res 2024; 208:107361. [PMID: 39159729 DOI: 10.1016/j.phrs.2024.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Emerging evidence shows that disrupted gut microbiota-bile acid (BA) axis is critically involved in the development of neurodegenerative diseases. However, the alterations in spatial distribution of BAs among different brain regions that command important functions during aging and their exact roles in aging-related neurodegenerative diseases are poorly understood. Here, we analyzed the BA profiles in cerebral cortex, hippocampus, and hypothalamus of young and natural aging mice of both sexes. The results showed that aging altered brain BA profiles sex- and region- dependently, in which TβMCA was consistently elevated in aging mice of both sexes, particularly in the hippocampus and hypothalamus. Furthermore, we found that aging accumulated-TβMCA stimulated microglia inflammation in vitro and shortened the lifespan of C. elegans, as well as behavioral impairment and neuroinflammation in mice. In addition, metagenomic analysis suggested that the accumulation of brain TβMCA during aging was partially attributed to reduction in BSH-carrying bacteria. Finally, rejuvenation of gut microbiota by co-housing aged mice with young mice restored brain BA homeostasis and improved neurological dysfunctions in natural aging mice. In conclusion, our current study highlighted the potential of improving aging-related neuro-impairment by targeting gut microbiota-brain BA axis.
Collapse
Affiliation(s)
- Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wantao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deheng Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ben Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Recht G, Hou J, Buddenbaum C, Cheng H, Newman SD, Saykin AJ, Kawata K. Multiparameter cortical surface morphology in former amateur contact sport athletes. Cereb Cortex 2024; 34:bhae301. [PMID: 39077916 PMCID: PMC11484490 DOI: 10.1093/cercor/bhae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.
Collapse
Affiliation(s)
- Grace Recht
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
| | - Jiancheng Hou
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
- Research Center for Cross-Straits Cultural Development, Fujian Normal University, Cangshan Campus, No. 8 Shangshan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Claire Buddenbaum
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
| | - Hu Cheng
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, United States
| | - Sharlene D Newman
- Alabama Life Research Institute, College of Arts & Sciences, University of Alabama, 211 Peter Bryce Blvd., Tuscaloosa, AL 35401, United States
| | - Andrew J Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd, Indianapolis, IN 46202, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, United States
- Department of Pediatrics, Indiana University School of Medicine, 1130 W Michigan St, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Niedowicz DM, Katsumata Y, Nelson PT. In severe ADNC, hippocampi with comorbid LATE-NC and hippocampal sclerosis have substantially more astrocytosis than those with LATE-NC or hippocampal sclerosis alone. J Neuropathol Exp Neurol 2023; 82:987-994. [PMID: 37935530 PMCID: PMC10658353 DOI: 10.1093/jnen/nlad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and hippocampal sclerosis of aging (HS-A) pathologies are found together at autopsy in ∼20% of elderly demented persons. Although astrocytosis is known to occur in neurodegenerative diseases, it is currently unknown how the severity of astrocytosis is correlated with the common combinations of pathologies in aging brains. To address this knowledge gap, we analyzed a convenience sample of autopsied subjects from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. The subjects were stratified into 5 groups (n = 51 total): pure ADNC, ADNC + LATE-NC, ADNC + HS-A, ADNC + LATE-NC + HS-A, and low-pathology controls. Following GFAP immunostaining and digital slide scanning with a ScanScope, we measured GFAP-immunoreactive astrocytosis. The severities of GFAP-immunoreactive astrocytosis in hippocampal subfield CA1 and subiculum were compared between groups. The group with ADNC + LATE-NC + HS-A had the most astrocytosis as operationalized by either any GFAP+ or strong GFAP+ immunoreactivity in both CA1 and subiculum. In comparison to that pathologic combination, ADNC + HS or ADNC + LATE-NC alone showed lower astrocytosis. Pure ADNC had only marginally increased astrocytosis in CA1 and subiculum, in comparison to low-pathology controls. We conclude that there appeared to be pathogenetic synergy such that ADNC + LATE-NC + HS-A cases had relatively high levels of astrocytosis in the hippocampal formation.
Collapse
|
5
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
6
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. Insulin ameliorates dim blue light at night-induced apoptosis in hippocampal neurons via the IR/IRS1/AKT/GSK3β/β-catenin signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114488. [PMID: 36586168 DOI: 10.1016/j.ecoenv.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the damaging effects of night light pollution, one of the environmental pollutions, on memory has been attracting attention. However, the underlying molecular mechanisms by which light at night, especially blue light at night, impairs memory remains unclear. Here, a total of 42 C57BL6/J mice that exposed to no light at night, dim white light at night (dLAN-WL), or dim blue light at night (dLAN-BL) for 28 days. Behavioral data indicated that exposure to dLAN-BL resulted in severe recognition memory impairment, as evidenced by the reduced recognition index and discrimination index in the novel object recognition test. At the same time, we observed a decrease in plasma insulin levels. Consistent with these changes, we also observed that dLAN-BL reduced the number of neurons in the CA1, CA3 and DG regions of the hippocampus, up-regulated the mRNA expression levels of Bax, down-regulated the mRNA expression levels of Bcl-2, Bcl-xl and the protein expression level of pIRS1, pAKT, pGSK3β, β-catenin in the hippocampus. In vitro experiments, we found that insulin (10 nM) inhibited apoptosis and up-regulated the protein expression levels of pAKT, pGSK3β, β-catenin of HT22 cells induced by H2O2 (200 μM). However, these changes disappeared when the insulin receptors (IR) in HT22 cells were silenced. Taken together, our findings suggested that the impairment of memory in mice induced by dLAN-BL was mediated by insulin via the IR/IRS1/AKT/GSK3β/β-catenin pathway. DATA AVAILABILITY: All data generated or analyzed during this study are included in this published article.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
7
|
Samudra N, Ranasinghe K, Kirsch H, Rankin K, Miller B. Etiology and Clinical Significance of Network Hyperexcitability in Alzheimer's Disease: Unanswered Questions and Next Steps. J Alzheimers Dis 2023; 92:13-27. [PMID: 36710680 DOI: 10.3233/jad-220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cortical network hyperexcitability related to synaptic dysfunction in Alzheimer's disease (AD) is a potential target for therapeutic intervention. In recent years, there has been increased interest in the prevalence of silent seizures and interictal epileptiform discharges (IEDs, or seizure tendency), with both entities collectively termed "subclinical epileptiform activity" (SEA), on neurophysiologic studies in AD patients. SEA has been demonstrated to be common in AD, with prevalence estimates ranging between 22-54%. Converging lines of basic and clinical evidence imply that modifying a hyperexcitable state results in an improvement in cognition. In particular, though these results require further confirmation, post-hoc findings from a recent phase II clinical trial suggest a therapeutic effect with levetiracetam administration in patients with AD and IEDs. Here, we review key unanswered questions as well as potential clinical trial avenues. Specifically, we discuss postulated mechanisms and treatment of hyperexcitability in patients with AD, which are of interest in designing future disease-modifying therapies. Criteria to prompt screening and optimal screening methodology for hyperexcitability have yet to be defined, as does timing and personalization of therapeutic intervention.
Collapse
Affiliation(s)
- Niyatee Samudra
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi Kirsch
- University of California, San Francisco Comprehensive Epilepsy Center, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
McCann H, Bahar AY, Burkhardt K, Gardner AJ, Halliday GM, Iverson GL, Shepherd CE. Prevalence of chronic traumatic encephalopathy in the Sydney Brain Bank. Brain Commun 2022; 4:fcac189. [PMID: 35950093 PMCID: PMC9356727 DOI: 10.1093/braincomms/fcac189] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Chronic traumatic encephalopathy neuropathologic change can only be definitively diagnosed post-mortem. It has been associated with repetitive mild neurotrauma sustained in amateur and professional contact, collision and combat sports, although it has also been documented in people with a single severe traumatic brain injury and in some people with no known history of brain injury. The characteristic neuropathology is an accumulation of perivascular neuronal and astrocytic phosphorylated tau in the depths of the cortical sulci. The tau-immunopositive neurons and astrocytes that are considered pathognomonic for chronic traumatic encephalopathy are morphologically indistinguishable from Alzheimer-related neurofibrillary tangles and ageing-related tau astrogliopathy, respectively, although they are found in different spatial distributions throughout the cortex. The Sydney Brain Bank collection consists of neurodegenerative diseases and neurologically normal controls. We screened 636 of these cases for chronic traumatic encephalopathy neuropathologic change. A subset of 109 cases had a known history of traumatic brain injury. Three cortical regions were screened for the presence of neuronal and astrocytic phosphorylated tau according to the current 2021 National Institute on Neurological Disorders and Stroke/National Institute of Biomedical Imaging and Bioengineering consensus criteria for chronic traumatic encephalopathy. Five cases (0.79%) showed pathological evidence of chronic traumatic encephalopathy and three of these had a history of traumatic brain injury. Three cases had coexisting Alzheimer’s and/or Lewy body disease pathology meeting criteria for neurodegenerative disease. Another eight cases almost met criteria for chronic traumatic encephalopathy neuropathological change except for an absence of neuronal tau or a strict perivascular arrangement. Ageing-related tau astrogliopathy was found in all eight cases as a coexisting neuropathology. Traumatic brain injury was associated with increased odds ratio [1.79, confidence interval 1.18–2.72] of having a higher neurofibrillary tangle stage and phosphorylated TAR DNA binding protein 43 (OR 2.48, confidence interval 1.35–4.54). Our study shows a very low rate of chronic traumatic encephalopathy neuropathological change in brains with or without neurodegenerative disease from the Sydney Brain Bank. Our evidence suggests that isolated traumatic brain injury in the general population is unlikely to cause chronic traumatic encephalopathy neuropathologic change but may be associated with increased brain ageing.
Collapse
Affiliation(s)
- Heather McCann
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
| | - Anita Y Bahar
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
| | - Karim Burkhardt
- School of Medical Sciences, University of New South Wales , Kensington, NSW 2052 , Australia
| | - Andrew J Gardner
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle , Callaghan, NSW 2308 , Australia
| | - Glenda M Halliday
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
- Faculty of Medicine and Health School of Medical Sciences, University of Sydney Brain and Mind Centre , Camperdown, NSW 2050 , Australia
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, MA 02114 , USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital , Charlestown, MA 02114 , USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program , Charlestown, MA 02114 , USA
- MassGeneral Hospital for Children Sports Concussion Program , Boston, MA 02114 , USA
| | - Claire E Shepherd
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
- School of Medical Sciences, University of New South Wales , Kensington, NSW 2052 , Australia
| |
Collapse
|
9
|
Zhang X, Huang N, Xiao L, Wang F, Li T. Replenishing the Aged Brains: Targeting Oligodendrocytes and Myelination? Front Aging Neurosci 2021; 13:760200. [PMID: 34899272 PMCID: PMC8656359 DOI: 10.3389/fnagi.2021.760200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging affects almost all the aspects of brain functions, but the mechanisms remain largely undefined. Increasing number of literatures have manifested the important role of glial cells in regulating the aging process. Oligodendroglial lineage cell is a major type of glia in central nervous system (CNS), composed of mature oligodendrocytes (OLs), and oligodendroglia precursor cells (OPCs). OLs produce myelin sheaths that insulate axons and provide metabolic support to meet the energy demand. OPCs maintain the population throughout lifetime with the abilities to proliferate and differentiate into OLs. Increasing evidence has shown that oligodendroglial cells display active dynamics in adult and aging CNS, which is extensively involved in age-related brain function decline in the elderly. In this review, we summarized present knowledge about dynamic changes of oligodendroglial lineage cells during normal aging and discussed their potential roles in age-related functional decline. Especially, focused on declined myelinogenesis during aging and underlying mechanisms. Clarifying those oligodendroglial changes and their effects on neurofunctional decline may provide new insights in understanding aging associated brain function declines.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Nanxin Huang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
10
|
Baltruschat S, Cándido A, Maldonado A, Verdejo-Lucas C, Catena-Verdejo E, Catena A. There Is More to Mindfulness Than Emotion Regulation: A Study on Brain Structural Networks. Front Psychol 2021; 12:659403. [PMID: 33868133 PMCID: PMC8046916 DOI: 10.3389/fpsyg.2021.659403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Dispositional mindfulness and emotion regulation are two psychological constructs closely interrelated, and both appear to improve with the long-term practice of mindfulness meditation. These constructs appear to be related to subcortical, prefrontal, and posterior brain areas involved in emotional processing, cognitive control, self-awareness, and mind wandering. However, no studies have yet discerned the neural basis of dispositional mindfulness that are minimally associated with emotion regulation. In the present study, we use a novel brain structural network analysis approach to study the relationship between structural networks and dispositional mindfulness, measured with two different and widely used instruments [Mindfulness Attention Awareness Scale (MAAS) and Five Facet Mindfulness Questionnaire (FFMQ)], taking into account the effect of emotion regulation difficulties. We observed a number of different brain regions associated with the different scales and dimensions. The total score of FFMQ and MAAS overlap with the bilateral parahippocampal and fusiform gyri. Additionally, MAAS scores were related to the bilateral hippocampus and the FFMQ total score to the right insula and bilateral amygdala. These results indicate that, depending on the instrument used, the characteristics measured could differ and could also involve different brain systems. However, it seems that brain areas related to emotional reactivity and semantic processing are generally related to Dispositional or trait mindfulness (DM), regardless of the instrument used.
Collapse
Affiliation(s)
- Sabina Baltruschat
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Antonio Cándido
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Antonio Maldonado
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | | | | | - Andrés Catena
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
11
|
Braak H, Del Tredici K. From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex. J Neuropathol Exp Neurol 2020; 79:163-175. [PMID: 31913466 PMCID: PMC6970449 DOI: 10.1093/jnen/nlz123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
The pathological process underlying Alzheimer disease (AD) unfolds predominantly in the cerebral cortex with the gradual appearance and regional progression of abnormal tau. Intraneuronal tau pathology progresses from the temporal transentorhinal and entorhinal regions into neocortical fields/areas of the temporal allocortex. Here, based on 95 cases staged for AD-related neurofibrillary changes, we propose an ordered progression of abnormal tau in the temporal allocortex. Initially, abnormal tau was limited to distal dendritic segments followed by tau in cell bodies of projection neurons of the transentorhinal/entorhinal layer pre-α. Next, abnormal distal dendrites accumulated in the prosubiculum and extended into the CA1 stratum oriens and lacunosum. Subsequently, altered dendrites developed in the CA2/CA3 stratum oriens and stratum lacunosum-moleculare, combined with tau-positive thorny excrescences of CA3/CA4 mossy cells. Finally, granule cells of the dentate fascia became involved. Such a progression might recapitulate a sequence of transsynaptic spreading of abnormal tau from 1 projection neuron to the next: From pre-α cells to distal dendrites in the prosubiculum and CA1; then, from CA1 or prosubicular pyramids to CA2 principal cells and CA3/CA4 mossy cells; finally, from CA4 mossy cells to dentate granule cells. The lesions are additive: Those from the previous steps persist.
Collapse
Affiliation(s)
- Heiko Braak
- From the Department of Neurology, Clinical Neuroanatomy, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- From the Department of Neurology, Clinical Neuroanatomy, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Teipel SJ, Fritz HC, Grothe MJ. Neuropathologic features associated with basal forebrain atrophy in Alzheimer disease. Neurology 2020; 95:e1301-e1311. [PMID: 32631924 PMCID: PMC7538215 DOI: 10.1212/wnl.0000000000010192] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To study the neuropathologic correlates of cholinergic basal forebrain (BF) atrophy as determined using antemortem MRI in the Alzheimer disease (AD) spectrum. METHODS We determined associations between BF volume from antemortem MRI brain scans and postmortem assessment of neuropathologic features, including neuritic plaques, neurofibrillary tangles (NFTs), Lewy body (LB) pathology, and TDP-43, in 64 cases of the Alzheimer's Disease Neuroimaging Initiative cohort. For comparison, we assessed neuropathologic features associated with hippocampal and parahippocampal gyrus atrophy. In addition to region of interest-based analysis, we determined the association of neuropathologic features with whole brain gray matter volume using regionally unbiased voxel-based volumetry. RESULTS BF atrophy was associated with Thal amyloid phases (95% confidence interval [CI] -0.49 to -0.01, p = 0.049) and presence of LB pathology (95% CI -0.54 to -0.06, p = 0.015), as well as with the degree of LB pathology within the nucleus basalis Meynert (95% CI -0.54 to -0.07, p = 0.025). These effects were no longer significant after false discovery rate (FDR) correction. Hippocampal atrophy was significantly associated with the presence of TDP-43 pathology (95% CI -0.61 to -0.17, p = 0.003; surviving FDR correction), in addition to dentate gyrus NFT load (95% CI -0.49 to -0.01, p = 0.044; uncorrected). Voxel-based analysis confirmed spatially restricted effects of Thal phases and presence of LB pathology on BF volume. CONCLUSIONS These findings indicate that neuropathologic correlates of regional atrophy differ substantially between different brain regions that are typically involved in AD-related neurodegeneration, including different susceptibilities to common comorbid pathologies.
Collapse
Affiliation(s)
- Stefan J Teipel
- From the German Center for Neurodegenerative Diseases (DZNE) (S.J.T., M.J.G.); Department of Psychosomatic Medicine (S.J.T., H.-C.F.), University Medicine Rostock, Germany; and Instituto de Biomedicina de Sevilla (IBiS) (M.J.G.), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - H-Christian Fritz
- From the German Center for Neurodegenerative Diseases (DZNE) (S.J.T., M.J.G.); Department of Psychosomatic Medicine (S.J.T., H.-C.F.), University Medicine Rostock, Germany; and Instituto de Biomedicina de Sevilla (IBiS) (M.J.G.), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Michel J Grothe
- From the German Center for Neurodegenerative Diseases (DZNE) (S.J.T., M.J.G.); Department of Psychosomatic Medicine (S.J.T., H.-C.F.), University Medicine Rostock, Germany; and Instituto de Biomedicina de Sevilla (IBiS) (M.J.G.), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | | |
Collapse
|
13
|
Mapstone M, Gross TJ, Macciardi F, Cheema AK, Petersen M, Head E, Handen BL, Klunk WE, Christian BT, Silverman W, Lott IT, Schupf N. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12028. [PMID: 32258359 PMCID: PMC7131985 DOI: 10.1002/dad2.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.
Collapse
Affiliation(s)
- Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thomas J Gross
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Fabio Macciardi
- Department of Psychiatry and Human BehaviorUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Amrita K Cheema
- Departments of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Benjamin L Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wayne Silverman
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Ira T Lott
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Nicole Schupf
- Taub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia University and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of EpidemiologyJoseph P. Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
14
|
Han B, Jiang W, Liu H, Wang J, Zheng K, Cui P, Feng Y, Dang C, Bu Y, Wang QM, Ju Z, Hao J. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Am J Cancer Res 2020; 10:2832-2848. [PMID: 32194838 PMCID: PMC7052889 DOI: 10.7150/thno.37119] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Rationale: Mitochondrial dysfunction and oxidative stress occur in vascular dementia (VaD), but the specific molecular mechanism regulating these events remains unclear. Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is a master regulator for mitochondrial function. This study aims to investigate whether PGC-1α is involved in the pathophysiology of VaD. Methods: We firstly generated PGC-1α f/f Eno2-Cre mice to induce neuron-specific overexpression of PGC-1α by crossbreeding PGC-1α f/f mice with Eno2-cre mice. Then, the mice were subjected to bilateral common carotid artery stenosis to induce chronic cerebral hypoperfusion. Neurological function and hippocampal PGC-1α expression was evaluated. Next, RNA-Seq analysis and Seahorse assay were performed on the hippocampal neurons. In addition, mitochondrial antioxidants, uncoupling proteins, ROS production and the activation of glial cells were also measured. Results: Our results showed that hippocampal PGC-1α expression is down-regulated in the mouse VaD model induced by chronic cerebral hypoperfusion. In contrast, neuronal PGC-1α overexpression significantly ameliorated cognitive deficits. RNA-Seq analysis indicated that PGC-1α improved energy metabolism of neurons under hypoxic condition, and Seahorse assay confirmed that PGC-1α increases the metabolic activity of neurons. Further study demonstrated that PGC-1α boosted the expressions of mitochondrial antioxidants and uncoupling proteins (UCPs), including SOD2, Prx3, GPx1, UCP2, UCP4 and UCP5, which in turn reduced reactive oxygen species (ROS) production. Moreover, the activation of microglia and astrocytes was also found to decrease in the hippocampus. All of these changes greatly contributed to protect hippocampal neurons against ischemic insults. Conclusions: PGC-1α could suppress the excessive ROS and neuroinflammation in the hippocampus, opening up a potential therapeutic target for cognitive impairment.
Collapse
|
15
|
Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA. Theories of Aging and the Prevalence of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9171424. [PMID: 31317043 PMCID: PMC6601487 DOI: 10.1155/2019/9171424] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Aging and AD are associated in some way, then it is reasonable to ask whether or not it is possible to age without AD inexorably appearing at any moment, depending on the period of life. Therefore, the goal of this review is to verify, in light of some aging theories, the prevalence of AD. METHODS For the purpose of this manuscript, the indexers Alzheimer, aging, Alzheimer, and aging were considered; theories of aging were researched. The research was conducted using PubMed, Medline, Scopus, Elsevier, and Google Scholar. RESULTS The most common subjects in the papers analyzed for this manuscript were aging and Alzheimer's disease. The association between Alzheimer and theories of aging seems inconclusive. CONCLUSIONS Accordingly, the general idea is that AD is associated with aging in such a way that almost all people will present this disease; however, it is plausible to consider that the increase in life expectancy will generate a high prevalence of AD. In a general sense, it seems that the theories of aging explain the origin of AD under superlative and catastrophic considerations and use more biomolecular data than social or behavioral data as the bases of analysis, which may be the problem.
Collapse
Affiliation(s)
- Kaynara Trevisan
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
| | - Renata Cristina-Pereira
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
| | - Danyelle Silva-Amaral
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
| | - Tales Alexandre Aversi-Ferreira
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
- Department of Physiology, School of Medicine and Pharmaceutical Sciences, System Emotional Science, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Zhao H, Mao J, Yuan Y, Feng J, Cheng H, Fan G, Zhang Y, Li T. Sodium Dichloroacetate Stimulates Angiogenesis by Improving Endothelial Precursor Cell Function in an AKT/GSK-3β/Nrf2 Dependent Pathway in Vascular Dementia Rats. Front Pharmacol 2019; 10:523. [PMID: 31156438 PMCID: PMC6533549 DOI: 10.3389/fphar.2019.00523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023] Open
Abstract
Sodium dichloroacetate (DCA) is a mitochondrial pyruvate dehydrogenase kinase inhibitor, and has been shown to display vasoprotective effects in chronic ischemic stroke. The purpose of this study was to evaluate the therapeutic effect of DCA on vascular dementia (VD) and endothelial progenitor cell (EPC)-mediated angiogenesis. After cerebral ischemia-reperfusion in rats, DCA was administered continuously for 21 days; following which, histological analysis, and cognitive functional tests were conducted. Rat bone marrow-derived EPCs were isolated, their function and quantity were measured, and the effects of long-term administration of DCA on EPCs in a rat model of VD was studied. We found that long-term DCA administration improved cognitive function in VD rats, reduced brain infarct size and brain atrophy, increased VEGF and bFGF levels in vivo, promoted angiogenesis in damaged areas, and significantly improved EPC function in VD rats. Compared with the VD group, AKT, Nrf2, eNOS expression, and intracellular NO levels were elevated in EPCs of DCA-treated VD rats. In addition, GSK3β and intracellular ROS levels were decreased. Simultaneously, it was found that DCA directly acted on EPCs, and improved EPC functional behavior. Taken together, these findings suggested that long-term DCA administration improved cognitive function in a rat model of VD, and did so in part, by improving EPC function. Observations suggest that prolonged DCA administration might be beneficial in treating VD.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pharmacy, Punan Hospital, Shanghai, China.,College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Junqin Mao
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yuan Yuan
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Feng
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Cheng
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuefan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Shanghai, China.,College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
17
|
Brain atrophy in primary age-related tauopathy is linked to transactive response DNA-binding protein of 43 kDa. Alzheimers Dement 2019; 15:799-806. [PMID: 31056344 DOI: 10.1016/j.jalz.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is characterized by the presence of neurofibrillary tangles and absent-minimal β-amyloid deposition. Transactive response DNA-binding protein of 43 kDa (TDP-43), a third protein, has recently garnished a lot of attention in Alzheimer's disease where it is associated with memory loss and amygdala and hippocampal atrophy. We aimed to determine whether TDP-43 is associated with brain atrophy in PART. METHODS We assessed the frequency of TDP-43 in PART and performed voxel-level analysis in SPM12, as well as region-of-interest analysis using linear regression modeling, controlling for variables of interest, to assess for associations between TDP-43 and brain atrophy. RESULTS Of 116 PART cases, 31 (26.7%) had TDP-43. The presence of TDP-43 was associated with significantly greater amygdala, hippocampal, and anterior temporal atrophy in both the region-of-interest and the voxel level analyses. DISCUSSION TDP-43 is associated with greater brain atrophy in PART.
Collapse
|