1
|
Labelle-Dumais C, Mazur C, Kaya S, Obata Y, Lee B, Acevedo C, Alliston T, Gould DB. Skeletal pathology in mouse models of Gould syndrome is partially alleviated by genetically reducing TGFβ signaling. Matrix Biol 2024; 133:1-13. [PMID: 39097038 DOI: 10.1016/j.matbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Skeletal defects are hallmark features of many extracellular matrix (ECM) and collagen-related disorders. However, a biological function in bone has never been defined for the highly evolutionarily conserved type IV collagen. Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form α1α1α2 (IV) heterotrimers that represent a fundamental basement membrane constituent present in every organ of the body, including the skeleton. COL4A1 and COL4A2 mutations cause Gould syndrome, a variable and clinically heterogenous multisystem disorder generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular manifestations. We have previously identified elevated TGFβ signaling as a pathological insult resulting from Col4a1 mutations and demonstrated that reducing TGFβ signaling ameliorate ocular and cerebrovascular phenotypes in Col4a1 mutant mouse models of Gould syndrome. In this study, we describe the first characterization of skeletal defects in Col4a1 mutant mice that include a developmental delay in osteogenesis and structural, biomechanical and vascular alterations of mature bones. Using distinct mouse models, we show that allelic heterogeneity influences the presentation of skeletal pathology resulting from Col4a1 mutations. Importantly, we found that TGFβ target gene expression is elevated in developing bones from Col4a1 mutant mice and show that genetically reducing TGFβ signaling partially ameliorates skeletal manifestations. Collectively, these findings identify a novel and unsuspected role for type IV collagen in bone biology, expand the spectrum of manifestations associated with Gould syndrome to include skeletal abnormalities, and implicate elevated TGFβ signaling in skeletal pathogenesis in Col4a1 mutant mice.
Collapse
Affiliation(s)
- Cassandre Labelle-Dumais
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Courtney Mazur
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yoshihiro Obata
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Bryson Lee
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Claire Acevedo
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Douglas B Gould
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, Institute for Human Genetics, Bakar Aging Research Institute, and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Li Z, Wang S, Yin X, Tao D, Wang X, Zhang J. Identification and Validation of Diagnostic Model Based on Angiogenesis- and Epithelial Mesenchymal Transition-Related Genes in Myocardial Infarction. Int J Gen Med 2024; 17:3239-3255. [PMID: 39070220 PMCID: PMC11283268 DOI: 10.2147/ijgm.s465411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Background Myocardial infarction (MI) is a chronic cardiovascular disease. This study aims to discern potentially angiogenesis- and epithelial mesenchymal transition (EMT)-related genes as biomarkers for MI diagnosis through bioinformatics. Methods All datasets and angiogenesis- and EMT-related genes were collected from the public database. The differentially expressed genes (DEGs) of MI and MI-related genes were acquired. DEGs, MI-related genes, and angiogenesis- and EMT-related genes were intersected to obtain hub genes. Functional enrichment, immune microenvironment, and transcription factors (TFs)-hub genes regulatory network analysis were performed. The diagnostic markers and models were developed and validated. Drug prediction and molecular docking were performed. Finally, diagnostic markers expressions were validated using RT-qPCR. Results A total of 224 angiogenesis- and EMT-related genes, 2,897 DEGs, 1,217 MI-related genes, and 9 hub genes were acquired. The immune infiltration levels of plasma cells, T cells CD4 memory activated, monocytes, macrophages M0, mast cells resting, and neutrophils were higher in patients with MI. LRPAP1, COLGALT1, QSOX1, THBD, VCAN, PLOD1, and PLAUR as the diagnostic markers were identified and used to construct diagnostic models, which can distinguish MI from controls well. Then, 9 drugs were screened, and the binding energies ranged from -7.08 to -5.21 kcal/mol. RT-qPCR results showed that the expression of LRPAP1, PLAUR, and PLOD1 was significantly increased in the MI group. Conclusion The 7 diagnostic markers may play potential roles in MI and could contribute to improved future diagnostics.
Collapse
Affiliation(s)
- Zhengmei Li
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, People’s Republic of China
| | - Shiai Wang
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Xunli Yin
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Dong Tao
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Xuebing Wang
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Junli Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Joshi A, Nigam A, Narayan Mudgal L, Mondal B, Basak T. ColPTMScape: An open access knowledge base for tissue-specific collagen PTM maps. Matrix Biol Plus 2024; 22:100144. [PMID: 38469247 PMCID: PMC10926295 DOI: 10.1016/j.mbplus.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM). In the remodeling of ECM, a remarkable variation in collagen post-translational modifications (PTMs) occurs. This makes collagen a potential target for understanding extracellular matrix remodeling during pathological conditions. Over the years, scientists have gathered a huge amount of data about collagen PTM during extracellular matrix remodeling. To make such information easily accessible in a consolidated space, we have developed ColPTMScape (https://colptmscape.iitmandi.ac.in/), a dedicated knowledge base for collagen PTMs. The identified site-specific PTMs, quantitated PTM sites, and PTM maps of collagen chains are deliverables to the scientific community, especially to matrix biologists. Through this knowledge base, users can easily gain information related to the difference in the collagen PTMs across different tissues in different organisms.
Collapse
Affiliation(s)
- Ashutosh Joshi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Ayush Nigam
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Lalit Narayan Mudgal
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
4
|
Matsui Y, Togayachi A, Sakamoto K, Angata K, Kadomatsu K, Nishihara S. Integrated Systems Analysis Deciphers Transcriptome and Glycoproteome Links in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.25.573290. [PMID: 38234803 PMCID: PMC10793412 DOI: 10.1101/2023.12.25.573290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glycosylation is increasingly recognized as a potential therapeutic target in Alzheimer's disease. In recent years, evidence of Alzheimer's disease-specific glycoproteins has been established. However, the mechanisms underlying their dysregulation, including tissue- and cell-type specificity, are not fully understood. We aimed to explore the upstream regulators of aberrant glycosylation by integrating multiple data sources using a glycogenomics approach. We identified dysregulation of the glycosyltransferase PLOD3 in oligodendrocytes as an upstream regulator of cerebral vessels and found that it is involved in COL4A5 synthesis, which is strongly correlated with amyloid fiber formation. Furthermore, COL4A5 has been suggested to interact with astrocytes via extracellular matrix receptors as a ligand. This study suggests directions for new therapeutic strategies for Alzheimer's disease targeting glycosyltransferases.
Collapse
Affiliation(s)
- Yusuke Matsui
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Akira Togayachi
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuma Sakamoto
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kiyohiko Angata
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shoko Nishihara
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
5
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
6
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
7
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024:S2090-1232(24)00001-8. [PMID: 38176524 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Guey S, Chabriat H. Monogenic causes of cerebral small vessel disease and stroke. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:273-287. [PMID: 39322384 DOI: 10.1016/b978-0-323-99209-1.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cerebral small vessel disease (cSVDs) account for 25% of stroke and are a frequent cause of cognitive or motor disability in adults. In a small number of patients, cSVDs result from monogenic diseases, the most frequent being cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). An early disease onset, a suggestive family history, and a low vascular risk profile contrasting with a high load of cSVD imaging markers represent red flags that must trigger molecular screening. To date, a dozen of genes is involved in Mendelian cSVDs, most of them are responsible for autosomal dominant conditions of variable penetrance. Some of these mendelian cSVDs (CADASIL, HTRA1-related cSVD, pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), cathepsin-A related arteriopathy with strokes and leukoencephalopathy (CARASAL), and cSVD related to LAMB1 mutations) are causing ischemic stroke. Others (COL4A1/COL4A2-related angiopathy and hereditary cerebral amyloid angiopathy) preferentially lead to intracerebral hemorrhages. The clinical features of different Mendelian cSVDs can overlap. Therefore, the current approach is based on simultaneous screening of all genes involved in these conditions through a panel-targeted sequencing gene or exome sequencing. Nevertheless, a pathogenic variant is identified in less than 15% of patients with a suspected genetic cerebrovascular disease, suggesting that many additional genes remain to be identified.
Collapse
Affiliation(s)
- Stéphanie Guey
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France.
| | - Hugues Chabriat
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France
| |
Collapse
|
9
|
Sarohi V, Basak T. Perturbed post-translational modification (PTM) network atlas of collagen I during stent-induced neointima formation. J Proteomics 2023; 276:104842. [PMID: 36775122 DOI: 10.1016/j.jprot.2023.104842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Myocardial infarction (MI) leading to heart failure contributes to almost 85% of deaths associated with CVDs. MI results from plaque formation in the coronary artery which leads to a lack of oxygen and nutrients in the myocardium. To date, stenting is a widely used gold-standard technique to maintain the proper blood flow through coronary circulation in the myocardium. Bare metal stents (BMS) and drug-eluting stents (DES) are majorly used in implantation. However, BMS and DES both can induce neointima formation by depositing excessive collagens in the coronary arteries leading to restenosis. Identification and quantitative analysis of site-specific post-translational modifications (PTMs) of deposited COL1A1 from neointima ECM are not known. Applying our in-house workflow, we re-analyzed a previously published mass-spectrometry data set to comprehensively map site-specific prolyl-hydroxylation, lysyl hydroxylation, and O-glycosylation sites in COL1A1 from neointima ECM. Furthermore, we quantitated the occupancy level of 9 3-hydroxyproline (3-HyP) sites, 2 hydroxylysine sites, and glycosylation microheterogeneity on 6 lysine sites of COL1A1. Although the total level of COL1A1 was decreased in DES-induced neointima, the occupancy levels of 2 3-HyP sites (P872, and P881) and 2 HyK (K435 and K768) sites of COL1A1 were significantly (p < 0.05) elevated in DES-induced neointima compared to BMS-induced neointima. We also found O-glycosylation to be significantly elevated on 3 lysine sites (K573, K339, and K and K849) of COL1A1 in DES-induced neointima compared to BMS-induced neointima. Taken together, our first comprehensive PTM analysis of COL1A1 reflected significant site-specific alterations that may play a very important role in the ECM remodeling during stent-induced neointima formation in MI patients. SIGNIFICANCE: The knowledge about site-specific post-translational modifications (PTMs) of collagen 1 deposited in the neointima ECM during the post-stenting restenosis process is absent. Here for the first time, we report the altered levels of COL1A1 PTMs during metal stent and drug-eluting stent-induced neointima formation. Our study showcases a novel ECM remodeling through site-specific collagen PTMs during stent-induced restenosis.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology (IIT)- Mandi, India; BioX Center, IIT-Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology (IIT)- Mandi, India; BioX Center, IIT-Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
10
|
Mousa M, Albarguthi S, Albreiki M, Farooq Z, Sajid S, El Hajj Chehadeh S, ElBait GD, Tay G, Deeb AA, Alsafar H. Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. BIOLOGY 2023; 12:biology12030413. [PMID: 36979105 PMCID: PMC10044903 DOI: 10.3390/biology12030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by insulin deficiency and loss of pancreatic islet β-cells. The objective of this study is to identify de novo mutations in 13 trios from singleton families that contribute to the genetic basis of T1DM through the application of whole-exome sequencing (WES). Of the 13 families sampled for this project, 12 had de novo variants, with Family 7 having the highest number (nine) of variants linked to T1DM/autoimmune pathways, whilst Family 4 did not have any variants past the filtering steps. There were 10 variants of 7 genes reportedly associated with T1DM (MST1; TDG; TYRO3; IFIHI; GLIS3; VEGFA; TYK2). There were 20 variants of 13 genes that were linked to endocrine, metabolic, or autoimmune diseases. Our findings demonstrate that trio-based WES is a powerful approach for identifying new candidate genes for the pathogenesis of T1D. Genotyping and functional annotation of the discovered de novo variants in a large cohort is recommended to ascertain their association with disease pathogenesis.
Collapse
Affiliation(s)
- Mira Mousa
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Sara Albarguthi
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Albreiki
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Zenab Farooq
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Sameeha Sajid
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Sarah El Hajj Chehadeh
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Gihan Daw ElBait
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Guan Tay
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Asma Al Deeb
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Endocrinology, Mafraq Hospital, Abu Dhabi 127788, United Arab Emirates
| | - Habiba Alsafar
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
11
|
Wang S, He L, Xiao F, Gao M, Wei H, Yang J, Shu Y, Zhang F, Ye X, Li P, Hao X, Zhou X, Wei H. Upregulation of GLT25D1 in Hepatic Stellate Cells Promotes Liver Fibrosis via the TGF-β1/SMAD3 Pathway In Vivo and In vitro. J Clin Transl Hepatol 2023; 11:1-14. [PMID: 36406310 PMCID: PMC9647113 DOI: 10.14218/jcth.2022.00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Collagen β(1-O) galactosyltransferase 25 domain 1 (GLT25D1) is associated with collagen production and glycosylation, and its knockout in mice results in embryonic death. However, its role in liver fibrosis remains elusive, particularly in hepatic stellate cells (HSCs), the primary collagen-producing cells associated with liver fibrogenesis. Herein, we aimed to elucidate the role of GLT25D1 in HSCs. METHODS Bile duct ligation (BDL)-induced mouse liver fibrosis models, primary mouse HSCs (mHSCs), and transforming growth factor beta 1 (TGF-β1)-stimulated LX-2 human hepatic stellate cells were used in in vivo and in vitro studies. Stable LX-2 cell lines with either GLT25D1 overexpression or knockdown were established using lentiviral transfection. RNA-seq was performed to investigate the genomic differences. HPLC-MS/MS were used to identify glycosylation sites. Scanning electronic microscopy (SEM) and second-harmonic generation/two-photon excited fluorescence (SHG/TPEF) were used to image collagen fibril morphology. RESULTS GLT25D1 expression was upregulated in nonparenchymal cells in human cirrhotic liver tissues. Meanwhile, its knockdown attenuated collagen deposition in BDL-induced mouse liver fibrosis and inhibited mHSC activation. GLT25D1 was overexpressed in activated versus quiescence LX-2 cells and regulated in vitro LX-2 cell activation, including proliferation, contraction, and migration. GLT25D1 also significantly increased liver fibrogenic gene and protein expression. GLT25D1 upregulation promoted HSC activation and enhanced collagen expression through the TGF-β1/SMAD signaling pathway. Mass spectrometry showed that GLT25D1 regulated the glycosylation of collagen in HSCs, affecting the diameter of collagen fibers. CONCLUSIONS Collectively, the upregulation of GLT25D1 in HSCs promoted the progression of liver fibrosis by affecting HSCs activation and collagen stability.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fan Xiao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Herui Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yang Shu
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fuyang Zhang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ye
- Department of Gastroenterology, Beijing Huaxin Hospital, the First Affiliated Hospital of Tsinghua University, Beijing, China
| | - Ping Li
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Hao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
12
|
Uemura M, Hatano Y, Nozaki H, Ando S, Kondo H, Hanazono A, Iwanaga A, Murota H, Osakada Y, Osaki M, Kanazawa M, Kanai M, Shibata Y, Saika R, Miyatake T, Aizawa H, Ikeuchi T, Tomimoto H, Mizuta I, Mizuno T, Ishihara T, Onodera O. High frequency of HTRA1 AND ABCC6 mutations in Japanese patients with adult-onset cerebral small vessel disease. J Neurol Neurosurg Psychiatry 2023; 94:74-81. [PMID: 36261288 PMCID: PMC9763231 DOI: 10.1136/jnnp-2022-329917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND This study aimed to clarify the frequency and clinical features of monogenic cerebral small vessel disease (mgCSVD) among patients with adult-onset severe CSVD in Japan. METHODS This study included patients with adult-onset severe CSVD with an age of onset ≤55 years (group 1) or >55 years and with a positive family history (group 2). After conducting conventional genetic tests for NOTCH3 and HTRA1, whole-exome sequencing was performed on undiagnosed patients. Patients were divided into two groups according to the results of the genetic tests: monogenic and undetermined. The clinical and imaging features were compared between the two groups. RESULTS Group 1 and group 2 included 75 and 31 patients, respectively. In total, 30 patients had NOTCH3 mutations, 11 patients had HTRA1 mutations, 6 patients had ABCC6 mutations, 1 patient had a TREX1 mutation, 1 patient had a COL4A1 mutation and 1 patient had a COL4A2 mutation. The total frequency of mutations in NOTCH3, HTRA1 and ABCC6 was 94.0% in patients with mgCSVD. In group 1, the frequency of a family history of first relatives, hypertension and multiple lacunar infarctions (LIs) differed significantly between the two groups (monogenic vs undetermined; family history of first relatives, 61.0% vs 25.0%, p=0.0015; hypertension, 34.1% vs 63.9%, p=0.0092; multiple LIs, 87.8% vs 63.9%, p=0.0134). CONCLUSIONS More than 90% of mgCSVDs were diagnosed by screening for NOTCH3, HTRA1 and ABCC6. The target sequences for these three genes may efficiently diagnose mgCSVD in Japanese patients.
Collapse
Affiliation(s)
- Masahiro Uemura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuya Hatano
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hajime Kondo
- Department of Neurology, Anjo Kosei Hospital, Aichi, Japan
| | - Akira Hanazono
- Division of Gastroenterology, Hepato-biliary-pancreatology and Neurology, Akita University, Akita, Japan
| | - Akira Iwanaga
- Department of Dermatology, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University, Nagasaki, Japan
| | - Yosuke Osakada
- Department of Neurology, Okayama University, Okayama, Japan
| | - Masato Osaki
- Cerebrovascular Medicine, Steel Memorial Yawata Hospital, Fukuoka, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mitsuyasu Kanai
- Department of Neurology, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
| | - Yoko Shibata
- Department of Neurology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Reiko Saika
- Department of Neurology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | | | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.,Department of Neurology, Tokyo National Hospital, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Ishikawa Y, Taga Y, Coste T, Tufa SF, Keene DR, Mizuno K, Tournier-Lasserve E, Gould DB. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J Biol Chem 2022; 298:102713. [PMID: 36403858 PMCID: PMC9761383 DOI: 10.1016/j.jbc.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Thibault Coste
- Université Paris Cité, Inserm Neurodiderot, AP-HP Paris, France
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA; Department Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, California, USA.
| |
Collapse
|
14
|
Liu S, Yu Y, Wang Y, Zhu B, Han B. COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks. Eur J Med Res 2022; 27:122. [PMID: 35842702 PMCID: PMC9287979 DOI: 10.1186/s40001-022-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background As precision medicine gradually played an inaccessible role in cancer treatment, there was an urgent need to explore biomarkers or signatures for predicting cancer prognosis. Currently, little was known about the associations between COLGALT1 and kidney renal clear cell carcinoma (KIRC). Hence, this study was performed to reveal its roles in KIRC and to identify potential mechanisms of competing endogenous RNA (ceRNA) networks. Methods R 4.1.1 software was utilized to conduct bioinformatics analyses with the data derived from online databases. Difference analysis, survival analysis, univariate/multivariate cox regression analysis and correlation analysis were carried out successively in this article. Besides, we also investigated potential effects and mechanisms of COLGALT1 in KIRC. Results COLGALT1 expression was overexpressed in KIRC samples compared with the normal samples and it was associated with poor OS (P < 0.001). COLGALT1 was also found to be significantly related to clinicopathological characteristics such as grade, T, N, M, stage and Cox regression analysis with univariate and multivariate data suggested it might be an independent prognostic parameter in KIRC (P < 0.001). Furthermore, Seven significantly enriched pathways were identified. Interestingly, correlation analyses revealed an association between COLGALT1 and microsatellite instability (MSI), tumor mutational burden (TMB) and immunity (P < 0.001). In addition, we used TIDE and TCIA databases to predict the immune response of COLGALT1 in KIRC and it suggested low expression of COLGALT1 is more likely to benefit from immunotherapy. Besides, we identified a ceRNA network of SLC16A1-AS1/hsa-mir-502-3p/COLGALT1 for its potential mechanism. Finally, experiments in vitro indicated that COLGALT1 was significantly related to cell proliferation. Conclusions COLGALT1 could act as a valid immune-related prognostic indicator for KIRC and participated in a ceRNA network of SLC16A1-AS1/hsa-mir-502-3p/COLGALT1, offering one potential biomarker to investigate the mechanism and clinical therapeutic value of KIRC. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00745-5.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong, 226001, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong), Jiangsu Province, Nantong, 226001, China.
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China. .,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
15
|
Mönkäre S, Kuuluvainen L, Schleutker J, Bras J, Roine S, Pöyhönen M, Guerreiro R, Myllykangas L. Genetic analysis reveals novel variants for vascular cognitive impairment. Acta Neurol Scand 2022; 146:42-50. [PMID: 35307828 PMCID: PMC9314039 DOI: 10.1111/ane.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The genetic background of vascular cognitive impairment (VCI) is poorly understood compared to other dementia disorders. The aim of the study was to investigate the genetic background of VCI in a well-characterized Finnish cohort. MATERIALS & METHODS Whole-exome sequencing (WES) was applied in 45 Finnish VCI patients. Copy-number variant (CNV) analysis using a SNP array was performed in 80 VCI patients. This study also examined the prevalence of variants at the miR-29 binding site of COL4A1 in 73 Finnish VCI patients. RESULTS In 40% (18/45) of the cases, WES detected possibly causative variants in genes associated with cerebral small vessel disease (CSVD) or other neurological or stroke-related disorders. These variants included HTRA1:c.847G>A p.(Gly283Arg), TREX1:c.1079A>G, p.(Tyr360Cys), COLGALT1:c.1411C>T, p.(Arg471Trp), PRNP: c.713C>T, p.(Pro238Leu), and MTHFR:c.1061G>C, p.(Gly354Ala). Additionally, screening of variants in the 3'UTR of COL4A1 gene in a sub-cohort of 73 VCI patients identified a novel variant c.*36T>A. CNV analysis showed that pathogenic CNVs are uncommon in VCI. CONCLUSIONS These data support pathogenic roles of variants in HTRA1, TREX1 and in the 3'UTR of COL4A1 in CSVD and VCI, and suggest that vascular pathogenic mechanisms are linked to neurodegeneration, expanding the understanding of the genetic background of VCI.
Collapse
Affiliation(s)
- Saana Mönkäre
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Laboratory DivisionDepartment of Medical Genetics, GenomicsTurku University HospitalTurkuFinland
| | - Liina Kuuluvainen
- Diagnostic CenterDepartment of Clinical GeneticsHelsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| | - Johanna Schleutker
- Laboratory DivisionDepartment of Medical Genetics, GenomicsTurku University HospitalTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Jose Bras
- Center for Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Susanna Roine
- NeurocenterDepartment of Cerebrovascular DiseasesTurku University HospitalTurkuFinland
| | - Minna Pöyhönen
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Rita Guerreiro
- Center for Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Liisa Myllykangas
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
16
|
Sarohi V, Srivastava S, Basak T. Comprehensive Mapping and Dynamics of Site-Specific Prolyl-Hydroxylation, Lysyl-Hydroxylation and Lysyl O-Glycosylation of Collagens Deposited in ECM During Zebrafish Heart Regeneration. Front Mol Biosci 2022; 9:892763. [PMID: 35782869 PMCID: PMC9245515 DOI: 10.3389/fmolb.2022.892763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Cardiac fibrosis-mediated heart failure (HF) is one of the major forms of end-stage cardiovascular diseases (CVDs). Cardiac fibrosis is an adaptive response of the myocardium upon any insult/injury. Excessive deposition of collagen molecules in the extracellular matrix (ECM) is the hallmark of fibrosis. This fibrotic response initially protects the myocardium from ventricular rupture. Although in mammals this fibrotic response progresses towards scar-tissue formation leading to HF, some fishes and urodeles have mastered the art of cardiac regeneration following injury-mediated fibrotic response. Zebrafish have a unique capability to regenerate the myocardium after post-amputation injury. Following post-amputation, the ECM of the zebrafish heart undergoes extensive remodeling and deposition of collagen. Being the most abundant protein of ECM, collagen plays important role in the assembly and cell-matrix interactions. However, the mechanism of ECM remodeling is not well understood. Collagen molecules undergo heavy post-translational modifications (PTMs) mainly hydroxylation of proline, lysine, and glycosylation of lysine during biosynthesis. The critical roles of these PTMs are emerging in several diseases, embryonic development, cell behavior regulation, and cell-matrix interactions. The site-specific identification of these collagen PTMs in zebrafish heart ECM is not known. As these highly modified peptides are not amenable to mass spectrometry (MS), the site-specific identification of these collagen PTMs is challenging. Here, we have implemented our in-house proteomics analytical pipeline to analyze two ECM proteomics datasets (PXD011627, PXD010092) of the zebrafish heart during regeneration (post-amputation). We report the first comprehensive site-specific collagen PTM map of zebrafish heart ECM. We have identified a total of 36 collagen chains (19 are reported for the first time here) harboring a total of 95 prolyl-3-hydroxylation, 108 hydroxylysine, 29 galactosyl-hydroxylysine, and 128 glucosylgalactosyl-hydroxylysine sites. Furthermore, we comprehensively map the three chains (COL1A1a, COL1A1b, and COL1A2) of collagen I, the most abundant protein in zebrafish heart ECM. We achieved more than 95% sequence coverage for all the three chains of collagen I. Our analysis also revealed the dynamics of prolyl-3-hydroxylation occupancy oscillations during heart regeneration at these sites. Moreover, quantitative site-specific analysis of lysine-O-glycosylation microheterogeneity during heart regeneration revealed a significant (p < 0.05) elevation of site-specific (K1017) glucosylgalactosyl-hydroxylysine on the col1a1a chain. Taken together, these site-specific PTM maps and the dynamic changes of site-specific collagen PTMs in ECM during heart regeneration will open up new avenues to decode ECM remodeling and may lay the foundation to tinker the cardiac regeneration process with new approaches.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
- BioX Center, IIT-Mandi, Mandi, India
| | - Shriya Srivastava
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (BSBE), Indian Institute of Technology (IIT)- Mandi, Mandi, India
- BioX Center, IIT-Mandi, Mandi, India
- *Correspondence: Trayambak Basak,
| |
Collapse
|
17
|
Identification and In Silico Characterization of a Novel COLGALT2 Gene Variant in a Child with Mucosal Rectal Prolapse. Int J Mol Sci 2022; 23:ijms23073670. [PMID: 35409030 PMCID: PMC8999070 DOI: 10.3390/ijms23073670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Rectal prolapse is influenced by many factors including connective tissue dysfunction. Currently, there is no data about genetic contribution in the etiology of this disorder. In this study, we performed trio whole-exome sequencing in an 11-year-old girl with mucosal rectal prolapse and her parents and sibling. Genetic testing revealed a novel heterozygous missense variant c.1406G>T; p.G469V in exon 11 of the COLGALT2 gene encoding the GLT25 D2 enzyme. Sanger sequencing confirmed this variant only in the patient while the mother, father and sister showed a wild-type sequence. The pathogenicity of the novel variant was predicted using 10 different in silico tools that classified it as pathogenic. Further, in silico prediction, according to Phyre2, Project HOPE, I-Mutant3.0 and MutPred2 showed that the missense variant can decrease protein stability and cause alterations in the physical properties of amino acids resulting in structural and functional changes of the GLT25D2 protein. In conclusion, the present study identifies a previously unknown missense mutation in the COLGALT2 gene that encodes the enzyme involved in collagen glycosylation. The clinical features observed in the patient and the results of in silico analysis suggest that the new genetic variant can be pathogenic.
Collapse
|
18
|
Guey S, Hervé D. Main features of COL4A1-COL4A2 related cerebral microangiopathies. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100140. [PMID: 36324412 PMCID: PMC9616443 DOI: 10.1016/j.cccb.2022.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
COL4A1 and COL4A2 genes encode the alpha1 and the alpha2 chains of type IV collagen, a key component of basement membranes. Mutations located in the coding sequence of COL4A1/COL4A2 genes are responsible for an autosomal dominant (AD) cerebral angiopathy that manifest in either adults, children or fetuses. The most typical among such mutations are missense glycine mutations in the triple helix. They increase the susceptibility to brain hemorrhage but can also promote the occurrence of multiple other types of systemic manifestations that can involve the eyes, kidneys or muscles. This condition is characterized by a very incomplete penetrance, and a wide phenotypic variability even among members of the same family. Recently, mutations in the COL4A1 3'UTR non-coding region that upregulate COL4A1 expression, and COL4A1/COL4A2 duplications, have been shown to cause AD forms of ischemic cerebral small vessel disease in adults. Herein, we summarize the genetic and pathophysiological aspects of these conditions, detail their clinical and imaging characteristics and discuss some principles in their clinical management.
Collapse
|
19
|
Pickett SJ, Deen D, Pyle A, Santibanez-Koref M, Hudson G. Interactions between nuclear and mitochondrial SNPs and Parkinson's disease risk. Mitochondrion 2022; 63:85-88. [PMID: 35167983 DOI: 10.1016/j.mito.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/23/2022]
Abstract
Interactions between the products of the nuclear and mitochondrial genomes are critical for the function of most eukaryotic cells. Recently the introduction of mitochondrial replacement therapy has raised the question of incompatibilities between mitochondrial and nuclear variants, and their potential influence on the genetic makeup of human populations. Such interactions could also contribute to the variability of the penetrance of pathogenic DNA variants. This led us to investigate the frequencies of combinations of nuclear and mitochondrial SNP alleles (mitonuclear combinations) in healthy individuals (n = 5375) and in a cohort of patients with Parkinson's disease (PD, n = 2210). In the unaffected population, we were not able to find associations between nuclear and mitochondrial variants with a false discovery rate below 0.05 after accounting for multiple testing (i.e., the number of combinations examined). However, in the PD cohort, five combinations surpassed this threshold. Next, after combining both cohorts, we investigated whether these associations were modulated by disease status. All five combinations were significant (p < 10-3 for all tests). These combinations also showed significant evidence for an effect of the interaction between the mitochondrial and nuclear variants on disease risk. Their nuclear components mapped to TBCA, NIBAN3, and GLT25D1 and an uncharacterised intergenic region. In summary, starting from a single cohort design we identified combinations of nuclear and mitochondrial variants affecting PD disease risk.
Collapse
Affiliation(s)
- Sarah J Pickett
- Clinical and Translational Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Dasha Deen
- Clinical and Translational Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Clinical and Translational Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mauro Santibanez-Koref
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| | - Gavin Hudson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
20
|
Conte F, van Buuringen N, Voermans NC, Lefeber DJ. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim Biophys Acta Gen Subj 2021; 1865:129898. [PMID: 33878388 DOI: 10.1016/j.bbagen.2021.129898] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Galactose is an essential carbohydrate for cellular metabolism, as it contributes to energy production and storage in several human tissues while also being a precursor for glycosylation. Galactosylated glycoconjugates, such as glycoproteins, keratan sulfate-containing proteoglycans and glycolipids, exert a plethora of biological functions, including structural support, cellular adhesion, intracellular signaling and many more. The biological relevance of galactose is further entailed by the number of pathogenic conditions consequent to defects in galactosylation and galactose homeostasis. The growing number of rare congenital disorders involving galactose along with its recent therapeutical applications are drawing increasing attention to galactose metabolism. In this review, we aim to draw a comprehensive overview of the biological functions of galactose in human cells, including its metabolism and its role in glycosylation, and to provide a systematic description of all known congenital metabolic disorders resulting from alterations of its homeostasis.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Nicole van Buuringen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Kehayova YS, Watson E, Wilkinson JM, Loughlin J, Rice SJ. Genetic and Epigenetic Interplay Within a COLGALT2 Enhancer Associated With Osteoarthritis. Arthritis Rheumatol 2021; 73:1856-1865. [PMID: 33760386 DOI: 10.1002/art.41738] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/11/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The osteoarthritis (OA)-associated single-nucleotide polymorphism (SNP) rs11583641 is located in COLGALT2, encoding a posttranslational modifier of collagen. In cartilage, the SNP genotype correlates with DNA methylation in a putative enhancer. This study was undertaken to characterize the mechanistic relationship between rs11583641, the putative enhancer, and COLGALT2 expression using cartilage samples from human patients and a chondrocyte cell model. METHODS Nucleic acids were extracted from articular cartilage samples obtained from patients with OA (n = 137). Samples were genotyped, and DNA methylation was quantified at 12 CpGs using pyrosequencing. The putative enhancer was deleted in Tc28a2 chondrocytes using clustered regularly interspaced short palindromic repeat/Cas9, and the impact on nearby gene expression was determined using real-time quantitative polymerase chain reaction. Targeted modulation of the epigenome using catalytically dead Cas9 (dCas9) constructs fused to DNA methyltransferase 3a or ten-eleven translocase 1 allowed for the investigation of a causal relationship between DNA methylation and enhancer activity. RESULTS The genotype at rs11583641 correlated with DNA methylation at 3 CpGs, and the presence of the OA risk allele, C, corresponded to reduced levels of methylation. Deletion of the enhancer resulted in a 2.7-fold reduction in COLGALT2 expression. Targeted methylation and demethylation of the CpGs had antagonistic effects on COLGALT2 expression. An allelic imbalance in the expression of COLGALT2 was identified in the cartilage from patients with OA, with relative overexpression of the OA risk allele. Allelic expression ratios correlated with DNA methylation at 4 CpGs. CONCLUSION COLGALT2 is a target of OA genetic risk at this locus. The genotype at rs11583641 impacts DNA methylation in a gene enhancer, which, in turn, modulates COLGALT2 expression. COLGALT2 encodes an enzyme that initiates posttranslational glycosylation of collagens and is therefore a compelling OA susceptibility target.
Collapse
Affiliation(s)
- Yulia S Kehayova
- International Centre for Life and Newcastle University, Newcastle-upon-Tyne, UK, and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and University of Liverpool, Liverpool, UK
| | - Emily Watson
- International Centre for Life and Newcastle University, Newcastle-upon-Tyne, UK, and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and University of Liverpool, Liverpool, UK
| | - J Mark Wilkinson
- University of Sheffield, Sheffield, UK, and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and University of Liverpool, Liverpool, UK
| | - John Loughlin
- International Centre for Life and Newcastle University, Newcastle-upon-Tyne, UK, and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and University of Liverpool, Liverpool, UK
| | - Sarah J Rice
- International Centre for Life and Newcastle University, Newcastle-upon-Tyne, UK, and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
23
|
Teunissen MWA, Kamsteeg EJ, Sallevelt SCEH, Pennings M, Bauer NJC, Vermeulen RJ, Nicolai J. Biallelic Variants in the COLGALT1 Gene Causes Severe Congenital Porencephaly: A Case Report. NEUROLOGY-GENETICS 2021; 7:e564. [PMID: 33709034 PMCID: PMC7943220 DOI: 10.1212/nxg.0000000000000564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Objective We describe a third patient with brain small vessel disease 3 (BSVD3), being the first with a homozygous essential splice site variant in the COLGALT1 gene, with a more severe phenotype than the 2 children reported earlier. Methods Analysis of whole exome sequencing (WES) data of the child and parents was performed. We validated the missplicing of the homozygous variant using reverse transcription PCR and Sanger sequencing of the mRNA in a lymphocyte culture. Results The patient presented antenatally with porencephaly on ultrasound and MRI. Postnatally, he showed a severe developmental delay, refractory epilepsy, spastic quadriplegia, and a progressive hydrocephalus. WES revealed a homozygous canonical splice site variant NM_024656.3:c.625-2A>C. PCR and Sanger sequencing of the mRNA demonstrated that 2 cryptic splice sites are activated, causing a frameshift in the major transcript and in-frame deletion in a minor transcript. Conclusions We report a third patient with biallelic pathogenic variants in COLGALT1, confirming the role of this gene in autosomal recessive BSVD3.
Collapse
Affiliation(s)
- Mariel W A Teunissen
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| | - Suzanne C E H Sallevelt
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| | - Maartje Pennings
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| | - Noel J C Bauer
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| | - Joost Nicolai
- Department of Neurology (M.W.A.T., R.J.V., J.N.), Maastricht University Medical Center+; Department of Human Genetics (E.-J.-K., M.P.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (S.C.E.H.S.), and University Eye Clinic Maastricht (N.J.C.B.), Maastricht University Medical Center+, the Netherlands
| |
Collapse
|
24
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
Zhang X, Gong W, Cao S, Yin J, Zhang J, Cao J, Shen Y. Comprehensive Analysis of Non-coding RNA Profiles of Exosome-Like Vesicles From the Protoscoleces and Hydatid Cyst Fluid of Echinococcus granulosus. Front Cell Infect Microbiol 2020; 10:316. [PMID: 32793506 PMCID: PMC7387405 DOI: 10.3389/fcimb.2020.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Cystic echinococcosis is a worldwide chronic zoonotic disease that threatens human health and animal husbandry. Exosome-like vesicles (ELVs) have emerged recently as mediators in the parasite-parasite intercommunication and parasite-host interactions. Exosome-like vesicles from parasites can transfer non-coding RNAs (ncRNAs) into host cells to regulate their gene expression; however, the ncRNAs profiles of the ELVs from Echinococcus granulosus remain unknown. Here, we isolated protoscolece (PSC)-ELVs and hydatid fluid (HF)-ELVs from the culture medium for E. granulosus PSCs in vitro and the HF of fertile sheep cysts, respectively. The microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) profiles of the two types of ELVs were analyzed using high-throughput sequencing, and their functions were predicted using Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. In PSC-ELVs and HF-ELVs, 118 and 58 miRNAs were identified, respectively, among which 53 miRNAs were present in both ELVs, whereas 65 and 5 miRNAs were unique to PSC-ELVs and HF-ELVs, respectively; 2,361 and 1,254 lncRNAs were identified in PSC-ELVs and HF-ELVs, respectively, among which 1,004 lncRNAs were present in both ELVs, whereas 1,357 and 250 lncRNAs were unique to PSC-ELVs and HF-ELVs, respectively. Intriguingly, the spilled PSCs from cysts excrete ELVs with higher numbers of and higher expression levels of miRNAs and circRNAs than HF-ELVs. The miRNA sequencing data were validated by quantitative reverse transcription-polymerase chain reaction. Furthermore, the target lncRNAs and mRNAs regulated by the 20 most abundant miRNAs were screened, and a ceRNA regulatory network containing 5 miRNAs, 41 lncRNAs, and 23 mRNAs was constructed, which provided new ideas and the molecular basis for further clarification of the function and mechanism of E. granulosus ELVs ncRNAs in the parasite-host interactions. Egr-miR-125-5p and egr-miR-10a-5p, sharing identical seed sites with host miRNAs, were predicted to mediate inflammatory response, collagen catabolic process, and mitogen-activated protein kinase cascade during parasite infections. In conclusion, for the first time, we identified the ncRNAs profiles in PSC-ELVs and HF-ELVs that might be involved in host immunity and pathogenesis, and enriched the ncRNAs data of E. granulosus. These results provided valuable resources for further analysis of the regulatory potential of ncRNAs, especially miRNAs, in both types of ELVs at the parasite-host interface.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Wenci Gong
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Shengkui Cao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jianhai Yin
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jing Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jianping Cao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yujuan Shen
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Zhang DP, Yin S, Zhang HL, Li D, Song B, Liang JX. Association between Intracranial Arterial Dolichoectasia and Cerebral Small Vessel Disease and Its Underlying Mechanisms. J Stroke 2020; 22:173-184. [PMID: 32635683 PMCID: PMC7341005 DOI: 10.5853/jos.2019.02985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/06/2020] [Indexed: 12/29/2022] Open
Abstract
Intracranial arterial dolichoectasia (IADE), also known as dilatative arteriopathy of the brain vessels, refers to an increase in the length and diameter of at least one intracranial artery, and accounts for approximately 12% of all patients with stroke. However, the association of IADE with stroke is usually unclear. Cerebral small vessel disease (CSVD) is characterized by pathological changes in the small vessels. Clinically, patients with CSVD can be asymptomatic or present with stroke or cognitive decline. In the past 20 years, a series of studies have strongly promoted an understanding of the association between IADE and CSVD from clinical and pathological perspectives. It has been proposed that IADE and CSVD may be attributed to abnormal vascular remodeling driven by an abnormal matrix metalloproteinase/tissue inhibitor of metalloproteinase pathway. Also, IAD-Erelated hemodynamic changes may result in initiation or progression of CSVD. Additionally, genetic factors are implicated in the pathogenesis of IADE and CSVD. Patients with Fabry’s disease and late-onset Pompe’s disease are prone to developing concomitant IADE and CSVD, and patients with collagen IV alpha 1 or 2 gene (COL4A1/COL4A2) and forkhead box C1 (FOXC1) variants present with IADE and CSVD. Race, strain, familial status, and vascular risk factors may be involved in the pathogenesis of IADE and CSVD. As well, experiments in mice have pointed to genetic strain as a predisposing factor for IADE and CSVD. However, there have been few direct genetic studies aimed towards determining the association between IADE and CSVD. In the future, more clinical and basic research studies are needed to elucidate the causal relationship between IADE and CSVD and the related molecular and genetic mechanisms.
Collapse
Affiliation(s)
- Dao Pei Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suo Yin
- Department of Image, The People's Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huai Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dan Li
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jia Xu Liang
- Department of Image, The People's Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
27
|
Fang F, Xu Z, Suo Y, Wang H, Cheng S, Li H, Li W, Wang Y. Gene panel for Mendelian strokes. Stroke Vasc Neurol 2020; 5:416-421. [PMID: 32341005 PMCID: PMC7804056 DOI: 10.1136/svn-2020-000352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mendelian stroke causes nearly 7% of ischaemic strokes and is also an important aetiology of cryptogenic stroke. Identifying the genetic abnormalities in Mendelian strokes is important as it would facilitate therapeutic management and genetic counselling. Next-generation sequencing makes large-scale sequencing and genetic testing possible. METHODS A systematic literature search was conducted to identify causal genes of Mendelian strokes, which were used to construct a hybridization-based gene capture panel. Genetic variants for target genes were detected using Illumina HiSeq X10 and the Novaseq platform. The sensitivity and specificity were evaluated by comparing the results with Sanger sequencing. RESULTS 53 suspected patients of Mendelian strokes were analysed using the panel of 181 causal genes. According to the American College of Medical Genetics and Genomics standard, 16 likely pathogenic/variants of uncertain significance genetic variants were identified. Diagnostic testing was conducted by comparing the consistency between the results of panel and Sanger sequencing. Both the sensitivity and specificity were 100% for the panel. CONCLUSION This panel provides an economical, time-saving and labour-saving method to detect causal mutations of Mendelian strokes.
Collapse
Affiliation(s)
- Fang Fang
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Suo
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China .,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China .,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
28
|
Kinoshita K, Ishizaki Y, Yamamoto H, Sonoda M, Yonemoto K, Kira R, Sanefuji M, Ueda A, Matsui H, Ando Y, Sakai Y, Ohga S. De novo p.G696S mutation in COL4A1 causes intracranial calcification and late-onset cerebral hemorrhage: A case report and review of the literature. Eur J Med Genet 2019; 63:103825. [PMID: 31857254 DOI: 10.1016/j.ejmg.2019.103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/16/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The collagen type IV alpha 1 chain (COL4A1) is an essential component of the basement membrane in small vessels. Pathogenic variants in COL4A1 cause perinatal cerebral hemorrhages in an autosomal-dominant fashion. However, little is known about the long-term outcomes of patients with mildly affecting COL4A1 mutations. CASE REPORT We report a 17-year-old boy, who presented with recurrent intracranial hemorrhages in the periventricular white matter. He had been followed-up as a child with cerebral palsy bearing intracranial calcifications, developmental delay and epilepsy. Screening tests in infancy provided negative results for intrauterine infections. Severe motor and cognitive deficits persisted after admission. Carbazochrome was introduced on day 19 of admission, which appeared to prevent extension and reactivation of cerebral hemorrhages for over 6 months after discharge. RESULTS Targeted sequencing of NOTCH3 and TREX1 excluded causal mutations in these genes. The whole-exome sequencing revealed that he carried a de novo mutation in COL4A1 (p.Gly696Ser). An overview of the literature for 345 cases with COL4A1 mutations supported evidence that p.Gly696Ser is associated with the unique phenotype of late-onset hemorrhage among patients with COL4A1-associated cerebral angiopathy. CONCLUSIONS This case first demonstrates that infants with COL4A1-associated leukoencephalopathy and calcifications have a risk for developing the rupture of small vessels in the cerebral white matter after 10 years of age.
Collapse
Affiliation(s)
- Keishiro Kinoshita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Boulouis G, Blauwblomme T, Hak JF, Benichi S, Kirton A, Meyer P, Chevignard M, Tournier-Lasserve E, Mackay MT, Chabrier S, Cordonnier C, Kossorotoff M, Naggara O. Nontraumatic Pediatric Intracerebral Hemorrhage. Stroke 2019; 50:3654-3661. [DOI: 10.1161/strokeaha.119.025783] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gregoire Boulouis
- From the Pediatric Radiology Department, Necker Enfants Malades (NEM), INSERM UMR1266, Sainte-Anne (G.B., J.F.H., O.N.)
| | - Thomas Blauwblomme
- Pediatric Neurosurgery Department, Institut Imagine, INSERM UMR 1163, NEM (T.B., S.B.)
| | - Jean François Hak
- From the Pediatric Radiology Department, Necker Enfants Malades (NEM), INSERM UMR1266, Sainte-Anne (G.B., J.F.H., O.N.)
- Neuroimaging Department, CHRU La Timone, Marseille, France (J.F.H.)
| | - Sandro Benichi
- Pediatric Neurosurgery Department, Institut Imagine, INSERM UMR 1163, NEM (T.B., S.B.)
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, AB, Canada (A.K.)
- Pediatric Neuro ICU (A.K.)
| | | | - Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury, Saint-Maurice Hospitals (M.C.)
| | - Elisabeth Tournier-Lasserve
- Genetics of Neurovascular disorders, AP-HP, Hôpital Lariboisière and Université de Paris, NeuroDiderot, Inserm, F-75010 (E.T.-L.)
| | - Mark T. Mackay
- Neurology Department, Royal Children’s Hospital Melbourne, Murdoch Children’s Research Institute, and Department of Paediatrics, University of Melbourne, Australia (M.T.M.)
| | - Stéphane Chabrier
- CHU Saint-Étienne, French Center for Pediatic Stroke, F-42055 Saint-Étienne, France (S.C.)
| | - Charlotte Cordonnier
- Université Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, CHU Lille, Neurology Department, France (C.C.)
| | - Manoëlle Kossorotoff
- Department of Pediatric Neurology, French Center for Pediatic Stroke, NEM (M.K.)
| | - Olivier Naggara
- From the Pediatric Radiology Department, Necker Enfants Malades (NEM), INSERM UMR1266, Sainte-Anne (G.B., J.F.H., O.N.)
| |
Collapse
|
30
|
He L, Ye X, Gao M, Yang J, Ma J, Xiao F, Wei H. Down-regulation of GLT25D1 inhibited collagen secretion and involved in liver fibrogenesis. Gene 2019; 729:144233. [PMID: 31759980 DOI: 10.1016/j.gene.2019.144233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 07/28/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
Abstract
Collagen β (1-O) galactosyltransferase 1 (GLT25D1) has been reported to transfer galactose to hydroxylysine residues via β (1-O) linkages in collagen. However, the role of Glt25d1 in liver fibrogenesis is still unknow. Recently, we generated a Glt25d1 knockout mouse to elucidate the role of Glt25d1 in vivo. However, we found that complete deletion of the Glt25d1 gene resulted in embryonic lethality at E11.5. Histopathological analysis revealed that dysplasia in Glt25d1-/- labyrinth with defects of the vascular network. Immunohistochemical showed that the decrease in proliferation of Glt25d1-/- liver and the developing central nervous system (CNS). The role of Glt25d1 in liver fibrogenesis was explored by Glt25d1+/- mice. Glt25d1+/- mice and wild-type (WT) mice were injected intraperitoneally with the same dose of CCl4. The higher level of serum alanine aminotransferase was observed in Glt25d1+/- mice. Reverse transcription-quantitative polymerase chainreaction demonstrated that the mRNA expression levels of the inflammatory cytokines such as, Tnf-α, Cxcl-1 and Mcp-1, showed a significantly increase in CCl4-treated Glt25d1+/- mice. Collagen-I, collagen-III and α-SMA transcripts accumulation was markedly increased in the Glt25d1+/- mice. However, Masson's trichrome staining revealed a trend to decrease in the ECM proteins deposition of Glt25d1+/- liver. Immunohistochemistry and Western blots revealed that the protein expression of Collagen-III was reduced and a trend to a decrease in collagen-I was observed in the Glt25d1+/- liver compared with those of WT mice. Our results demonstrate that Glt25d1 knockout results in embryonic lethality and down-regulation of Glt25d1 may inhibit collagen secretion during liver fibrogenesis.
Collapse
Affiliation(s)
- Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Xiaohui Ye
- Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua Uinversity, Beijing, China.
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Jiali Ma
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Fan Xiao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Geister KA, Lopez-Jimenez AJ, Houghtaling S, Ho TH, Vanacore R, Beier DR. Loss of function of Colgalt1 disrupts collagen post-translational modification and causes musculoskeletal defects. Dis Model Mech 2019; 12:dmm.037176. [PMID: 31101663 PMCID: PMC6602307 DOI: 10.1242/dmm.037176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
In a screen for organogenesis defects in N-ethyl-N-nitrosourea (ENU)-induced mutant mice, we discovered a line carrying a mutation in Colgalt1 [collagen beta(1-O)galactosyltransferase type 1], which is required for proper galactosylation of hydroxylysine residues in a number of collagens. Colgalt1 mutant embryos have not been previously characterized; here, we show that they exhibit skeletal and muscular defects. Analysis of mutant-derived embryonic fibroblasts reveals that COLGALT1 acts on collagen IV and VI, and, while collagen VI appears stable and its secretion is not affected, collagen IV accumulates inside of cells and within the extracellular matrix, possibly due to instability and increased degradation. We also generated mutant zebrafish that do not express the duplicated orthologs of mammalian Colgalt1. The double-homozygote mutants have muscle defects; they are viable through the larvae stage but do not survive to 10 days post-fertilization. We hypothesize that the Colgalt1 mutant could serve as a model of a human connective tissue disorder and/or congenital muscular dystrophy or myopathy. Summary: The authors characterized a novel mouse mutant that has a defect in collagen glycosylation, which appears to affect muscle development. There is very little functional characterization of the affected gene, but this study provides analysis of its embryonic phenotype and the biochemistry of the null mutant, as well as the phenotype of null-mutant zebrafish.
Collapse
Affiliation(s)
- Krista A Geister
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA.,Department of Pediatrics, Division of Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alberto Jose Lopez-Jimenez
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA .,Department of Pediatrics, Division of Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
33
|
Peng X, Zhao J, Liu J, Li S. Advances in biomarkers of cerebral small vessel disease. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a type of syndrome caused by lesions in perforating arteries, small veins, small arteries, or capillaries, resulting in clinical, imaging, or pathological alterations. The occurrence and development of CSVD are related to various cerebrovascular risk factors, such as metabolism and genetic factors. CSVD is diagnosed based on brain imaging biomarkers; however, biomarkers capable of predicting and diagnosing CSVD early in its progression have not been found. Exploring biomarkers closely related to disease progression is of great significance for early diagnosis, prognosis, prevention, and treatment of CSVD. This article examines the research progress of CSVD biomarkers, from inflammatory biomarkers, coagulation and fibrinolysis markers, biomarkers of endothelial dysfunction, biomarkers related to cerebrospinal fluid, and gene markers.
Collapse
|