1
|
Zou Y, Tang X, Yang S, Chen Z, Liu B, Zhou Z, Peng X, Tang C. New insights into the function of the NLRP3 inflammasome in sarcopenia: mechanism and therapeutic strategies. Metabolism 2024; 158:155972. [PMID: 38972476 DOI: 10.1016/j.metabol.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.
Collapse
Affiliation(s)
- Yunyi Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiangbin Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Siyuan Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Nicastro M, Vermeer AMC, Postema PG, Tadros R, Bowling FZ, Aegisdottir HM, Tragante V, Mach L, Postma AV, Lodder EM, van Duijvenboden K, Zwart R, Beekman L, Wu L, van der Zwaag PA, Alders M, Allouba M, Aguib Y, Santomel JL, de Una D, Monserrat L, Miranda AMA, Kanemaru K, Cranley J, van Zeggeren IE, Aronica EMA, Ripolone M, Zanotti S, Sveinbjornsson G, Ivarsdottir EV, Hólm H, Guðbjartsson DF, Skúladóttir ÁT, Stefánsson K, Nadauld L, Knowlton KU, Ostrowski SR, Sørensen E, Vesterager Pedersen OB, Ghouse J, Rand S, Bundgaard H, Ullum H, Erikstrup C, Aagaard B, Bruun MT, Christiansen M, Jensen HK, Carere DA, Cummings CT, Fishler K, Tøring PM, Brusgaard K, Juul TM, Saaby L, Winkel BG, Mogensen J, Fortunato F, Comi GP, Ronchi D, van Tintelen JP, Noseda M, Airola MV, Christiaans I, Wilde AAM, Wilders R, Clur SA, Verkerk AO, Bezzina CR, Lahrouchi N. Biallelic variants in POPDC2 cause a novel autosomal recessive syndrome presenting with cardiac conduction defects and variable hypertrophic cardiomyopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.04.24309755. [PMID: 39006410 PMCID: PMC11245065 DOI: 10.1101/2024.07.04.24309755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
POPDC2 encodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia and morpholino knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy. Using homology modelling we show that the identified POPDC2 variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies we demonstrated that, while co-expression of wild-type POPDC2 with TREK-1 increased TREK-1 current density, POPDC2 variants found in the patients failed to increase TREK-1 current density. While patient muscle biopsy did not show clear myopathic disease, it showed significant reduction of the expression of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in any of the two proteins. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and 2 was most prevalent in AV node, AV node pacemaker and AV bundle cells. Sinoatrial node cells expressed POPDC2 abundantly, but expression of POPDC1 was sparse. Together, these results concur with predisposition to AV node disease in humans with loss-of-function variants in POPDC1 and POPDC2 and presence of sinus node disease in POPDC2, but not in POPDC1 related disease in human. Using population-level genetic data of more than 1 million individuals we showed that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for POPDC2 as the cause of a novel Mendelian autosomal recessive cardiac syndrome, consistent with previous work showing that mice and zebrafish deficient in functional POPDC2 display sinus and AV node dysfunction. GRAPHICAL ABSTRACT
Collapse
|
3
|
Rinné S, Kiper AK, Jacob R, Ortiz-Bonnin B, Schindler RF, Fischer S, Komadowski M, De Martino E, Schäfer MKH, Cornelius T, Fabritz L, Helker CS, Brand T, Decher N. Popeye domain containing proteins modulate the voltage-gated cardiac sodium channel Nav1.5. iScience 2024; 27:109696. [PMID: 38689644 PMCID: PMC11059135 DOI: 10.1016/j.isci.2024.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Popeye domain containing (POPDC) proteins are predominantly expressed in the heart and skeletal muscle, modulating the K2P potassium channel TREK-1 in a cAMP-dependent manner. POPDC1 and POPDC2 variants cause cardiac conduction disorders with or without muscular dystrophy. Searching for POPDC2-modulated ion channels using a functional co-expression screen in Xenopus oocytes, we found POPDC proteins to modulate the cardiac sodium channel Nav1.5. POPDC proteins downregulate Nav1.5 currents in a cAMP-dependent manner by reducing the surface expression of the channel. POPDC2 and Nav1.5 are both expressed in different regions of the murine heart and consistently POPDC2 co-immunoprecipitates with Nav1.5 from native cardiac tissue. Strikingly, the knock-down of popdc2 in embryonic zebrafish caused an increased upstroke velocity and overshoot of cardiac action potentials. The POPDC modulation of Nav1.5 provides a new mechanism to regulate cardiac sodium channel densities under sympathetic stimulation, which is likely to have a functional impact on cardiac physiology and inherited arrhythmias.
Collapse
Affiliation(s)
- Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| | - Ralf Jacob
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Beatriz Ortiz-Bonnin
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| | - Roland F.R. Schindler
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sabine Fischer
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Marlene Komadowski
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| | - Emilia De Martino
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| | - Martin K.-H. Schäfer
- Institute of Anatomy and Cell Biology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Tamina Cornelius
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences University of Birmingham, Birmingham B15 2TT, UK
- University Center of Cardiovascular Sciences & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg Eppendorf, 20251 Hamburg and DZHK Hamburg/Kiel/Lübeck, Germany
| | - Christian S.M. Helker
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 30537 Marburg, Germany
| |
Collapse
|
4
|
De Ridder W, de Vries G, Van Schil K, Deconinck T, Mouly V, Straub V, Baets J. A homozygous loss of function variant in POPDC3: From invalidating exercise intolerance to a limb-girdle muscular dystrophy phenotype. Neuromuscul Disord 2023; 33:432-439. [PMID: 37104941 DOI: 10.1016/j.nmd.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Recessive pathogenic variants in POPDC3 have recently been associated with the rare limb-girdle muscular dystrophy (LGMD) subtype LGMDR26. We studied three siblings and a distantly related individual with a skeletal muscle disorder, harboring the c.486-6T>A splice site variant in POPDC3 in homozygosity. Immunohistochemistry, western blot, and mRNA experiments on patients' skeletal muscle tissue as well as on patients' myoblasts were performed to study the pathogenicity of the predicted loss of function mechanism of the variant. Patients mainly presented with invalidating myalgia and exercise intolerance and limited to no segmentary muscle weakness. CK levels were markedly elevated in all patients. A loss of function mechanism at the RNA level was shown (r.485_486insauag, p.Ile163*). Muscle biopsies performed in three out of four patients showed non-specific myopathic features with a marked type 2 fiber predominance and the presence of a large number of severely atrophic fibers with pyknotic nuclear clumps. We show that skeletal muscle symptoms in LGMDR26 may range from an overt late juvenile to young adult-onset limb-girdle muscular dystrophy phenotype to severe exercise intolerance and myalgia, with consistently highly elevated CK levels. We further prove a clear LOF mechanism of POPDC3 in this rare disorder.
Collapse
Affiliation(s)
- Willem De Ridder
- Translational Neurosciences and Peripheral Neuropathy Group, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Antwerp B-2650, Belgium.
| | - Geert de Vries
- Translational Neurosciences and Peripheral Neuropathy Group, University of Antwerp, Antwerp, Belgium
| | - Kristof Van Schil
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Tine Deconinck
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris F-75013, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Baets
- Translational Neurosciences and Peripheral Neuropathy Group, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Antwerp B-2650, Belgium
| |
Collapse
|
5
|
Wu Y, Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol 2023; 12:1083570. [PMID: 36713522 PMCID: PMC9880530 DOI: 10.3389/fonc.2022.1083570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Objective To search for the DEGs between stage MS NB and stage M NB and speculate the possible mechanism of spontaneous regression of stage MS NB. Materials and methods The NB datasets GSE49710 and GSE45547 in the GEO database were selected to screen the DEGs between children with NB stage MS vs. stage M, < 18 months. GO enrichment and KEGG pathway analysis of DEGs was performed using DAVID. The intersecting genes among DEGs and RCD-related genes were selected, and their survival roles and functions were assessed. We then used the collected clinical samples to validate the expression of these genes at the protein level using IHC methods and further analysis to explore their role. Results BIRC5, SLCO4A1, POPDC3, and HK2 were found to be downregulated in stage MS NB and related to apoptosis. BIRC5 and HK2 also participate in autophagy. The TF gene is upregulated in stage MS NB and related to ferroptosis. The above five genes are closely related to the survival of children with NB. And the expression levels of all five genes at the protein level were verified by IHC to be consistent with the results of the preliminary screening described above. Conclusion BIRC5, SLCO4A1, POPDC3, HK2 and TF are expected to become new important indicators to predict the prognosis of NB and can be used as the basis for further explored the benign prognosis and spontaneous regression mechanism of stage MS NB.
Collapse
|
6
|
Swan AH, Schindler RFR, Savarese M, Mayer I, Rinné S, Bleser F, Schänzer A, Hahn A, Sabatelli M, Perna F, Chapman K, Pfuhl M, Spivey AC, Decher N, Udd B, Tasca G, Brand T. Differential effects of mutations of POPDC proteins on heteromeric interaction and membrane trafficking. Acta Neuropathol Commun 2023; 11:4. [PMID: 36624536 PMCID: PMC9830914 DOI: 10.1186/s40478-022-01501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
The Popeye domain containing (POPDC) genes encode sarcolemma-localized cAMP effector proteins. Mutations in blood vessel epicardial substance (BVES) also known as POPDC1 and POPDC2 have been associated with limb-girdle muscular dystrophy and cardiac arrhythmia. Muscle biopsies of affected patients display impaired membrane trafficking of both POPDC isoforms. Biopsy material of patients carrying mutations in BVES were immunostained with POPDC antibodies. The interaction of POPDC proteins was investigated by co-precipitation, proximity ligation, bioluminescence resonance energy transfer and bimolecular fluorescence complementation. Site-directed mutagenesis was utilised to map the domains involved in protein-protein interaction. Patients carrying a novel homozygous variant, BVES (c.547G > T, p.V183F) displayed only a skeletal muscle pathology and a mild impairment of membrane trafficking of both POPDC isoforms. In contrast, variants such as BVES p.Q153X or POPDC2 p.W188X were associated with a greater impairment of membrane trafficking. Co-transfection analysis in HEK293 cells revealed that POPDC proteins interact with each other through a helix-helix interface located at the C-terminus of the Popeye domain. Site-directed mutagenesis of an array of ultra-conserved hydrophobic residues demonstrated that some of them are required for membrane trafficking of the POPDC1-POPDC2 complex. Mutations in POPDC proteins that cause an impairment in membrane localization affect POPDC complex formation while mutations which leave protein-protein interaction intact likely affect some other essential function of POPDC proteins.
Collapse
Affiliation(s)
- Alexander H. Swan
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK ,grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, London, UK
| | - Roland F. R. Schindler
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK ,grid.434240.5Present Address: Assay Biology, Domainex Ltd, Cambridge, CB10 1XL UK
| | - Marco Savarese
- grid.7737.40000 0004 0410 2071Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Isabelle Mayer
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Susanne Rinné
- grid.10253.350000 0004 1936 9756Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Felix Bleser
- grid.10253.350000 0004 1936 9756Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Anne Schänzer
- grid.8664.c0000 0001 2165 8627Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Hahn
- grid.8664.c0000 0001 2165 8627Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - Mario Sabatelli
- grid.8142.f0000 0001 0941 3192Department of Neurology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Perna
- grid.414603.4Dipartimento Di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kathryn Chapman
- grid.434240.5Present Address: Assay Biology, Domainex Ltd, Cambridge, CB10 1XL UK
| | - Mark Pfuhl
- grid.13097.3c0000 0001 2322 6764School of Cardiovascular Medicine and Sciences and Randall Centre, King’s College London, London, UK
| | - Alan C. Spivey
- grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, London, UK
| | - Niels Decher
- grid.8664.c0000 0001 2165 8627Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Bjarne Udd
- grid.7737.40000 0004 0410 2071Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212Present Address: John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Thomas Brand
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK ,Imperial Centre of Translational and Experimental Medicine, Du Cane Road, London, W120NN UK
| |
Collapse
|
7
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Baldwin TA, Li Y, Marsden AN, Rinné S, Garza‐Carbajal A, Schindler RFR, Zhang M, Garcia MA, Venna VR, Decher N, Brand T, Dessauer CW. POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart. EMBO Rep 2022; 23:e55208. [PMID: 36254885 PMCID: PMC9724675 DOI: 10.15252/embr.202255208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the β-adrenergic receptor (βAR). AC9 activity is required for βAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Yong Li
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Autumn N Marsden
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Anibal Garza‐Carbajal
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | | | - Musi Zhang
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Mia A Garcia
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Venugopal Reddy Venna
- Department NeurologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Carmen W Dessauer
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| |
Collapse
|
9
|
Lescouzères L, Bordignon B, Bomont P. Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci 2022; 15:956582. [PMID: 36204134 PMCID: PMC9530744 DOI: 10.3389/fnmol.2022.956582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is a vertebrate species offering multitude of advantages for the study of conserved biological systems in human and has considerably enriched our knowledge in developmental biology and physiology. Being equally important in medical research, the zebrafish has become a critical tool in the fields of diagnosis, gene discovery, disease modeling, and pharmacology-based therapy. Studies on the zebrafish neuromuscular system allowed for deciphering key molecular pathways in this tissue, and established it as a model of choice to study numerous motor neurons, neuromuscular junctions, and muscle diseases. Starting with the similarities of the zebrafish neuromuscular system with the human system, we review disease models associated with the neuromuscular system to focus on current methodologies employed to study them and outline their caveats. In particular, we put in perspective the necessity to develop standardized and high-resolution methodologies that are necessary to deepen our understanding of not only fundamental signaling pathways in a healthy tissue but also the changes leading to disease phenotype outbreaks, and offer templates for high-content screening strategies. While the development of high-throughput methodologies is underway for motility assays, there is no automated approach to quantify the key molecular cues of the neuromuscular junction. Here, we provide a novel high-throughput imaging methodology in the zebrafish that is standardized, highly resolutive, quantitative, and fit for drug screening. By providing a proof of concept for its robustness in identifying novel molecular players and therapeutic drugs in giant axonal neuropathy (GAN) disease, we foresee that this new tool could be useful for both fundamental and biomedical research.
Collapse
Affiliation(s)
- Léa Lescouzères
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| | - Benoît Bordignon
- Montpellier Ressources Imagerie, BioCampus, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
10
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Zhang L, Li W, Weng Y, Lin K, Huang K, Ma S, Chu J, Yang Z, Zhang X, Sun H. A novel splice site variant in the POPDC3 causes autosomal recessive limb-girdle muscular dystrophy type 26. Clin Genet 2022; 102:345-349. [PMID: 35842834 DOI: 10.1111/cge.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Limb-Girdle muscular dystrophy (LGMD) is a group of muscle disorders with highly heterogeneous genetic patterns and clinical phenotypes, and this group includes multiple subtypes. Different LGMD subtypes have similar phenotypes and clinical overlaps,these subtypes are difficult to distinguish by clinical symptoms alone and can only be accurately diagnosed by analysis in combination with definitive genetic test results. Here, we report a female presenting features of LGMD. After analysis of whole-exome sequencing data, a novel homozygous POPDC3 variant c.486-1G>A (rs113419658) located in the acceptor splice site of intron 2 was identified in the proband. The variant effect on splicing were analyzed by genetic analysis based on cDNA synthesised by the patient's RNA. cDNA analysis indicated that the novel homozygous POPDC3 splice variant disrupted original acceptor splice site, which can cause a frameshift in the mRNA of the POPDC3 gene, thereby producing a truncated POPDC3 protein and ultimately affecting its normal function. POPDC3 variant was recently associated with recessive limb-girdle muscular dystrophy type 26 (LGMDR26). Based on the above results, we hypothesize that this variant is probably a pathogenic variant, and expand the gene variant spectrum of POPDC3. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lin Zhang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Wenwu Li
- The Department of Neurology, People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan, China
| | - Yuting Weng
- The Department of Urology, Taizhou Hospital of Zhejiang Province, Zhejiang, China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Kai Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Jiayou Chu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaochao Zhang
- The Key Laboratory of Pharmacology for Natural Products of Yunnan Province, Pharmaceutical College, Kunming Medical University, Kunming, Yunnan, China
| | - Hao Sun
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
12
|
Ullah A, Lin Z, Younus M, Shafiq S, Khan S, Rasheed M, Mahmood A, Alqosaibi AI, Alshehri MA, Khan A, Umair M. Homozygous missense variant in POPDC3 causes recessive limb girdle muscular dystrophy type 26. J Gene Med 2022; 24:e3412. [PMID: 35075722 DOI: 10.1002/jgm.3412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a heterogeneous group of diseases, which affects different muscles, predominantly skeletal muscles and cardiac muscles of the body. LGMD is classified into two main sub-types A and B, which are further sub-classified into eight dominant and thirty recessive sub-types. Three genes, mainly POPDC1, POPDC2 and POPDC3, encodes popeye domain-containing protein (POPDC), and the variants of POPDC1 and POPDC3 genes have been associated with LGMD. METHODS In this study, we performed whole-exome sequencing (WES) analysis on a single-family to investigate the hallmark features of LGMD. The results of WES were further confirmed by Sanger sequencing and 3D protein modeling was also performed. RESULTS WES data analysis and sanger sequencing revealed a homozygous missense variant (c.460A>G; p.Lys154Glu) at a highly conserved amino acid position in the POPDC3. Mutations in the POPDC3 gene have been previously associated with recessive limb-girdle muscular dystrophy type 26. 3D protein modeling further suggested that the identified variant might affect the POPDC3 structure and proper function. DISCUSSION/CONCLUSIONS This study confirms the role of POPDC3 in LGMD, and will facilitate in genetic counseling of the family to mitigate the risks of the carrier or affected in future pregnancies.
Collapse
Affiliation(s)
- Anwar Ullah
- Khyber Medical University Institute of Paramedical Science Peshawar
| | - Zhaohan Lin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shazia Khan
- Department of Biological Sciences, International Islamic University Islamabad, H-10, Islamabad, Pakistan
| | - Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Amany I Alqosaibi
- Medical Genetics Laboratory Science, College of Applied medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Amjad Khan
- Faculty of Science, Department of Biological Sciences, University of Lakki Marwat, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
13
|
Tibbo AJ, Mika D, Dobi S, Ling J, McFall A, Tejeda GS, Blair C, MacLeod R, MacQuaide N, Gök C, Fuller W, Smith BO, Smith GL, Vandecasteele G, Brand T, Baillie GS. Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. J Mol Cell Cardiol 2022; 165:86-102. [PMID: 34999055 PMCID: PMC8986152 DOI: 10.1016/j.yjmcc.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022]
Abstract
Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes. POPDC1 forms a complex with type 4 phosphodiesterases (PDE4s) in cardiac myocytes. POPDC1 binds PDE4 enzymes in the Upstream Conserved Region 1 (UCR1) domain. The PDE4 binding motif within the Popeye domain lies in a region that harbours a mutation, which underpins human disease. Disruption of the POPDC1-PDE4 complex modulates the cycle length of spontaneous Ca2+ transients in the sinoatrial node. Disruption of the POPDC1-PDE4 complex causes a significant prolongation of the action potential repolarization phase.
Collapse
Affiliation(s)
- Amy J Tibbo
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Sara Dobi
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Jiayue Ling
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Aisling McFall
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Gonzalo S Tejeda
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Connor Blair
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Ruth MacLeod
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Niall MacQuaide
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Caglar Gök
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - William Fuller
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Brian O Smith
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Godfrey L Smith
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College, W12 0NN, London
| | - George S Baillie
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK.
| |
Collapse
|
14
|
Li H, Xu L, Gao Y, Zuo Y, Yang Z, Zhao L, Chen Z, Guo S, Han R. BVES is a novel interactor of ANO5 and regulates myoblast differentiation. Cell Biosci 2021; 11:222. [PMID: 34963485 PMCID: PMC8715634 DOI: 10.1186/s13578-021-00735-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anoctamin 5 (ANO5) is a membrane protein belonging to the TMEM16/Anoctamin family and its deficiency leads to the development of limb girdle muscular dystrophy R12 (LGMDR12). However, little has been known about the interactome of ANO5 and its cellular functions. RESULTS In this study, we exploited a proximal labeling approach to identify the interacting proteins of ANO5 in C2C12 myoblasts stably expressing ANO5 tagged with BioID2. Mass spectrometry identified 41 unique proteins including BVES and POPDC3 specifically from ANO5-BioID2 samples, but not from BioID2 fused with ANO6 or MG53. The interaction between ANO5 and BVES was further confirmed by co-immunoprecipitation (Co-IP), and the N-terminus of ANO5 mediated the interaction with the C-terminus of BVES. ANO5 and BVES were co-localized in muscle cells and enriched at the endoplasmic reticulum (ER) membrane. Genome editing-mediated ANO5 or BVES disruption significantly suppressed C2C12 myoblast differentiation with little impact on proliferation. CONCLUSIONS Taken together, these data suggest that BVES is a novel interacting protein of ANO5, involved in regulation of muscle differentiation.
Collapse
Affiliation(s)
- Haiwen Li
- Division of Cardiac Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Li Xu
- Division of Cardiac Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yandi Gao
- Division of Cardiac Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yuanbojiao Zuo
- Division of Cardiac Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.,Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuliang Guo
- Division of Cardiac Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Renzhi Han
- Division of Cardiac Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
Gruscheski L, Brand T. The Role of POPDC Proteins in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2021; 8:160. [PMID: 34940515 PMCID: PMC8706714 DOI: 10.3390/jcdd8120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.
Collapse
Affiliation(s)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
16
|
Djeddi S, Reiss D, Menuet A, Freismuth S, de Carvalho Neves J, Djerroud S, Massana-Muñoz X, Sosson AS, Kretz C, Raffelsberger W, Keime C, Dorchies OM, Thompson J, Laporte J. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021; 29:2514-2534. [PMID: 33940157 DOI: 10.1016/j.ymthe.2021.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sébastien Freismuth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Juliana de Carvalho Neves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sarah Djerroud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Xènia Massana-Muñoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Anne-Sophie Sosson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Wolfgang Raffelsberger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
| | - Julie Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory-CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
17
|
Khawajazada T, Kass K, Rudolf K, de Stricker Borch J, Sheikh AM, Witting N, Vissing J. Muscle involvement assessed by quantitative magnetic resonance imaging in patients with anoctamin 5 deficiency. Eur J Neurol 2021; 28:3121-3132. [PMID: 34145687 DOI: 10.1111/ene.14979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Using magnetic resonance imaging (MRI) and stationary dynamometry, the aim was to investigate the muscle affection in paraspinal muscles and lower extremities and compare the muscle affection in men and women with anoctamin 5 (ANO5) deficiency. METHODS Seventeen patients (seven women) with pathogenic ANO5-mutations were included. Quantitative muscle fat fraction of back and leg muscles were assessed by Dixon MRI. Muscle strength was assessed by stationary dynamometer. Results were compared with 11 matched, healthy controls. RESULTS Muscle involvement pattern in men with ANO5-deficiency is characterized by a severe fat replacement of hamstrings, adductor and gastrocnemius muscles, while paraspinal muscles are only mildly affected, while preserved gracilis and sartorius muscles were hypertrophied. Women with ANO5-myopathy, of the same age as male patients, were very mildly affected, showing muscle affection and strength resembling that found in healthy persons, with the exception of the gluteus minimus and medius and gastrocnemii muscles that were significantly replaced by fat. Although individual muscles showed clear asymmetric involvement in a few muscle groups, the overall muscle involvement was symmetric. CONCLUSIONS Patients with ANO5-deficiency have relatively preserved paraspinal muscles on imaging and only mild reduction of trunk extension strength in men only. Our study quantifies the large difference in muscle affection in lower extremity between women and men with ANO5-deficiency. The clinical notion is that affection may be very asymmetric in ANO5-deficiency, but the present study shows that while this may be true for a few muscles, the general impression is that muscle affection is very symmetric.
Collapse
Affiliation(s)
- Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Konni Kass
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Aisha Munawar Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Butty AM, Chud TCS, Cardoso DF, Lopes LSF, Miglior F, Schenkel FS, Cánovas A, Häfliger IM, Drögemüller C, Stothard P, Malchiodi F, Baes CF. Genome-wide association study between copy number variants and hoof health traits in Holstein dairy cattle. J Dairy Sci 2021; 104:8050-8061. [PMID: 33896633 DOI: 10.3168/jds.2020-19879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/31/2021] [Indexed: 01/06/2023]
Abstract
Genome-wide association studies based on SNP have been completed for multiple traits in dairy cattle; however, copy number variants (CNV) could add genomic information that has yet to be harnessed. The objectives of this study were to identify CNV in genotyped Holstein animals and assess their association with hoof health traits using deregressed estimated breeding values as pseudophenotypes. A total of 23,256 CNV comprising 1,645 genomic regions were identified in 5,845 animals. Fourteen genomic regions harboring structural variations, including 9 deletions and 5 duplications, were associated with at least 1 of the studied hoof health traits. This group of traits included digital dermatitis, interdigital dermatitis, heel horn erosion, sole ulcer, white line lesion, sole hemorrhage, and interdigital hyperplasia; no regions were associated with toe ulcer. Twenty candidate genes overlapped with the regions associated with these traits including SCART1, NRXN2, KIF26A, GPHN, and OR7A17. In this study, an effect on infectious hoof lesions could be attributed to the PRAME (Preferentially Expressed Antigen in Melanoma) gene. Almost all genes detected in association with noninfectious hoof lesions could be linked to known metabolic disorders. The knowledge obtained considering information of associated CNV to the traits of interest in this study could improve the accuracy of estimated breeding values. This may further increase the genetic gain for these traits in the Canadian Holstein population, thus reducing the involuntary animal losses due to lameness.
Collapse
Affiliation(s)
- Adrien M Butty
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tatiane C S Chud
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Diercles F Cardoso
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lucas S F Lopes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Filippo Miglior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Irene M Häfliger
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3012, Switzerland
| | - Cord Drögemüller
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3012, Switzerland
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada
| | - Francesca Malchiodi
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada; The Semex Alliance, Guelph, Ontario N1H 6J2, Canada
| | - Christine F Baes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
19
|
Tucker SJ, Zorn AJ. The role of Popeye domain-containing protein 1 (POPDC1) in the progression of the malignant phenotype. Br J Pharmacol 2021; 179:2829-2843. [PMID: 33533478 DOI: 10.1111/bph.15403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
The Popeye domain-containing protein 1 (POPDC1), a tight junction-associated transmembrane protein with a unique binding site for cAMP, has been shown to act as a tumour suppressor in cancer cells. Through interaction with many downstream effectors and signalling pathways, POPDC1 promotes cell adhesion and inhibits uncontrolled cell proliferation, epithelial-to-mesenchymal transition and metastasis. However, POPDC1 expression is down-regulated in many types of cancer, thereby reducing its tumour-suppressive actions. This review discusses the role of POPDC1 in the progression of the malignant phenotype and highlights the broad range of benefits POPDC1 stabilisation may achieve therapeutically. Cancer stem cells (CSCs) are a key hallmark of malignancies and commonly promote treatment resistance. This article provides a comprehensive overview of CSC signalling mechanisms, many of which have been shown to be regulated by POPDC1 in other cell types, thus suggesting an additional therapeutic benefit for POPDC1-stabilising anti-cancer drugs.
Collapse
Affiliation(s)
- Steven J Tucker
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Alina J Zorn
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
20
|
Holt I, Fuller HR, Schindler RFR, Shirran SL, Brand T, Morris GE. An interaction of heart disease-associated proteins POPDC1/2 with XIRP1 in transverse tubules and intercalated discs. BMC Mol Cell Biol 2020; 21:88. [PMID: 33261556 PMCID: PMC7709239 DOI: 10.1186/s12860-020-00329-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Background Popeye domain-containing proteins 1 and 2 (POPDC1 and POPDC2) are transmembrane proteins involved in cyclic AMP-mediated signalling processes and are required for normal cardiac pacemaking and conduction. In order to identify novel protein interaction partners, POPDC1 and 2 proteins were attached to beads and compared by proteomic analysis with control beads in the pull-down of proteins from cultured human skeletal myotubes. Results There were highly-significant interactions of both POPDC1 and POPDC2 with XIRP1 (Xin actin binding repeat-containing protein 1), actin and, to a lesser degree, annexin A5. In adult human skeletal muscle, both XIRP1 and POPDC1/2 were present at the sarcolemma and in T-tubules. The interaction of POPDC1 with XIRP1 was confirmed in adult rat heart extracts. Using new monoclonal antibodies specific for POPDC1 and POPDC2, both proteins, together with XIRP1, were found mainly at intercalated discs but also at T-tubules in adult rat and human heart. Conclusions Mutations in human POPDC1, POPDC2 and in human XIRP1, all cause pathological cardiac arrhythmias, suggesting a possible role for POPDC1/2 and XIRP1 interaction in normal cardiac conduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00329-3.
Collapse
Affiliation(s)
- Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK. .,School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK.
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK
| | - Roland F R Schindler
- Imperial Centre of Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College, 4th Floor, Du Cane Road, London, W12 0NN, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Thomas Brand
- Imperial Centre of Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College, 4th Floor, Du Cane Road, London, W12 0NN, UK
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK
| |
Collapse
|
21
|
POPDC2 a novel susceptibility gene for conduction disorders. J Mol Cell Cardiol 2020; 145:74-83. [PMID: 32535041 DOI: 10.1016/j.yjmcc.2020.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/25/2023]
Abstract
Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188⁎), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188⁎ causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188⁎ knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188⁎ loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders.
Collapse
|
22
|
The Role of the Popeye Domain Containing Gene Family in Organ Homeostasis. Cells 2019; 8:cells8121594. [PMID: 31817925 PMCID: PMC6952887 DOI: 10.3390/cells8121594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The Popeye domain containing (POPDC) gene family consists of POPDC1 (also known as BVES), POPDC2 and POPDC3 and encodes a novel class of cyclic adenosine monophosphate (cAMP) effector proteins. Despite first reports of their isolation and initial characterization at the protein level dating back 20 years, only recently major advances in defining their biological functions and disease association have been made. Loss-of-function experiments in mice and zebrafish established an important role in skeletal muscle regeneration, heart rhythm control and stress signaling. Patients suffering from muscular dystrophy and atrioventricular block were found to carry missense and nonsense mutations in either of the three POPDC genes, which suggests an important function in the control of striated muscle homeostasis. However, POPDC genes are also expressed in a number of epithelial cells and function as tumor suppressor genes involved in the control of epithelial structure, tight junction formation and signaling. Suppression of POPDC genes enhances tumor cell proliferation, migration, invasion and metastasis in a variety of human cancers, thus promoting a malignant phenotype. Moreover, downregulation of POPDC1 and POPDC3 expression in different cancer types has been associated with poor prognosis. However, high POPDC3 expression has also been correlated to poor clinical prognosis in head and neck squamous cell carcinoma, suggesting that POPDC3 potentially plays different roles in the progression of different types of cancer. Interestingly, a gain of POPDC1 function in tumor cells inhibits cell proliferation, migration and invasion thereby reducing malignancy. Furthermore, POPDC proteins have been implicated in the control of cell cycle genes and epidermal growth factor and Wnt signaling. Work in tumor cell lines suggest that cyclic nucleotide binding may also be important in epithelial cells. Thus, POPDC proteins have a prominent role in tissue homeostasis and cellular signaling in both epithelia and striated muscle.
Collapse
|