1
|
Li J, Zhou T, Wang P, Yin R, Zhang S, Cao Y, Zong L, Xiao M, Zhang Y, Liu W, Deng L, Huang F, Sun J, Wang H. Magnetic Stimulation of Gigantocellular Reticular Nucleus with Iron Oxide Nanoparticles Combined Treadmill Training Enhanced Locomotor Recovery by Reorganizing Cortico-Reticulo-Spinal Circuit. Int J Nanomedicine 2024; 19:7473-7492. [PMID: 39071504 PMCID: PMC11283264 DOI: 10.2147/ijn.s464498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024] Open
Abstract
Background Gigantocellular reticular nucleus (GRNs) executes a vital role in locomotor recovery after spinal cord injury. However, due to its unique anatomical location deep within the brainstem, intervening in GRNs for spinal cord injury research is challenging. To address this problem, this study adopted an extracorporeal magnetic stimulation system to observe the effects of selective magnetic stimulation of GRNs with iron oxide nanoparticles combined treadmill training on locomotor recovery after spinal cord injury, and explored the possible mechanisms. Methods Superparamagnetic iron oxide (SPIO) nanoparticles were stereotactically injected into bilateral GRNs of mice with moderate T10 spinal cord contusion. Eight-week selective magnetic stimulation produced by extracorporeal magnetic stimulation system (MSS) combined with treadmill training was adopted for the animals from one week after surgery. Locomotor function of mice was evaluated by the Basso Mouse Scale, Grid-walking test and Treadscan analysis. Brain MRI, anterograde virus tracer and immunofluorescence staining were applied to observe the tissue compatibility of SPIO in GRNs, trace GRNs' projections and evaluate neurotransmitters' expression in spinal cord respectively. Motor-evoked potentials and H reflex were collected for assessing the integrity of cortical spinal tract and the excitation of motor neurons in anterior horn. Results (1) SPIO persisted in GRNs for a minimum of 24 weeks without inducing apoptosis of GRN cells, and degraded slowly over time. (2) MSS-enabled treadmill training dramatically improved locomotor performances of injured mice, and promoted cortico-reticulo-spinal circuit reorganization. (3) MSS-enabled treadmill training took superimposed roles through both activating GRNs to drive more projections of GRNs across lesion site and rebalancing neurotransmitters' expression in anterior horn of lumbar spinal cord. Conclusion These results indicate that selective MSS intervention of GRNs potentially serves as an innovative strategy to promote more spared fibers of GRNs across lesion site and rebalance neurotransmitters' expression after spinal cord injury, paving the way for the structural remodeling of neural systems collaborating with exercise training, thus ultimately contributing to the reconstruction of cortico-reticulo-spinal circuit.
Collapse
Affiliation(s)
- Juan Li
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Pei Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Ruian Yin
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Shengqi Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Yile Cao
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, People’s Republic of China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, People’s Republic of China
| | - Wentao Liu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, People’s Republic of China
| | - Lingxiao Deng
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indianapolis, IN, 46202-2266, USA
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210024, People’s Republic of China
| |
Collapse
|
2
|
De Santis D, Perez MA. A portable system to measure knee extensor spasticity after spinal cord injury. J Neuroeng Rehabil 2024; 21:50. [PMID: 38594696 PMCID: PMC11003160 DOI: 10.1186/s12984-024-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/18/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The pendulum test is a quantitative method used to assess knee extensor spasticity in humans with spinal cord injury (SCI). Yet, the clinical implementation of this method remains limited. The goal of our study was to develop an objective and portable system to assess knee extensor spasticity during the pendulum test using inertial measurement units (IMU). METHODS Spasticity was quantified by measuring the first swing angle (FSA) using a 3-dimensional optical tracking system (with external markers over the iliotibial band, lateral knee epicondyle, and lateral malleolus) and two wireless IMUs (positioned over the iliotibial band and mid-part of the lower leg) as well as a clinical exam (Modified Ashworth Scale, MAS). RESULTS Measurements were taken on separate days to assess test-retest reliability and device agreement in humans with and without SCI. We found no differences between FSA values obtained with the optical tracking system and the IMU-based system in control subjects and individuals with SCI. FSA values from the IMU-based system showed excellent agreement with the optical tracking system in individuals with SCI (ICC > 0.98) and good agreement in controls (ICC > 0.82), excellent test-retest reliability across days in SCI (ICC = 0.93) and good in controls (ICC = 0.87). Notably, FSA values measured by both systems showed a strong association with MAS scores ( ρ ~ -0.8) being decreased in individuals with SCI with higher MAS scores, reflecting the presence of spasticity. CONCLUSIONS These findings suggest that our new portable IMU-based system provides a robust and flexible alternative to a camera-based optical tracking system to quantify knee extensor spasticity following SCI.
Collapse
Affiliation(s)
| | - Monica A Perez
- Shirley Ryan Abilitylab, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA.
| |
Collapse
|
3
|
Xu X, Du HY, Talifu Z, Zhang CJ, Li ZH, Liu WB, Liang YX, Xu XL, Zhang JM, Yang DG, Gao F, Du LJ, Yu Y, Jing YL, Li JJ. Glycine and N-Acetylcysteine (GlyNAC) Combined with Body Weight Support Treadmill Training Improved Spinal Cord and Skeletal Muscle Structure and Function in Rats with Spinal Cord Injury. Nutrients 2023; 15:4578. [PMID: 37960231 PMCID: PMC10649910 DOI: 10.3390/nu15214578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Skeletal muscle atrophy is a frequent complication after spinal cord injury (SCI) and can influence the recovery of motor function and metabolism in affected patients. Delaying skeletal muscle atrophy can promote functional recovery in SCI rats. In the present study, we investigated whether a combination of body weight support treadmill training (BWSTT) and glycine and N-acetylcysteine (GlyNAC) could exert neuroprotective effects, promote motor function recovery, and delay skeletal muscle atrophy in rats with SCI, and we assessed the therapeutic effects of the double intervention from both a structural and functional viewpoint. We found that, after SCI, rats given GlyNAC alone showed an improvement in Basso-Beattie-Bresnahan (BBB) scores, gait symmetry, and results in the open field test, indicative of improved motor function, while GlyNAC combined with BWSTT was more effective than either treatment alone at ameliorating voluntary motor function in injured rats. Meanwhile, the results of the skeletal muscle myofiber cross-sectional area (CSA), hindlimb grip strength, and acetylcholinesterase (AChE) immunostaining analysis demonstrated that GlyNAC improved the structure and function of the skeletal muscle in rats with SCI and delayed the atrophication of skeletal muscle.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Wu-Bo Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250100, China
| | - Yi-Xiong Liang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Xu-Luan Xu
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Jin-Ming Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| |
Collapse
|
4
|
Sangari S, Chen B, Grover F, Salsabili H, Sheth M, Gohil K, Hobbs S, Olson A, Eisner-Janowicz I, Anschel A, Kim K, Chen D, Kessler A, Heinemann AW, Oudega M, Kwon BK, Kirshblum S, Guest JD, Perez MA. Spasticity Predicts Motor Recovery for Patients with Subacute Motor Complete Spinal Cord Injury. Ann Neurol 2023; 95:71-86. [PMID: 37606612 DOI: 10.1002/ana.26772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE A motor complete spinal cord injury (SCI) results in the loss of voluntary motor control below the point of injury. Some of these patients can regain partial motor function through inpatient rehabilitation; however, there is currently no biomarker to easily identify which patients have this potential. Evidence indicates that spasticity could be that marker. Patients with motor complete SCI who exhibit spasticity show preservation of descending motor pathways, the pathways necessary for motor signals to be carried from the brain to the target muscle. We hypothesized that the presence of spasticity predicts motor recovery after subacute motor complete SCI. METHODS Spasticity (Modified Ashworth Scale and pendulum test) and descending connectivity (motor evoked potentials) were tested in the rectus femoris muscle in patients with subacute motor complete (n = 36) and motor incomplete (n = 30) SCI. Motor recovery was assessed by using the International Standards for Neurological Classification of Spinal Cord Injury and the American Spinal Injury Association Impairment Scale (AIS). All measurements were taken at admission and discharge from inpatient rehabilitation. RESULTS We found that motor complete SCI patients with spasticity improved in motor scores and showed AIS conversion to either motor or sensory incomplete. Conversely, patients without spasticity showed no changes in motor scores and AIS conversion. In incomplete SCI patients, motor scores improved and AIS conversion occurred regardless of spasticity. INTERPRETATION These findings suggest that spasticity represents an easy-to-use clinical outcome that might help to predict motor recovery after severe SCI. This knowledge can improve inpatient rehabilitation effectiveness for motor complete SCI patients. ANN NEUROL 2023.
Collapse
Affiliation(s)
| | - Bing Chen
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | | | | | | | | | - Sara Hobbs
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | | | | | - Alan Anschel
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Ki Kim
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - David Chen
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Allison Kessler
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Allen W Heinemann
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
- Edward Hines Jr. VA Hospital, Hines, Illinois, USA
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - James D Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
- Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| |
Collapse
|
5
|
[Water tank scale: a reliable method for assessing motor function after spinal cord injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:99-104. [PMID: 36856216 DOI: 10.12122/j.issn.1673-4254.2023.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To analyze the reliability of the Water Tank Scale for assessing recovery of motor function after spinal cord injury (SCI) in rats. METHODS Thirty-six adult female SD rats were randomly divided into SCI and sham-operated groups (n= 18). The recovery of the hind limb motor function was assessed using Water Tank scoring, BBB scoring, and motor-evoked potentials (MEP) at 1, 3, 5, 7, 14 and 21 days after SCI. MEP was used as the gold standard for analyzing and comparing differences between the two scoring methods. RESULTS The Water Tank scores of the rats were significantly higher than the BBB scores on day 3 (0.22±0.43 vs 0, P < 0.05) and also on days 5, 7 and 14 after SCI (0.67±0.49 vs 0.11±0.32, 4.33±1.19 vs 2.83±1.04, 8.61± 1.20 vs 7.06±1.0, P < 0.01). On day 21 after SCI, the scores of the Water Tank Scale of the rats did not significantly differ from the BBB scores (14.78±1.06 vs 14.50±1.47, P>0.05). Neurophysiological monitoring showed that both the Water Tank score and BBB score were significantly correlated with MEP latency, but the Water Tank score had a greater correlation coefficient with MEP latency (r=-0.90). CONCLUSION Compared with the BBB scale, Water Tank scoring allows more objective and accurate assessment of functional recovery of the spinal cord in early stages following SCI in rats, and can thus be used as a reliable method for assessing functional recovery of the hind limbs in rat models of acute SCI.
Collapse
|
6
|
Franz S, Heutehaus L, Tappe-Theodor A, Weidner N, Treede RD, Schuh-Hofer S. Noxious radiant heat evokes bi-component nociceptive withdrawal reflexes in spinal cord injured humans-A clinical tool to study neuroplastic changes of spinal neural circuits. Front Hum Neurosci 2023; 17:1141690. [PMID: 37200949 PMCID: PMC10185789 DOI: 10.3389/fnhum.2023.1141690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Investigating nocifensive withdrawal reflexes as potential surrogate marker for the spinal excitation level may widen the understanding of maladaptive nociceptive processing after spinal cord injury (SCI). The aim of this prospective, explorative cross-sectional observational study was to investigate the response behavior of individuals with SCI to noxious radiant heat (laser) stimuli and to assess its relation to spasticity and neuropathic pain, two clinical consequences of spinal hyperexcitability/spinal disinhibition. Laser stimuli were applied at the sole and dorsum of the foot and below the fibula head. Corresponding reflexes were electromyography (EMG) recorded ipsilateral. Motor responses to laser stimuli were analyzed and related to clinical readouts (severity of injury/spasticity/pain), using established clinical assessment tools. Twenty-seven participants, 15 with SCI (age 18-63; 6.5 years post-injury; AIS-A through D) and 12 non-disabled controls, [non-disabled controls (NDC); age 19-63] were included. The percentage of individuals with SCI responding to stimuli (70-77%; p < 0.001), their response rates (16-21%; p < 0.05) and their reflex magnitude (p < 0.05) were significantly higher compared to NDC. SCI-related reflexes clustered in two time-windows, indicating involvement of both A-delta- and C-fibers. Spasticity was associated with facilitated reflexes in SCI (Kendall-tau-b p ≤ 0.05) and inversely associated with the occurrence/severity of neuropathic pain (Fisher's exact p < 0.05; Eta-coefficient p < 0.05). However, neuropathic pain was not related to reflex behavior. Altogether, we found a bi-component motor hyperresponsiveness of SCI to noxious heat, which correlated with spasticity, but not neuropathic pain. Laser-evoked withdrawal reflexes may become a suitable outcome parameter to explore maladaptive spinal circuitries in SCI and to assess the effect of targeted treatment strategies. Registration: https://drks.de/search/de/trial/DRKS00006779.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Steffen Franz,
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Anke Tappe-Theodor
- Department of Molecular Pharmacology, Medical Faculty Heidelberg, Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
- Department of Neurology and Epileptology, University of Tübingen, Tübingen, Germany
- *Correspondence: Sigrid Schuh-Hofer,
| |
Collapse
|
7
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
8
|
Massey S, Vanhoestenberghe A, Duffell L. Neurophysiological and clinical outcome measures of the impact of electrical stimulation on spasticity in spinal cord injury: Systematic review and meta-analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1058663. [PMID: 36589715 PMCID: PMC9801305 DOI: 10.3389/fresc.2022.1058663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
This systematic review and meta-analysis aims to determine whether non-invasive electrical stimulation (ES) is effective at reducing spasticity in people living with spinal cord injury (SCI). PubMed, Web of Science, Scopus and Cochrane Central Register of Controlled Trials databases were searched in April 2022. Primary outcome measures were the Ashworth scale (AS), Modified Ashworth scale (MAS), Pendulum test and the Penn spasm frequency scale (PSFS). Secondary outcomes were the Hoffman (H)- reflex, motor-evoked potentials (MEPs) and posterior-root reflexes (PRRs). A random-effects model, using two correlation coefficients, ( C o r r = 0.1 , C o r r = 0.2 ) determined the difference between baseline and post-intervention measures for RCTs. A quantitative synthesis amalgamated data from studies with no control group (non-RCTs). Twenty-nine studies were included: five in the meta-analysis and 17 in the amalgamation of non-RCT studies. Twenty studies measured MAS or AS scores, 14 used the Pendulum test and one used the PSFS. Four measured the H-reflex and no studies used MEPs or PRRs. Types of ES used were: transcutaneous electrical nerve stimulation (TENS), transcutaneous spinal cord stimulation (TSCS), functional electrical stimulation (FES) cycling and FES gait. Meta-analyses of 3 studies using the MAS and 2 using the Pendulum test were carried out. For MAS scores, non-invasive ES was effective at reducing spasticity compared to a control group (p = 0.01, C o r r = 0.1 ; p = 0.002, C o r r = 0.2 ). For Pendulum test outcomes, there was no statistically significant difference between intervention and control groups. Quantitative synthesis of non-RCT studies revealed that 22 of the 29 studies reported improvement in at least one measure of spasticity following non-invasive ES, 13 of which were statistically significant (p < 0.05). Activation of the muscle was not necessary to reduce spasticity. Non-invasive ES can reduce spasticity in people with SCI, according to MAS scores, for both RCT and non-RCT studies, and Pendulum test values in non-RCT studies. This review could not correlate between clinical and neurophysiological outcomes; we recommend the additional use of neurophysiological outcomes for future studies. The use of TSCS and TENS, which did not induce a muscle contraction, indicate that activation of afferent fibres is at least required for non-invasive ES to reduce spasticity.
Collapse
Affiliation(s)
- Sarah Massey
- Aspire Centre for Rehabilitation Engineering and Assistive Technologies, Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Anne Vanhoestenberghe
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Lynsey Duffell
- Aspire Centre for Rehabilitation Engineering and Assistive Technologies, Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
9
|
Wang Y, Luo W, Lin F, Liu W, Gu R. Epigallocatechin-3-gallate selenium nanoparticles for neuroprotection by scavenging reactive oxygen species and reducing inflammation. Front Bioeng Biotechnol 2022; 10:989602. [PMID: 36159667 PMCID: PMC9493277 DOI: 10.3389/fbioe.2022.989602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: Spinal cord injury (SCI) is a severely crippling injury. Scavenging reactive oxygen species (ROS) and suppressing inflammation to ameliorate secondary injury using biomaterials has turned into a promising strategy for SCI recuperation. Herein, epigallocatechin-3-gallate selenium nanoparticles (EGCG-Se NP) that scavenge ROS and attenuate inflammation were used for neuroprotection in SCI. Methods: EGCG-Se NP were arranged using a simple redox framework. The size, morphology, and chemical structure of the EGCG-Se NP were characterized. The protective effect of EGCG-Se NP for neuroprotection was examined in cell culture and in an SCI rat model. Results: EGCG-Se NP could promptly scavenge excess ROS and safeguard PC12 cells against H2O2-induced oxidative harm in vitro. After intravenous delivery in SCI rats, EGCG-Se NP significantly improved locomotor capacity and diminished the injury region by safeguarding neurons and myelin sheaths. Component studies showed that the main restorative impact of EGCG-Se NP was due to their ROS-scavenging and anti-inflammatory properties. Conclusion: This study showed the superior neuroprotective effect of EGCG-Se NP through ROS sequestration and anti-inflammatory capabilities. EGCG-Se NP could be a promising and effective treatment for SCI.
Collapse
Affiliation(s)
| | | | | | | | - Rui Gu
- *Correspondence: Wanguo Liu, ; Rui Gu,
| |
Collapse
|
10
|
Sangari S, Perez MA. Prevalence of spasticity in humans with spinal cord injury with different injury severity. J Neurophysiol 2022; 128:470-479. [PMID: 35507475 PMCID: PMC9423778 DOI: 10.1152/jn.00126.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Spasticity is one of the most common symptoms manifested following spinal cord injury (SCI). The aim of this study was to assess spasticity in individuals with subacute and chronic SCI with different injury severity, standardizing the time and assessments of spasticity. We tested 110 individuals with SCI classified by the American Spinal Injury Association Impairment Scale (AIS) as either motor complete (AIS A and B; subacute, n = 25; chronic, n = 33) or motor incomplete (AIS C and D; subacute, n = 23; chronic, n = 29) at a similar time after injury (subacute, ∼1 mo after injury during inpatient rehabilitation and chronic, ≥1 yr after injury) using clinical (modified Ashworth scale) and kinematic (pendulum test) outcomes to assess spasticity in the quadriceps femoris muscle. Using both methodologies, we found that among individuals with subacute motor complete injuries, only a minority showed spasticity, whereas the majority exhibited no spasticity. This finding stands in contrast to individuals with subacute motor incomplete injury, where both methodologies revealed that a majority exhibited spasticity, whereas a minority exhibited no spasticity. In chronic injuries, most individuals showed spasticity regardless of injury severity. Notably, when spasticity was present, its magnitude was similar across injury severity in both subacute and chronic injuries. Our results suggest that the prevalence, not the magnitude, of spasticity differs between individuals with motor complete and incomplete SCI in the subacute and chronic stages of the injury. We thus argue that considering the "presence of spasticity" might help the stratification of participants with motor complete injuries for clinical trials.NEW & NOTEWORTHY The prevalence of spasticity in humans with SCI remains poorly understood. Using kinematic and clinical outcomes, we examined spasticity in individuals with subacute and chronic injuries of different severity. We found that spasticity in the quadriceps femoris muscle was more prevalent among individuals with subacute motor incomplete than in those with motor complete injuries. However, in a different group of individuals with chronic injuries, no differences were found in the prevalence of spasticity across injury severity.
Collapse
Affiliation(s)
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
- Edward Hines Jr., VA Hospital, Hines, Illinois
| |
Collapse
|
11
|
Thompson AK, Gill CR, Feng W, Segal RL. Operant down-conditioning of the soleus H-reflex in people after stroke. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:859724. [PMID: 36188979 PMCID: PMC9397863 DOI: 10.3389/fresc.2022.859724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023]
Abstract
Through operant conditioning, spinal reflex behaviors can be changed. Previous studies in rats indicate that the sensorimotor cortex and corticospinal tract are essential in inducing and maintaining reflex changes induced through conditioning. In people with incomplete spinal cord injury (SCI), an operant down-conditioning protocol decreased the soleus H-reflex size and improved walking speed and symmetry, suggesting that a partially preserved spinal cord can support conditioning-induced plasticity and benefit from it. This study examined whether down-conditioning can decrease the soleus H-reflex in people with supraspinal injury (i.e., cortical or subcortical stroke). Operant down-conditioning was applied to the soleus H-reflex in a cohort of 12 stroke people with chronic spastic hemiparesis (>12 months from stroke onset of symptoms). Each participant completed 6 baseline and 30 conditioning sessions over 12 weeks. In each baseline session, 225 control H-reflexes were elicited without any feedback on H-reflex size. In each conditioning session, 225 conditioned H-reflexes were elicited while the participant was asked to decrease H-reflex size and was given visual feedback as to whether the resulting H-reflex was smaller than a criterion value. In six of 12 participants, the conditioned H-reflex became significantly smaller by 30% on average, whereas in other 6 participants, it did not. The difference between the subgroups was largely attributable to the difference in across-session control reflex change. Ten-meter walking speed was increased by various extent (+0.04 to +0.35, +0.14 m/s on average) among the six participants whose H-reflex decreased, whereas the change was 0.00 m/s on average for the rest of participants. Although less than what was seen in participants with SCI, the fact that conditioning succeeded in 50% of stroke participants supports the feasibility of reflex down-conditioning in people after stroke. At the same time, the difference in across-session control reflex change and conditioning success rate may reflect a critical role of supraspinal activity in producing long-term plasticity in the spinal cord, as previous animal studies suggested.
Collapse
Affiliation(s)
- Aiko K. Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Christina R. Gill
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, College of Health Professions, Duke University School of Medicine, Durham, NC, United States
| | - Richard L. Segal
- Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Gouveia D, Cardoso A, Carvalho C, Gonçalves AR, Gamboa Ó, Canejo-Teixeira R, Ferreira A, Martins Â. Influence of Spinal Shock on the Neurorehabilitation of ANNPE Dogs. Animals (Basel) 2022; 12:ani12121557. [PMID: 35739893 PMCID: PMC9219513 DOI: 10.3390/ani12121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Acute noncompressive nucleus pulposus extrusion (ANNPE) is related to contusive spinal cord injuries, and dogs usually appear to be exercising vigorously at the time of onset. ANNPE has a characteristic peracute onset of clinical signs during exercise or following trauma, with non-progressive signs during the first 24 h and possibly signs of spinal shock. The main aim was to assess if the presence of spinal shock affects the neurorehabilitation outcomes of ANNPE dogs. This prospective controlled cohort clinical study was conducted at the Arrábida Rehabilitation Center. All of the dogs had T3−L3 injuries and were paraplegic/monoplegic with/without nociception, the study group (n = 14) included dogs with ANNPE spinal shock dogs, and the control group (n = 19) included ANNPE dogs without spinal shock. The study group was also evaluated using a new scale—the Spinal Shock Scale (SSS)—and both groups were under the same intensive neurorehabilitation protocol. Spinal shock was a negative factor for a successful outcome within less time. SSS scores > 4 required additional hospitalization days. The protocol was safe, tolerable, and feasible and accomplished 32% ambulation within 7 days, 29% in 14 days, and 29% in 30 days. The results were better than those obtained in previous studies—94% at 60 days—and 75% of the dogs without nociception recovered ambulation. Long-term follows-ups carried out 4 years later revealed a positive evolution.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
| | - Carla Carvalho
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
| | - Ana Rita Gonçalves
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.R.G.); (R.C.-T.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (Ó.G.); (A.F.)
| | - Rute Canejo-Teixeira
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.R.G.); (R.C.-T.)
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (Ó.G.); (A.F.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.R.G.); (R.C.-T.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
13
|
Surface EMG in Subacute and Chronic Care after Traumatic Spinal Cord Injuries. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (SCI) is a devastating condition commonly originating from motor vehicle accidents or falls. Trauma care after SCI is challenging; after decompression surgery and spine stabilization, the first step is to assess the location and severity of the traumatic lesion. For this, clinical outcome measures are used to quantify the residual sensation and volitional control of muscles below the level of injury. These clinical assessments are important for decision-making, including the prediction of the recovery potential of individuals after the SCI. In clinical care, this quantification is usually performed using sensation and motor scores, a semi-quantitative measurement, alongside the binary classification of the sacral sparing (yes/no). Objective: In this perspective article, I review the use of surface EMG (sEMG) as a quantitative outcome measurement in subacute and chronic trauma care after SCI. Methods: Here, I revisit the main findings of two comprehensive scoping reviews recently published by our team on this topic. I offer a perspective on the combined findings of these scoping reviews, which integrate the changes in sEMG with SCI and the use of sEMG in neurorehabilitation after SCI. Results: sEMG provides a complimentary assessment to quantify the residual control of muscles with great sensitivity and detail compared to the traditional clinical assessments. Our scoping reviews unveiled the ability of the sEMG assessment to detect discomplete lesions (muscles with absent motor scores but present sEMG). Moreover, sEMG is able to measure the spontaneous activity of motor units at rest, and during passive maneuvers, the evoked responses with sensory or motor stimulation, and the integrity of the spinal cord and descending tracts with motor evoked potentials. This greatly complements the diagnostics of the SCI in the subacute phase of trauma care and deepens our understanding of neurorehabilitation strategies during the chronic phase of the traumatic injury. Conclusions: sEMG offers important insights into the neurophysiological factors underlying sensorimotor impairment and recovery after SCIs. Although several qualitative or semi-quantitative outcome measures determine the level of injury and the natural recovery after SCIs, using quantitative measures such as sEMG is promising. Nonetheless, there are still several barriers limiting the use of sEMG in the clinical environment and a need to advance high-density sEMG technology.
Collapse
|
14
|
Spasticity Management after Spinal Cord Injury: The Here and Now. J Pers Med 2022; 12:jpm12050808. [PMID: 35629229 PMCID: PMC9144471 DOI: 10.3390/jpm12050808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Spasticity is a common comorbidity of spinal cord injury (SCI) that is characterized by velocity dependent tone and spasms manifested by uninhibited reflex activity of muscles below the level of injury. For some, spasticity can be beneficial and facilitate functional standing, transfers, and some activities of daily living. For others, it may be problematic, painful, and interfere with mobility and function. This manuscript will address the anatomy and physiology of neuromuscular reflexes as well as the pathophysiology that occurs after SCI. Spasticity assessment will be discussed in terms of clinical history and findings on physical examinations, including responses to passive and active movement, deep tendon reflexes, and other long tract signs of upper motor neuron injury, as well as gait and function. Management strategies will be discussed including stretch, modalities, pharmacotherapy, neurolysis, and surgical options.
Collapse
|
15
|
Simão CR, DE Holanda LJ, Urbini LF, Lacerda MO, Fernandes K, DA Silva PM, Morya E, Lindquist AR. Surface electromyography to identify top-down modulation in complete chronic spinal cord injury. Eur J Phys Rehabil Med 2022; 58:144-149. [PMID: 34468111 PMCID: PMC9980542 DOI: 10.23736/s1973-9087.21.06878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete spinal cord injury (SCI) is characterized by permanent loss of nerve impulse propagation through the injury level leading to complete loss of voluntary muscle contraction. However, clinically undetectable top-down modulation of lower limbs might be present and can be evidenced using surface electromyography (sEMG). CASE REPORT A subject with complete chronic SCI and no spasticity presents voluntary modulation of sEMG signal during a task-specific activity associated with sensory input. CLINICAL REHABILITATION IMPACT We present for the first time the spectral characterization of sEMG signal in response to orthostatic training associated with voluntary movement attempts in complete SCI. Behavior of sEMG signal varied according to kinematic properties of movement, reinforcing the voluntary influence of efferent pathways on motor output. Our findings will contribute to elaborate evaluation protocols to investigate the preservation of corticospinal activities, and to evolve more accessible strategies in a clinical setting.
Collapse
Affiliation(s)
- Camila R Simão
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.,Graduate Program in Neuroengineering, Edmond and Lily Safra International Neuroscience Institute, Macaíba, Brazil.,Santos Dumont Institute, Macaíba, Brazil.,Anita Garibaldi Center for Education and Research in Health, Santos Dumont Institute, Macaíba, Brazil
| | - Ledycnarf J DE Holanda
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.,Graduate Program in Neuroengineering, Edmond and Lily Safra International Neuroscience Institute, Macaíba, Brazil.,Santos Dumont Institute, Macaíba, Brazil
| | - Lilian F Urbini
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Neuroscience Institute, Macaíba, Brazil.,Santos Dumont Institute, Macaíba, Brazil
| | - Matheus O Lacerda
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Karina Fernandes
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Patrícia M DA Silva
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.,Graduate Program in Neuroengineering, Edmond and Lily Safra International Neuroscience Institute, Macaíba, Brazil.,Santos Dumont Institute, Macaíba, Brazil
| | - Edgard Morya
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Neuroscience Institute, Macaíba, Brazil.,Santos Dumont Institute, Macaíba, Brazil.,Anita Garibaldi Center for Education and Research in Health, Santos Dumont Institute, Macaíba, Brazil
| | - Ana R Lindquist
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil -
| |
Collapse
|
16
|
Rao JS, Zhao C, Bao SS, Feng T, Xu M. MRI metrics at the epicenter of spinal cord injury are correlated with the stepping process in rhesus monkeys. Exp Anim 2021; 71:139-149. [PMID: 34789621 PMCID: PMC9130044 DOI: 10.1538/expanim.21-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinical evaluations of long-term outcomes in the early-stage spinal cord injury (SCI) focus on macroscopic motor performance and are limited in their prognostic precision. This study was designed to investigate the sensitivity of the magnetic resonance imaging (MRI) indexes to the data-driven gait process after SCI. Ten adult female rhesus monkeys were subjected to thoracic SCI. Kinematics-based gait examinations were performed at 1 (early stage) and 12 (chronic stage) months post-SCI. The proportion of stepping (PS) and gait stability (GS) were calculated as the outcome measures. MRI metrics, which were derived from structural imaging (spinal cord cross-sectional area, SCA) and diffusion tensor imaging (fractional anisotropy, FA; axial diffusivity, λ//), were acquired in the early stage and compared with functional outcomes by using correlation analysis and stepwise multivariable linear regression. Residual tissue SCA at the injury epicenter and residual tissue FA/remote normal-like tissue FA were correlated with the early-stage PS and GS. The extent of lesion site λ///residual tissue λ// in the early stage after SCI was correlated with the chronic-stage GS. The ratios of lesion site λ// to residual tissue λ// and early-stage GS were predictive of the improvement in the PS at follow-up. Similarly, the ratios of lesion site λ// to residual tissue λ// and early-stage PS best predicted chronic GS recovery. Our findings demonstrate the predictive power of MRI combined with the early data-driven gait indexes for long-term outcomes. Such an approach may help clinicians to predict functional recovery accurately.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute.,School of Rehabilitation, Capital Medical University
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital
| |
Collapse
|
17
|
Vargas Luna JL, Brown J, Krenn MJ, McKay B, Mayr W, Rothwell JC, Dimitrijevic MR. Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. Exp Brain Res 2021; 239:2605-2620. [PMID: 34213632 PMCID: PMC8354937 DOI: 10.1007/s00221-021-06153-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
Increased use of epidural Spinal Cord Stimulation (eSCS) for the rehabilitation of spinal cord injury (SCI) has highlighted the need for a greater understanding of the properties of reflex circuits in the isolated spinal cord, particularly in response to repetitive stimulation. Here, we investigate the frequency-dependence of modulation of short- and long-latency EMG responses of lower limb muscles in patients with SCI at rest. Single stimuli could evoke short-latency responses as well as long-latency (likely polysynaptic) responses. The short-latency component was enhanced at low frequencies and declined at higher rates. In all muscles, the effects of eSCS were more complex if polysynaptic activity was elicited, making the motor output become an active process expressed either as suppression, tonic or rhythmical activity. The polysynaptic activity threshold is not constant and might vary with different stimulation frequencies, which speaks for its temporal dependency. Polysynaptic components can be observed as direct responses, neuromodulation of monosynaptic responses or driving the muscle activity by themselves, depending on the frequency level. We suggest that the presence of polysynaptic activity could be a potential predictor for appropriate stimulation conditions. This work studies the complex behaviour of spinal circuits deprived of voluntary motor control from the brain and in the absence of any other inputs. This is done by describing the monosynaptic responses, polysynaptic activity, and its interaction through its input–output interaction with sustain stimulation that, unlike single stimuli used to study the reflex pathway, can strongly influence the interneuron circuitry and reveal a broader spectrum of connectivity.
Collapse
Affiliation(s)
- Jose Luis Vargas Luna
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Matthias J Krenn
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.,Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, 1350 East Woodrow Wilson, Jackson, MS, 39216, USA
| | - Barry McKay
- Hulse S.C.I. Research Lab, Shepherd Center, 2020 Peachtree Rd NW, Atlanta, GA, 30309, USA
| | - Winfried Mayr
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - John C Rothwell
- Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Milan R Dimitrijevic
- Department of Rehabilitation and Physical Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Foundation for Movement Recovery, Bolette Brygge 1, 0252, Oslo, Norway
| |
Collapse
|
18
|
Zarkou A, Field-Fote EC. The influence of physiologic and atmospheric variables on spasticity after spinal cord injury. NeuroRehabilitation 2021; 48:353-363. [PMID: 33814472 DOI: 10.3233/nre-201625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A number of physiological and atmospheric variables are believed to increase spasticity in persons with spinal cord injury (SCI) based on self-reported measures, however, there is limited objective evidence about the influence of these variables on spasticity. OBJECTIVE We investigated the relationship between physiological/ atmospheric variables and level of spasticity in individuals with SCI. METHODS In 53 participants with motor-incomplete SCI, we assessed the influence of age, time since injury, sex, injury severity, neurological level of injury, ability to walk, antispasmodic medication use, temperature, humidity, and barometric pressure on quadriceps spasticity. Spasticity was assessed using the pendulum test first swing excursion (FSE). To categorize participants based on spasticity severity, we performed cluster analysis. We used multivariate stepwise regression to determine variables associated with spasticity severity level. RESULTS Three spasticity groups were identified based on spasticity severity level: low, moderate, and high. The regression analysis revealed that only walking ability and temperature were significantly related to spasticity severity. CONCLUSIONS These outcomes validate the self-reported perception of people with SCI that low temperatures worsen spasticity. The findings refine prior evidence that people with motor-incomplete SCI have higher levels of spasticity, showing that those with sufficient motor function to walk have the highest levels of spasticity.
Collapse
Affiliation(s)
- Anastasia Zarkou
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center, Atlanta, GA, USA
| | - Edelle C Field-Fote
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center, Atlanta, GA, USA.,Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA, USA.,Program in Applied Physiology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
19
|
Sangari S, Kirshblum S, Guest JD, Oudega M, Perez MA. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury. J Physiol 2021; 599:4441-4454. [PMID: 34107068 DOI: 10.1113/jp281862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Damage to corticospinal axons have implications for the development of spasticity following spinal cord injury (SCI). Here, we examined to which extent residual corticospinal connections and spasticity are present in muscles below the injury (quadriceps femoris and soleus) in humans with motor complete thoracic SCI. We found three distinct sub-groups of people: participants with spasticity and corticospinal responses in the quadriceps femoris and soleus, participants with spasticity and corticospinal responses in the quadriceps femoris only, and participants with no spasticity or corticospinal responses in either muscle. Spasticity and corticospinal responses were present in the quadriceps but never only in the soleus muscle, suggesting a proximal to distal gradient of symptoms of hyperreflexia. These results suggest that concomitant patterns of residual corticospinal connectivity and spasticity exist in humans with motor complete SCI and that a clinical exam of spasticity might be a good predictor of residual corticospinal connectivity. ABSTRACT The loss of corticospinal axons has implications for the development of spasticity following spinal cord injury (SCI). However, the extent to which residual corticospinal connections and spasticity are present across muscles below the injury remains unknown. To address this question, we tested spasticity using the Modified Ashworth Scale and transmission in the corticospinal pathway by examining motor evoked potentials elicited by transcranial magnetic stimulation over the leg motor cortex (cortical MEPs) and by direct activation of corticospinal axons by electrical stimulation over the thoracic spine (thoracic MEPs), in the quadriceps femoris and soleus muscles, in 30 individuals with motor complete thoracic SCI. Cortical MEPs were also conditioned by thoracic electrical stimulation at intervals allowing their summation or collision. We found three distinct sub-groups of participants: 47% showed spasticity in the quadriceps femoris and soleus muscle, 30% showed spasticity in the quadriceps femoris muscle only, and 23% showed no spasticity in either muscle. While cortical MEPs were present only in the quadriceps in participants with spasticity, thoracic MEPs were present in both muscles when spasticity was present. Thoracic electrical stimulation facilitated and suppressed cortical MEPs, showing that both forms of stimulation activated similar corticospinal axons. Cortical and thoracic MEPs correlated with the degree of spasticity in both muscles. These results provide the first evidence that related patterns of residual corticospinal connectivity and spasticity exist in muscles below the injury after motor complete thoracic SCI and highlight that a clinical exam of spasticity can predict residual corticospinal connectivity after severe paralysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sina Sangari
- Shirley Ryan AbilityLab, Chicago, Illinois, 60611.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, 60611
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - James D Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, 33136
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, Illinois, 60611.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, 60611.,Edward Hines Jr. VA Hospital, Hines, Illinois, 60141
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, Illinois, 60611.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, 60611.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, 60611.,Edward Hines Jr. VA Hospital, Hines, Illinois, 60141
| |
Collapse
|
20
|
Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 2021; 11:514181. [PMID: 33536992 PMCID: PMC7848788 DOI: 10.3389/fneur.2020.514181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neurophysiological testing can provide quantitative information about motor, sensory, and autonomic system connectivity following spinal cord injury (SCI). The clinical examination may be insufficiently sensitive and specific to reveal evolving changes in neural circuits after severe injury. Neurophysiologic data may provide otherwise imperceptible circuit information that has rarely been acquired in biologics clinical trials in SCI. We reported a Phase 1 study of autologous purified Schwann cell suspension transplantation into the injury epicenter of participants with complete subacute thoracic SCI, observing no clinical improvements. Here, we report longitudinal electrophysiological assessments conducted during the trial. Six participants underwent neurophysiology screening pre-transplantation with three post-transplantation neurophysiological assessments, focused on the thoracoabdominal region and lower limbs, including MEPs, SSEPs, voluntarily triggered EMG, and changes in GSR. We found several notable signals not detectable by clinical exam. In all six participants, thoracoabdominal motor connectivity was detected below the clinically assigned neurological level defined by sensory preservation. Additionally, small voluntary activations of leg and foot muscles or positive lower extremity MEPs were detected in all participants. Voluntary EMG was most sensitive to detect leg motor function. The recorded MEP amplitudes and latencies indicated a more caudal thoracic level above which amplitude recovery over time was observed. In contrast, further below, amplitudes showed less improvement, and latencies were increased. Intercostal spasms observed with EMG may also indicate this thoracic “motor level.” Galvanic skin testing revealed autonomic dysfunction in the hands above the injury levels. As an open-label study, we can establish no clear link between these observations and cell transplantation. This neurophysiological characterization may be of value to detect therapeutic effects in future controlled studies.
Collapse
Affiliation(s)
- Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Francisco D Benavides
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Pedro M Saraiva
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Kimberly D Anderson
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Aisha Khan
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,Miller School of Medicine, The Interdisciplinary Stem Cell Institute, The University of Miami, Miami, FL, United States
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| |
Collapse
|
21
|
Chiou SY, Strutton PH. Crossed Corticospinal Facilitation Between Arm and Trunk Muscles Correlates With Trunk Control After Spinal Cord Injury. Front Hum Neurosci 2020; 14:583579. [PMID: 33192418 PMCID: PMC7645046 DOI: 10.3389/fnhum.2020.583579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate whether crossed corticospinal facilitation between arm and trunk muscles is preserved following spinal cord injury (SCI) and to elucidate these neural interactions for postural control during functional arm movements. Methods: Using transcranial magnetic stimulation (TMS) in 22 subjects with incomplete SCI motor evoked potentials (MEPs) in the erector spinae (ES) muscle were examined when the contralateral arm was at rest or performed 20% of maximal voluntary contraction (MVC) of biceps brachii (BB) or triceps brachii (TB). Trunk function was assessed with rapid shoulder flexion and forward-reaching tasks. Results: MEP amplitudes in ES were increased during elbow flexion in some subjects and this facilitatory effect was more prominent in subjects with thoracic SCI than in the subjects with cervical SCI. Those who showed the increased MEPs during elbow flexion had faster reaction times and quicker anticipatory postural adjustments of the trunk in the rapid shoulder flexion task. The onset of EMG activity in ES during the rapid shoulder flexion task correlated with the trunk excursion in forward-reaching. Conclusions: Our findings demonstrate that crossed corticospinal facilitation in the trunk muscles can be preserved after SCI and is reflected in trunk control during functional arm movements.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paul H Strutton
- The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Borrell JA, Krizsan-Agbas D, Nudo RJ, Frost SB. Effects of a contusive spinal cord injury on cortically-evoked spinal spiking activity in rats. J Neural Eng 2020; 17:10.1088/1741-2552/abc1b5. [PMID: 33059344 PMCID: PMC8046849 DOI: 10.1088/1741-2552/abc1b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023]
Abstract
Objective.The purpose of this study was to determine the effects of spinal cord injury (SCI) on spike activity evoked in the hindlimb spinal cord of the rat from cortical electrical stimulation.Approach.Adult, male, Sprague Dawley rats were randomly assigned to a Healthy or SCI group. SCI rats were given a 175 kDyn dorsal midline contusion injury at the level of the T8 vertebrae. At 4 weeks post-SCI, intracortical microstimulation (ICMS) was delivered at several sites in the hindlimb motor cortex of anesthetized rats, and evoked neural activity was recorded from corresponding sites throughout the dorsoventral depths of the spinal cord and EMG activity from hindlimb muscles.Main results.In healthy rats, post-ICMS spike histograms showed reliable, evoked spike activity during a short-latency epoch 10-12 ms after the initiation of the ICMS pulse train (short). Longer latency spikes occurred between ∼20 and 60 ms, generally following a Gaussian distribution, rising above baseline at timeLON, followed by a peak response (Lp), and then falling below baseline at timeLOFF. EMG responses occurred betweenLONandLp( 25-27 ms). In SCI rats, short-latency responses were still present, long-latency responses were disrupted or eliminated, and EMG responses were never evoked. The retention of the short-latency responses indicates that spared descending spinal fibers, most likely via the cortico-reticulospinal pathway, can still depolarize spinal cord neurons after a dorsal midline contusion injury.Significance.This study provides novel insights into the role of alternate pathways for voluntary control of hindlimb movements after SCI that disrupts the corticospinal tract in the rat.
Collapse
Affiliation(s)
- Jordan A. Borrell
- Bioengineering Program, University of Kansas, Lawrence, KS, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dora Krizsan-Agbas
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Randolph J. Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn B. Frost
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
23
|
Al’joboori Y, Massey SJ, Knight SL, Donaldson NDN, Duffell LD. The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study. J Clin Med 2020; 9:jcm9092765. [PMID: 32858977 PMCID: PMC7565331 DOI: 10.3390/jcm9092765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal cord stimulation may enable recovery of volitional motor control in people with chronic Spinal Cord Injury (SCI). In this study we explored the effects of adding SCS, applied transcutaneously (tSCS) at vertebral levels T10/11, to a sit-to-stand training intervention in people with motor complete and incomplete SCI. Nine people with chronic SCI (six motor complete; three motor incomplete) participated in an 8-week intervention, incorporating three training sessions per week. Participants received either tSCS combined with sit-to-stand training (STIM) or sit-to-stand training alone (NON-STIM). Outcome measures were carried out before and after the intervention. Seven participants completed the intervention (STIM N = 5; NON-STIM N = 2). Post training, improvements in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor scores were noted in three STIM participants (range 1.0–7.0), with no change in NON-STIM participants. Recovery of volitional lower limb muscle activity and/or movement (with tSCS off) was noted in three STIM participants. Unassisted standing was not achieved in any participant, although standing with minimal assistance was achieved in one STIM participant. This pilot study has shown that the recruitment of participants, intervention and outcome measures were all feasible in this study design. However, some modifications are recommended for a larger trial.
Collapse
Affiliation(s)
- Yazi Al’joboori
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
- Correspondence: ; Tel.: +44-020-3108-4083
| | | | - Sarah L. Knight
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Nick de N. Donaldson
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
| | - Lynsey D. Duffell
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
| |
Collapse
|
24
|
The Potential of Corticospinal-Motoneuronal Plasticity for Recovery after Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:293-298. [PMID: 33777502 DOI: 10.1007/s40141-020-00272-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review This review focuses on a relatively new neuromodulation method where transcranial magnetic stimulation over the primary motor cortex is paired with transcutaneous electrical stimulation over a peripheral nerve to induce plasticity at corticospinal-motoneuronal synapses. Recent findings Recovery of sensorimotor function after spinal cord injury largely depends on transmission in the corticospinal pathway. Significantly damaged corticospinal axons fail to regenerate and participate in functional recovery. Transmission in residual corticospinal axons can be assessed using non-invasive transcranial magnetic stimulation which combined with transcutaneous electrical stimulation can be used to improve voluntary motor output, as was recently demonstrated in clinical studies in humans with chronic incomplete spinal cord injury. These two stimuli are applied at precise inter-stimulus intervals to reinforce corticospinal synaptic transmission using principles of spike-timing dependent plasticity. Summary We discuss the neural mechanisms and application of this neuromodulation technique and its potential therapeutic effect on recovery of function in humans with chronic spinal cord injury.
Collapse
|
25
|
Peña Pino I, Hoover C, Venkatesh S, Ahmadi A, Sturtevant D, Patrick N, Freeman D, Parr A, Samadani U, Balser D, Krassioukov A, Phillips A, Netoff TI, Darrow D. Long-Term Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation. Front Syst Neurosci 2020; 14:35. [PMID: 32714156 PMCID: PMC7340010 DOI: 10.3389/fnsys.2020.00035] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Chronic spinal cord injury (SCI) portends a low probability of recovery, especially in the most severe subset of motor-complete injuries. Active spinal cord stimulation with or without intensive locomotor training has been reported to restore movement after traumatic SCI. Only three cases have been reported where participants developed restored volitional movement with active stimulation turned off after a period of chronic stimulation and only after intensive rehabilitation with locomotor training. It is unknown whether restoration of movement without stimulation is possible after stimulation alone. Objective: We describe the development of spontaneous volitional movement (SVM) without active stimulation in a subset of participants in the Epidural Stimulation After Neurologic Damage (ESTAND) trial, in which locomotor training is not prescribed as part of the study protocol, and subject’s rehabilitation therapies are not modified. Methods: Volitional movement was evaluated with the Brain Motor Control Assessment using sEMG recordings and visual examination at baseline and at follow-up visits with and without stimulation. Additional functional assessment with a motor-assisted bicycle exercise at follow-up with and without stimulation identified generated work with and without effort. Results: The first seven participants had ASIA Impairment Scale (AIS) A or B thoracic SCI, a mean age of 42 years, and 7.7 years post-injury on average. Four patients developed evidence of sustained volitional movement, even in the absence of active stimulation after undergoing chronic epidural spinal cord stimulation (eSCS). Significant increases in volitional power were found between those observed to spontaneously move without stimulation and those unable (p < 0.0005). The likelihood of recovery of spontaneous volitional control was correlated with spasticity scores prior to the start of eSCS therapy (p = 0.048). Volitional power progressively improved over time (p = 0.016). Additionally, cycling was possible without stimulation (p < 0.005). Conclusion: While some SVM after eSCS has been reported in the literature, this study demonstrates sustained restoration without active stimulation after long-term eSCS stimulation in chronic and complete SCI in a subset of participants. This finding supports previous studies suggesting that “complete” SCI is likely not as common as previously believed, if it exists at all in the absence of transection and that preserved pathways are substrates for eSCS-mediated recovery in clinically motor-complete SCI. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT03026816.
Collapse
Affiliation(s)
- Isabela Peña Pino
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Caleb Hoover
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Aliya Ahmadi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Dylan Sturtevant
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Nick Patrick
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Ann Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States.,Division of Neurosurgery, VA Healthcare System, Minneapolis, MN, United States
| | - David Balser
- International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
| | - Andrei Krassioukov
- International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
| | - Aaron Phillips
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States.,Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States
| |
Collapse
|
26
|
DeForest BA, Bohorquez J, Perez MA. Vibration attenuates spasm-like activity in humans with spinal cord injury. J Physiol 2020; 598:2703-2717. [PMID: 32298483 DOI: 10.1113/jp279478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Cutaneous reflexes were tested to examine the neuronal mechanisms contributing to muscle spasms in humans with chronic spinal cord injury (SCI). Specifically, we tested the effect of Achilles and tibialis anterior tendon vibration on the early and late components of the cutaneous reflex and reciprocal Ia inhibition in the soleus and tibialis anterior muscles in humans with chronic SCI. We found that tendon vibration reduced the amplitude of later but not earlier cutaneous reflex in the antagonist but not in the agonist muscle relative to the location of the vibration. In addition, reciprocal Ia inhibition between antagonist ankle muscles increased with tendon vibration and participants with a larger suppression of the later component of the cutaneous reflex had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration attenuates late cutaneous spasm-like reflex activity, likely via reciprocal inhibitory mechanisms, and may represent a method, when properly targeted, for controlling spasms in humans with SCI. ABSTRACT The neuronal mechanisms contributing to the generation of involuntary muscle contractions (spasms) in humans with spinal cord injury (SCI) remain poorly understood. To address this question, we examined the effect of Achilles and tibialis anterior tendon vibration at 20, 40, 80 and 120 Hz on the amplitude of the long-polysynaptic (LPR, from reflex onset to 500 ms) and long-lasting (LLR, from 500 ms to reflex offset) cutaneous reflex evoked by medial plantar nerve stimulation in the soleus and tibialis anterior, and reciprocal Ia inhibition between these muscles, in 25 individuals with chronic SCI. We found that Achilles tendon vibration at 40 and 80 Hz, but not other frequencies, reduced the amplitude of the LLR in the tibialis anterior, but not the soleus muscle, without affecting the amplitude of the LPR. Vibratory effects were stronger at 80 than 40 Hz. Similar results were found in the soleus muscle when the tibialis anterior tendon was vibrated. Notably, tendon vibration at 80 Hz increased reciprocal Ia inhibition between antagonistic ankle muscles and vibratory-induced increases in reciprocal Ia inhibition were correlated with decreases in the LLR, suggesting that participants with a larger suppression of later cutaneous reflex activity had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration suppresses late spasm-like activity in antagonist but not agonist muscles, likely via reciprocal inhibitory mechanisms, in humans with chronic SCI. We argue that targeted vibration of antagonistic tendons might help to control spasms after SCI.
Collapse
Affiliation(s)
- Bradley A DeForest
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| | - Jorge Bohorquez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33124
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| |
Collapse
|
27
|
Choudhury S, Singh R, Shobhana A, Sen D, Anand SS, Shubham S, Gangopadhyay S, Baker MR, Kumar H, Baker SN. A Novel Wearable Device for Motor Recovery of Hand Function in Chronic Stroke Survivors. Neurorehabil Neural Repair 2020; 34:600-608. [PMID: 32452275 PMCID: PMC8207486 DOI: 10.1177/1545968320926162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. In monkey, reticulospinal connections to hand and forearm muscles are spontaneously strengthened following corticospinal lesions, likely contributing to recovery of function. In healthy humans, pairing auditory clicks with electrical stimulation of a muscle induces plastic changes in motor pathways (probably including the reticulospinal tract), with features reminiscent of spike-timing dependent plasticity. In this study, we tested whether pairing clicks with muscle stimulation could improve hand function in chronic stroke survivors. Methods. Clicks were delivered via a miniature earpiece; transcutaneous electrical stimuli at motor threshold targeted forearm extensor muscles. A wearable electronic device (WD) allowed patients to receive stimulation at home while performing normal daily activities. A total of 95 patients >6 months poststroke were randomized to 3 groups: WD with shock paired 12 ms before click; WD with clicks and shocks delivered independently; standard care. Those allocated to the device used it for at least 4 h/d, every day for 4 weeks. Upper-limb function was assessed at baseline and weeks 2, 4, and 8 using the Action Research Arm Test (ARAT), which has 4 subdomains (Grasp, Grip, Pinch, and Gross). Results. Severity across the 3 groups was comparable at baseline. Only the paired stimulation group showed significant improvement in total ARAT (median baseline: 7.5; week 8: 11.5; P = .019) and the Grasp subscore (median baseline: 1; week 8: 4; P = .004). Conclusion. A wearable device delivering paired clicks and shocks over 4 weeks can produce a small but significant improvement in upper-limb function in stroke survivors.
Collapse
Affiliation(s)
| | - Ravi Singh
- Institute of Neurosciences, Kolkata, West Bengal, India
| | - A Shobhana
- Institute of Neurosciences, Kolkata, West Bengal, India
| | - Dwaipayan Sen
- Institute of Neurosciences, Kolkata, West Bengal, India
| | | | | | | | - Mark R Baker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK.,Royal Victoria Infirmary, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Stuart N Baker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
28
|
Chen B, Sangari S, Lorentzen J, Nielsen JB, Perez MA. Bilateral and asymmetrical contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with spinal cord injury. J Neurophysiol 2020; 124:973-984. [PMID: 32432501 DOI: 10.1152/jn.00044.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spasticity is one of the most common symptoms present in humans with spinal cord injury (SCI); however, its clinical assessment remains underdeveloped. The purpose of the study was to examine the contribution of passive muscle stiffness and active spinal reflex mechanisms to clinical outcomes of spasticity after SCI. It is important that passive and active contributions to increased muscle stiffness are distinguished to make appropriate decisions about antispastic treatments and to monitor its effectiveness. To address this question, we combined biomechanical and electrophysiological assessments of ankle plantarflexor muscles bilaterally in individuals with and without chronic SCI. Spasticity was assessed using the Modified Ashworth Scale (MAS) and a self-reported questionnaire. We performed slow and fast dorsiflexion stretches of the ankle joint to measure passive muscle stiffness and reflex-induced torque using a dynamometer and the soleus H reflex using electrical stimulation over the posterior tibial nerve. All SCI participants reported the presence of spasticity. While 96% of them reported higher spasticity on one side compared with the other, the MAS detected differences across sides in only 25% of the them. Passive muscle stiffness and the reflex-induced torque were larger in SCI compared with controls more on one side compared with the other. The soleus stretch reflex, but not the H reflex, was larger in SCI compared with controls and showed differences across sides, with a larger reflex in the side showing a higher reflex-induced torque. MAS scores were not correlated with biomechanical and electrophysiological outcomes. These findings provide evidence for bilateral and asymmetric contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with chronic SCI and highlight a poor agreement between a self-reported questionnaire and the MAS for detecting asymmetries in spasticity across sides.NEW & NOTEWORTHY Spasticity affects a number of people with spinal cord injury (SCI). Using biomechanical, electrophysiological, and clinical assessments, we found that passive muscle properties and active spinal reflex mechanisms contribute bilaterally and asymmetrically to spasticity in ankle plantarflexor muscles in humans with chronic SCI. A self-reported questionnaire had poor agreement with the Modified Ashworth Scale in detecting asymmetries in spasticity. The nature of these changes might contribute to the poor sensitivity of clinical exams.
Collapse
Affiliation(s)
- Bing Chen
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Shirley Ryan AbilityLab and Northwestern University, Chicago, United States and Hines Veterans Affairs Medical Center, Chicago, Illinois
| | - Sina Sangari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Shirley Ryan AbilityLab and Northwestern University, Chicago, United States and Hines Veterans Affairs Medical Center, Chicago, Illinois
| | - Jakob Lorentzen
- Institute of Neuroscience, University of Copenhagen and Institute of Nutrition and Exercise and Elsass Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens B Nielsen
- Institute of Neuroscience, University of Copenhagen and Institute of Nutrition and Exercise and Elsass Institute, University of Copenhagen, Copenhagen, Denmark
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Shirley Ryan AbilityLab and Northwestern University, Chicago, United States and Hines Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
29
|
Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury. J Neurosci 2019; 39:7872-7881. [PMID: 31413076 DOI: 10.1523/jneurosci.1106-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 07/25/2019] [Indexed: 02/04/2023] Open
Abstract
Damage to the corticospinal and reticulospinal tract has been associated with spasticity in humans with upper motor neuron lesions. We hypothesized that these descending motor pathways distinctly contribute to the control of a spastic muscle in humans with incomplete spinal cord injury (SCI). To test this hypothesis, we examined motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the leg representation of the primary motor cortex, maximal voluntary contractions (MVCs), and the StartReact response (shortening in reaction time evoked by a startling stimulus) in the quadriceps femoris muscle in male and females with and without incomplete SCI. A total of 66.7% of the SCI participants showed symptoms of spasticity, whereas the other 33.3% showed no or low levels of spasticity. We found that participants with spasticity had smaller MEPs and MVCs and larger StartReact compared with participants with no or low spasticity and control subjects. These results were consistently present in spastic subjects but not in the other populations. Clinical scores of spasticity were negatively correlated with MEP-max and MVC values and positively correlated with shortening in reaction time. These findings provide evidence for lesser corticospinal and larger reticulospinal influences to spastic muscles in humans with SCI and suggest that these imbalanced contributions are important for motor recovery.SIGNIFICANCE STATEMENT Although spasticity is one of the most common symptoms manifested in humans with spinal cord injury (SCI) to date, its mechanisms of action remain poorly understood. We provide evidence, for the first time, of imbalanced contributions of the corticospinal and reticulospinal tract to control a spastic muscle in humans with chronic incomplete SCI. We found that participants with SCI with spasticity showed small corticospinal responses and maximal voluntary contractions and larger reticulospinal gain compared with participants with no or low spasticity and control subjects. These results were consistently present in spastic subjects but not in the other populations. We showed that imbalanced corticospinal and reticulospinal tract contributions are more pronounced in participants with chronic incomplete SCI with lesser recovery.
Collapse
|