1
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. Pharmacol Res 2024; 208:107356. [PMID: 39216838 PMCID: PMC11457296 DOI: 10.1016/j.phrs.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding, assembly, and trafficking and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Li PP, Zhou YY, Gao L, Lv JN, Xu SS, Zhao YW, Xu D, Huang R, Zhang X, Li P, Fu X, He Z. The de novo missense mutation F224S in GABRB2, identified in epileptic encephalopathy and developmental delay, impairs GABA AR function. Neuroscience 2024; 553:172-184. [PMID: 38964454 DOI: 10.1016/j.neuroscience.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Genetic variants in genes encoding subunits of the γ-aminobutyric acid-A receptor (GABAAR) have been found to cause neurodevelopmental disorders and epileptic encephalopathy. In a patient with epilepsy and developmental delay, a de novo heterozygous missense mutation c.671 T > C (p.F224S) was discovered in the GABRB2 gene, which encodes the β2 subunit of GABAAR. Based on previous studies on GABRB2 variants, this new GABRB2 variant (F224S) would be pathogenic. To confirm and investigate the effects of this GABRB2 mutation on GABAAR channel function, we conducted transient expression experiments using GABAAR subunits in HEK293T cells. The GABAARs containing mutant β2 (F224S) subunit showed poor trafficking to the cell membrane, while the expression and distribution of the normal α1 and γ2 subunits were unaffected. Furthermore, the peak current amplitude of the GABAAR containing the β2 (F224S) subunit was significantly smaller compared to the wild type GABAAR. We propose that GABRB2 variant F224S is pathogenic and GABAARs containing this β2 mutant reduce response to GABA under physiological conditions, which could potentially disrupt the excitation/inhibition balance in the brain, leading to epilepsy.
Collapse
Affiliation(s)
- Ping-Ping Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue-Yuan Zhou
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Li Gao
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia-Nan Lv
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shi-Shi Xu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yan-Wen Zhao
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Di Xu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ruoke Huang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peijun Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Xiaoqin Fu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zhiyong He
- Department of Pediatric Rehabilitation, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Zhu X, Li P. GABA(A) Receptor Subunit (γ2, δ, β1-3) Variants in Genetic Epilepsy: A Comprehensive Summary of 206 Clinical Cases. J Child Neurol 2024; 39:354-370. [PMID: 39228214 DOI: 10.1177/08830738241273437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Epilepsy is identified in individuals who experienced 2 or more unprovoked seizures occurring over 24 hours apart, which can have a profound impact on a person's neurobiological, cognitive, psychological, and social well-being. Epilepsy is considerably diverse, with classifications such as genetic epilepsy that result directly from a known or presumed genetic variant with the core symptoms of seizures. The GABAA receptor primarily functions as a heteropentamer, containing 3 of 8 subunit types: α, β, γ, δ, ε, π, θ, and ρ. In the adult brain, the GABAA receptor is the primary inhibitory component in neural networks. The involvement of GABAA receptors in the pathogenesis of epilepsy has been proposed. We extensively reviewed all relevant clinical data of previously published cases of GABAA receptor subunit γ2, δ, β1-3 variants included in PubMed up to February 2024, including the variant types, loci, postulated mechanisms, their relevant regions, first onset ages, and phenotypes. We summarized the postulated mechanisms of epileptic pathogenesis. We also divided the collected 206 cases of epilepsy into 4 epileptic phenotypes: genetic generalized epilepsies, focal epilepsy, developmental and epileptic encephalopathies, and epilepsy with fever sensibility. We showed that there were significant differences in the likelihood of the γ2, β2, and β3 subunit variants causing genetic generalized epilepsies, focal epilepsy, developmental and epileptic encephalopathies, and epilepsy with fever sensibility. Patients with the β3 subunit variant seemed related to an earlier first onset age. Our review supports that GABAA receptor subunit variants are a crucial area of epilepsy research and treatment exploration.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Sajan SA, Gradisch R, Vogel FD, Coffey AJ, Salyakina D, Soler D, Jayakar P, Jayakar A, Bianconi SE, Cooper AH, Liu S, William N, Benkel-Herrenbrück I, Maiwald R, Heller C, Biskup S, Leiz S, Westphal DS, Wagner M, Clarke A, Stockner T, Ernst M, Kesari A, Krenn M. De novo variants in GABRA4 are associated with a neurological phenotype including developmental delay, behavioral abnormalities and epilepsy. Eur J Hum Genet 2024; 32:912-919. [PMID: 38565639 PMCID: PMC11291759 DOI: 10.1038/s41431-024-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Nine out of 19 genes encoding GABAA receptor subunits have been linked to monogenic syndromes characterized by seizures and developmental disorders. Previously, we reported the de novo variant p.(Thr300Ile) in GABRA4 in a patient with epilepsy and neurodevelopmental abnormalities. However, no new cases have been reported since then. Through an international collaboration, we collected molecular and phenotype data of individuals carrying de novo variants in GABRA4. Patients and their parents were investigated either by exome or genome sequencing, followed by targeted Sanger sequencing in some cases. All variants within the transmembrane domain, including the previously reported p.(Thr300Ile) variant, were characterized in silico and analyzed by molecular dynamics (MD) simulation studies. We identified three novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile). The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4). MD simulations of the three variants within the transmembrane domain of the receptor indicate that sub-microsecond scale dynamics differ between wild-type and mutated subunits. Taken together, our findings further corroborate an association between GABRA4 and a neurological phenotype including variable neurodevelopmental, behavioral and epileptic abnormalities.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alison J Coffey
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Daria Salyakina
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Diana Soler
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Anuj Jayakar
- Department of Neurology, Division of Epilepsy, Nicklaus Children's Hospital, Miami, FL, USA
| | | | | | | | | | | | - Robert Maiwald
- Medizinisches Versorgungszentrum für Gerinnungsdiagnostik und Medizinische Genetik Köln, Köln, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine I, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Amy Clarke
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Akanchha Kesari
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Mohammadi NA, Ahring PK, Yu Liao VW, Chua HC, Ortiz de la Rosa S, Johannesen KM, Michaeli-Yossef Y, Vincent-Devulder A, Meridda C, Bruel AL, Rossi A, Patel C, Klepper J, Bonanni P, Minghetti S, Trivisano M, Specchio N, Amor D, Auvin S, Baer S, Meyer P, Milh M, Salpietro V, Maroofian R, Lemke JR, Weckhuysen S, Christophersen P, Rubboli G, Chebib M, Jensen AA, Absalom NL, Møller RS. Distinct neurodevelopmental and epileptic phenotypes associated with gain- and loss-of-function GABRB2 variants. EBioMedicine 2024; 106:105236. [PMID: 38996765 PMCID: PMC11296288 DOI: 10.1016/j.ebiom.2024.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Variants in GABRB2, encoding the β2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS Electrophysiological assessments of α1β2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.
Collapse
Affiliation(s)
- Nazanin Azarinejad Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Philip Kiær Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian Wan Yu Liao
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sebastián Ortiz de la Rosa
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Marie Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yael Michaeli-Yossef
- Pediatric Neurology Unit and Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | | | | | | | - Alessandra Rossi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Pediatric Clinic, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| | - Joerg Klepper
- Children's Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Sara Minghetti
- IRCCS E. Medea Scientific Institute, Clinical Neurophysiology Unit, Bosisio Parini, LC, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - David Amor
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Stéphane Auvin
- Université de Paris, Child Neurology & Epilepsy, Paris, France; Robert-Debré Hospital, Center for Rare Epilepsies - Pediatric Neurology, Paris, France
| | - Sarah Baer
- Department of Paediatric Neurology, French Reference Center of Rare Epilepsies CREER, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Meyer
- Paediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CNRS, University Hospital Montpellier, Montpellier, France
| | - Mathieu Milh
- Department of Pediatric Neurology, AP-HM, La Timone Children's Hospital, Marseille, France; Faculté de Médecine Timone, Aix Marseille Univ, INSERM, MMG, U1251, ERN EpiCARE, Marseille, France
| | - Vincenzo Salpietro
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mary Chebib
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan L Absalom
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Science, Western Sydney University, Sydney, Australia.
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Wang YJ, Di XJ, Zhang PP, Chen X, Williams MP, Han DY, Nashmi R, Henderson BJ, Moss FJ, Mu TW. Hsp47 promotes biogenesis of multi-subunit neuroreceptors in the endoplasmic reticulum. eLife 2024; 13:e84798. [PMID: 38963323 PMCID: PMC11257679 DOI: 10.7554/elife.84798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Pei-Pei Zhang
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Marnie P Williams
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Dong-Yun Han
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Raad Nashmi
- Department of Biology, University of VictoriaVictoriaCanada
| | - Brandon J Henderson
- Department of Biomedical Sciences, Marshall UniversityHuntingtonUnited States
| | - Fraser J Moss
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
8
|
Lin SXN, Ahring PK, Keramidas A, Liao VWY, Møller RS, Chebib M, Absalom NL. Correlations of receptor desensitization of gain-of-function GABRB3 variants with clinical severity. Brain 2024; 147:224-239. [PMID: 37647766 PMCID: PMC10766243 DOI: 10.1093/brain/awad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the β3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.
Collapse
Affiliation(s)
- Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Member of ERN, EpiCare, Danish Epilepsy Centre, Dianalund DK-4293, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5230, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan L Absalom
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Hernandez CC, Hu N, Shen W, Macdonald RL. Epileptic Encephalopathy GABRB Structural Variants Share Common Gating and Trafficking Defects. Biomolecules 2023; 13:1790. [PMID: 38136660 PMCID: PMC10741827 DOI: 10.3390/biom13121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Variants in the GABRB gene, which encodes the β subunit of the GABAA receptor, have been implicated in various epileptic encephalopathies and related neurodevelopmental disorders such as Dravet syndrome and Angelman syndrome. These conditions are often associated with early-onset seizures, developmental regression, and cognitive impairments. The severity and specific features of these encephalopathies can differ based on the nature of the genetic variant and its impact on GABAA receptor function. These variants can lead to dysfunction in GABAA receptor-mediated inhibition, resulting in an imbalance between neuronal excitation and inhibition that contributes to the development of seizures. Here, 13 de novo EE-associated GABRB variants, occurring as missense mutations, were analyzed to determine their impact on protein stability and flexibility, channel function, and receptor biogenesis. Our results showed that all mutations studied significantly impact the protein structure, altering protein stability, flexibility, and function to varying degrees. Variants mapped to the GABA-binding domain, coupling zone, and pore domain significantly impact the protein structure, modifying the β+/α- interface of the receptor and altering channel activation and receptor trafficking. Our study proposes that the extent of loss or gain of GABAA receptor function can be elucidated by identifying the specific structural domain impacted by mutation and assessing the variability in receptor structural dynamics. This paves the way for future studies to explore and uncover links between the incidence of a variant in the receptor topology and the severity of the related disease.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| |
Collapse
|
10
|
Wang YJ, Vu GH, Mu TW. Pathogenicity Prediction of GABA A Receptor Missense Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567135. [PMID: 38014242 PMCID: PMC10680766 DOI: 10.1101/2023.11.14.567135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Variants in the genes encoding the subunits of gamma-aminobutyric acid type A (GABAA) receptors are associated with epilepsy. To date, over 1000 clinical variants have been identified in these genes. However, the majority of these variants lack functional studies and their clinical significance is uncertain although accumulating evidence indicates that proteostasis deficiency is the major disease-causing mechanism for GABAA receptor variants. Here, we apply two state-of-the-art modeling tools, namely AlphaMissense, which uses an artificial intelligence-based approach based on AlphaFold structures, and Rhapsody, which integrates sequence evolution and known structure-based data, to predict the pathogenicity of saturating missense variants in genes that encode the major subunits of GABAA receptors in the central nervous system, including GABRA1, GABRB2, GABRB3, and GABRG2. Our results demonstrate that the predicted pathogenicity correlates well between AlphaMissense and Rhapsody although AlphaMissense tends to generate higher pathogenic probability. Furthermore, almost all annotated pathogenic variants in the ClinVar clinical database are successfully identified from the prediction, whereas uncertain variants from ClinVar partially due to the lack of experimental data are differentiated into different pathogenicity groups. The pathogenicity prediction of GABAA receptor missense variants provides a resource to the community as well as guidance for future experimental and clinical investigations.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Giang H. Vu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
11
|
Absalom NL, Lin SXN, Liao VWY, Chua HC, Møller RS, Chebib M, Ahring PK. GABA A receptors in epilepsy: Elucidating phenotypic divergence through functional analysis of genetic variants. J Neurochem 2023. [PMID: 37621067 DOI: 10.1111/jnc.15932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA ) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.
Collapse
Affiliation(s)
- Nathan L Absalom
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Han C Chua
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537383. [PMID: 37131660 PMCID: PMC10153171 DOI: 10.1101/2023.04.18.537383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α 1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α 1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α 1 variants. Mechanism of action study demonstrated that they enhance the folding and assembly and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lucie Y. Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
13
|
Clinical EEG of Rett Syndrome: Group Analysis Supplemented with Longitudinal Case Report. J Pers Med 2022; 12:jpm12121973. [PMID: 36556193 PMCID: PMC9782488 DOI: 10.3390/jpm12121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Rett syndrome (RTT), a severe neurodevelopmental disorder caused by MECP2 gene abnormalities, is characterized by atypical EEG activity, and its detailed examination is lacking. We combined the comparison of one-time eyes open EEG resting state activity from 32 girls with RTT and their 41 typically developing peers (age 2-16 years old) with longitudinal following of one girl with RTT to reveal EEG parameters which correspond to the RTT progression. Traditional measures, such as epileptiform abnormalities, generalized background activity, beta activity and the sensorimotor rhythm, were supplemented by a new frequency rate index measured as the ratio between high- and low-frequency power of sensorimotor rhythm. Almost all studied EEG parameters differentiated the groups; however, only the elevated generalized background slowing and decrease in our newly introduced frequency rate index which reflects attenuation in the proportion of the upper band of sensorimotor rhythm in RTT showed significant relation with RTT progression both in longitudinal case and group analysis. Moreover, only this novel index was linked to the breathing irregularities RTT symptom. The percentage of epileptiform activity was unrelated to RTT severity, confirming previous studies. Thus, resting EEG can provide information about the pathophysiological changes caused by MECP2 abnormalities and disease progression.
Collapse
|
14
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
15
|
Maillard P, Baer S, Schaefer É, Desnous B, Villeneuve N, Lépine A, Fabre A, Lacoste C, El Chehadeh S, Piton A, Porter LF, Perriard C, Wardé MA, Spitz M, Laugel V, Lesca G, Putoux A, Ville D, Mignot C, Héron D, Nabbout R, Barcia G, Rio M, Roubertie A, Meyer P, Paquis‐Flucklinger V, Patat O, Lefranc J, Gerard M, de Bellescize J, Villard L, De Saint Martin A, Milh M. Molecular and clinical descriptions of patients with GABA A receptor gene variants (GABRA1, GABRB2, GABRB3, GABRG2): A cohort study, review of literature, and genotype-phenotype correlation. Epilepsia 2022; 63:2519-2533. [PMID: 35718920 PMCID: PMC9804453 DOI: 10.1111/epi.17336] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE γ-Aminobutyric acid (GABA)A -receptor subunit variants have recently been associated with neurodevelopmental disorders and/or epilepsy. The phenotype linked with each gene is becoming better known. Because of the common molecular structure and physiological role of these phenotypes, it seemed interesting to describe a putative phenotype associated with GABAA -receptor-related disorders as a whole and seek possible genotype-phenotype correlations. METHODS We collected clinical, electrophysiological, therapeutic, and molecular data from patients with GABAA -receptor subunit variants (GABRA1, GABRB2, GABRB3, and GABRG2) through a national French collaboration using the EPIGENE network and compared these data to the one already described in the literature. RESULTS We gathered the reported patients in three epileptic phenotypes: 15 patients with fever-related epilepsy (40%), 11 with early developmental epileptic encephalopathy (30%), 10 with generalized epilepsy spectrum (27%), and 1 patient without seizures (3%). We did not find a specific phenotype for any gene, but we showed that the location of variants on the transmembrane (TM) segment was associated with a more severe phenotype, irrespective of the GABAA -receptor subunit gene, whereas N-terminal variants seemed to be related to milder phenotypes. SIGNIFICANCE GABAA -receptor subunit variants are associated with highly variable phenotypes despite their molecular and physiological proximity. None of the genes described here was associated with a specific phenotype. On the other hand, it appears that the location of the variant on the protein may be a marker of severity. Variant location may have important weight in the development of targeted therapeutics.
Collapse
Affiliation(s)
- Pierre‐Yves Maillard
- Department of Medical GeneticsIGMA, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Present address:
Institut Jérome LejeuneParisFrance
| | - Sarah Baer
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance
| | - Élise Schaefer
- Department of Medical GeneticsIGMA, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Béatrice Desnous
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance
| | - Nathalie Villeneuve
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance
| | - Anne Lépine
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance
| | - Alexandre Fabre
- Pediatric Multidisciplinary UnitAP‐HM, Timone EnfantMarseilleFrance,Aix‐Marseille University, INSERM, GMGFMarseilleFrance
| | - Caroline Lacoste
- Department of Medical GeneticsLa Timone Children's HospitalMarseilleFrance
| | - Salima El Chehadeh
- Department of Medical GeneticsIGMA, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance
| | - Amélie Piton
- Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance,Laboratory of Genetic DiagnosisInstitut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Louise Frances Porter
- Department of Medical GeneticsInstitut de Génétique Médicale d'Alsace, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO)StrasbourgFrance
| | - Caroline Perriard
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Marie‐Thérèse Abi Wardé
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Marie‐Aude Spitz
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Vincent Laugel
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Gaëtan Lesca
- Department of GeneticsHospices Civils de LyonBronFrance
| | - Audrey Putoux
- Department of GeneticsHospices Civils de LyonBronFrance
| | - Dorothée Ville
- Pediatric Neurology Department and Reference Center of Rare EpilepsiesMother Child Women's Hospital, Lyon University HospitalLyonFrance
| | - Cyril Mignot
- Department of GeneticsGroupe Hospitalier Pitié‐Salpêtrière and Hôpital Armand Trousseau, APHP‐Sorbonne UniversitéParisFrance,Centre de Référence Déficiences Intellectuelles de Causes RaresParisFrance
| | - Delphine Héron
- Department of GeneticsGroupe Hospitalier Pitié‐Salpêtrière and Hôpital Armand Trousseau, APHP‐Sorbonne UniversitéParisFrance,Centre de Référence Déficiences Intellectuelles de Causes RaresParisFrance
| | - Rima Nabbout
- Department of Pediatric NeurologyReference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, APHP, Université de ParisParisFrance
| | - Giulia Barcia
- Department of Medical GeneticsNecker‐Enfants Malades Hospital, Université de ParisParisFrance
| | - Marlène Rio
- Department of Medical GeneticsNecker‐Enfants Malades Hospital, Université de ParisParisFrance
| | - Agathe Roubertie
- Pediatric Neurology DepartmentINM, INSERM, CHU Montpellier, University of MontpellierMontpellierFrance
| | - Pierre Meyer
- Pediatric Neurology DepartmentINM, INSERM, CHU Montpellier, University of MontpellierMontpellierFrance
| | | | - Olivier Patat
- Department of Medical GeneticsCHU Toulouse PurpanToulouseFrance
| | | | - Marion Gerard
- Department of Medical GeneticsCentre Hospitalier Universitaire de CaenCaenFrance
| | | | - Julietta de Bellescize
- Paediatric Clinical Epileptology and Functional Neurology DepartmentReference Center of Rare Epilepsies, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL)LyonFrance
| | - Laurent Villard
- Pediatric Multidisciplinary UnitAP‐HM, Timone EnfantMarseilleFrance,Faculté de Médecine TimoneAix Marseille Univ, INSERM, MMG, U1251, ERN EpicareMarseilleFrance
| | - Anne De Saint Martin
- Department of NeuropediatricsERN EpiCare, Hôpitaux Universitaires de StrasbourgStrasbourgFrance,Institute for Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, CNRS UMR7104, INSERM U1258IllkirchFrance
| | - Mathieu Milh
- Department of Pediatric NeurologyAP‐HM, La Timone Children's HospitalMarseilleFrance,Faculté de Médecine TimoneAix Marseille Univ, INSERM, MMG, U1251, ERN EpicareMarseilleFrance
| |
Collapse
|
16
|
Absalom NL, Liao VWY, Johannesen KMH, Gardella E, Jacobs J, Lesca G, Gokce-Samar Z, Arzimanoglou A, Zeidler S, Striano P, Meyer P, Benkel-Herrenbrueck I, Mero IL, Rummel J, Chebib M, Møller RS, Ahring PK. Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nat Commun 2022; 13:1822. [PMID: 35383156 PMCID: PMC8983652 DOI: 10.1038/s41467-022-29280-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.
Collapse
Affiliation(s)
- Nathan L Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrine M H Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France.,Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Zeynep Gokce-Samar
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Pasquale Striano
- IRCCS Institute "Giannina Gaslini", Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pierre Meyer
- Pediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CRNS, Montpellier University Hospital, Montpellier, France
| | - Ira Benkel-Herrenbrueck
- Sana-Krankenhaus Düsseldorf-Gerresheim, Academic Teaching Hospital der Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jutta Rummel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Mary Chebib
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark. .,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Philip K Ahring
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|