1
|
Sun Y, Ramos-Torres KM, Takahashi K, Tiss A, Zhang LL, Brugarolas P. Synthesis of K + channel radioligand [ 18F]5-methyl-3-fluoro-4-aminopyridine and PET imaging in mice. Bioorg Med Chem Lett 2024; 114:129991. [PMID: 39426429 DOI: 10.1016/j.bmcl.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
[18F]3-fluoro-4-aminopyridine ([18F]3F4AP) is the first positron emission tomography (PET) radioligand that targets voltage-gated potassium (K+) channels in the brain for imaging demyelination. [18F]3F4AP exhibits high brain penetration, favorable kinetics for PET imaging, and high sensitivity to demyelinating lesions. However, recent studies in awake human subjects indicate lower metabolic stability than in anesthetized animals, resulting in reduced brain uptake. Therefore, there is a need for novel radioligands for K+ channels with suitable pharmacological properties and enhanced metabolic stability. Recent in vitro studies demonstrate that 5-methyl-3-fluoro-4-aminopyridine (5Me3F4AP) exhibits comparable binding affinity to K+ channels, pKa, logD, and membrane permeability as 3F4AP, and a slower enzymatic metabolic rate, suggesting its potential as a K+ channel PET tracer. In this study, we describe the radiochemical synthesis of [18F]5Me3F4AP using an isotope exchange method from the corresponding 3-fluoro-5-methyl-4-nitropyridine N-oxide, followed by a palladium on carbon mediated hydrogenation of the nitro and N-oxide groups. This method yielded [18F]5Me3F4AP with high purity and acceptable molar activity. PET/CT studies using naïve mice demonstrate that [18F]5Me3F4AP effectively crosses the blood-brain barrier and has comparable kinetics to [18F]3F4AP. These findings strongly suggest that [18F]5Me3F4AP is a promising candidate for neuroimaging applications and warrant further studies to investigate its sensitivity to lesions and in vivo metabolic stability.
Collapse
Affiliation(s)
- Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Karla M Ramos-Torres
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazue Takahashi
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amal Tiss
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sun Y, Rodríguez-Rangel S, Zhang LL, Sánchez-Rodríguez JE, Brugarolas P. Chemical and biophysical characterization of novel potassium channel blocker 3-fluoro-5-methylpyridin-4-amine. Sci Rep 2024; 14:11105. [PMID: 38750155 PMCID: PMC11096398 DOI: 10.1038/s41598-024-61465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
4-aminopyridine (4AP) is a potassium (K+) channel blocker used clinically to improve walking in people with multiple sclerosis (MS). 4AP binds to exposed K+ channels in demyelinated axons, reducing the leakage of intracellular K+ and enhancing impulse conduction. Multiple derivatives of 4AP capable of blocking K+ channels have been reported including three radiolabeled with positron emitting isotopes for imaging demyelinated lesions using positron emission tomography (PET). However, there remains a demand for novel molecules with suitable physicochemical properties and binding affinity that can potentially be radiolabeled and used as PET radiotracers. In this study, we introduce 3-fluoro-5-methylpyridin-4-amine (5Me3F4AP) as a novel trisubstituted K+ channel blocker with potential application in PET. 5Me3F4AP has comparable potency to 4AP and the PET tracer 3-fluoro-4-aminopyridine (3F4AP). Compared to 3F4AP, 5Me3F4AP exhibits comparable basicity (pKa = 7.46 ± 0.01 vs. 7.37 ± 0.07, P-value = 0.08), greater lipophilicity (logD = 0.664 ± 0.005 vs. 0.414 ± 0.002, P-value < 0.0001) and higher permeability to an artificial brain membrane (Pe = 88.1 ± 18.3 vs. 31.1 ± 2.9 nm/s, P-value = 0.03). 5Me3F4AP is also more stable towards oxidation in vitro by the cytochrome P450 enzyme CYP2E1 (IC50 = 36.2 ± 2.5 vs. 15.4 ± 5.1, P-value = 0.0003); the enzyme responsible for the metabolism of 4AP and 3F4AP. Taken together, 5Me3F4AP has promising properties as a candidate for PET imaging warranting additional investigation.
Collapse
Affiliation(s)
- Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Zhou YP, Wilks MQ, Dhaynaut M, Guehl NJ, Vesper DR, Moon SH, Rice PA, El Fakhri G, Normandin MD, Brugarolas P. Radiosynthesis automation, non-human primate biodistribution and dosimetry of K + channel tracer [ 11C]3MeO4AP. EJNMMI Res 2024; 14:43. [PMID: 38683467 PMCID: PMC11058135 DOI: 10.1186/s13550-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND 4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [11C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compatible automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP in non-human primates (NHPs). METHODS Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with four bed positions and 13 passes over a total scan time of ~ 150 min. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. RESULTS Fully automated radiosynthesis of [11C]3MeO4AP was achieved with 7.3 ± 1.2% (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [11C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [11C]3MeO4AP was 4.0 ± 0.6 μSv/MBq. No significant changes in vital signs were observed during the scan. CONCLUSION A cGMP-compatible automated radiosynthesis of [11C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP was successfully evaluated in NHPs. [11C]3MeO4AP shows lower average effective dose than [18F]3F4AP and similar average effective dose as other carbon-11 tracers.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Moses Q Wilks
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Maeva Dhaynaut
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Nicolas J Guehl
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Danielle R Vesper
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sung-Hyun Moon
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Peter A Rice
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Marc D Normandin
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Sun Y, Rodríguez-Rangel S, Zhang LL, Sánchez-Rodríguez JE, Brugarolas P. Chemical and biophysical characterization of novel potassium channel blocker 3-fluoro-5-methylpyridin-4-amine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.550404. [PMID: 37609160 PMCID: PMC10441322 DOI: 10.1101/2023.08.08.550404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
4-aminopyridine (4AP) is a potassium (K+) channel blocker used clinically to improve walking in people with multiple sclerosis (MS). 4AP binds to exposed K+ channels in demyelinated axons, reducing the leakage of intracellular K+ and enhancing impulse conduction. Multiple derivatives of 4AP capable of blocking K+ channels have been reported including three radiolabeled with positron emitting isotopes for imaging demyelinated lesions using positron emission tomography (PET). Here, we describe 3-fluoro-5-methylpyridin-4-amine (5Me3F4AP), a novel K+ channel blocker with potential application in PET. 5Me3F4AP has comparable potency to 4AP and the PET tracer 3-fluoro-4-aminopyridine (3F4AP). Compared to 3F4AP, 5Me3F4AP is more lipophilic (logD = 0.664 ± 0.005 vs. 0.414 ± 0.002) and slightly more basic (pKa = 7.46 ± 0.01 vs. 7.37 ± 0.07). In addition, 5Me3F4AP appears to be more permeable to an artificial brain membrane and more stable towards oxidation by the cytochrome P450 enzyme family 2 subfamily E member 1 (CYP2E1), responsible for the metabolism of 4AP and 3F4AP. Taken together, 5Me3F4AP has promising properties for PET imaging warranting additional investigation.
Collapse
Affiliation(s)
- Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Lauren L. Zhang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zhou YP, Wilks MQ, Dhaynaut M, Guehl NJ, Moon SH, Fakhri GE, Normandin MD, Brugarolas P. Radiosynthesis automation, non-human primate biodistribution and dosimetry of K + channel tracer [ 11 C]3MeO4AP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534386. [PMID: 37034655 PMCID: PMC10081174 DOI: 10.1101/2023.03.28.534386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Purpose 4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [ 11 C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compliant automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [ 11 C]3MeO4AP in non-human primates (NHPs). Methods Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with 4 bed positions and 13 passes over a total scan time of ∼150 minutes. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. Results Fully automated radiosynthesis of [ 11 C]3MeO4AP was achieved with 7.3 ± 1.2 % (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [ 11 C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [ 11 C]3MeO4AP was 4.27 ± 0.57 μSv/MBq. No significant changes in vital signs were observed during the scan. Conclusion The cGMP compliant automated radiosynthesis of [ 11 C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [ 11 C]3MeO4AP was successfully evaluated in NHPs. [ 11 C]3MeO4AP shows lower average effective dose than [ 18 F]3F4AP and similar average effective dose as other carbon-11 tracers.
Collapse
|
6
|
Brugarolas P, Wilks MQ, Noel J, Kaiser JA, Vesper DR, Ramos-Torres KM, Guehl NJ, Macdonald-Soccorso MT, Sun Y, Rice PA, Yokell DL, Lim R, Normandin MD, El Fakhri G. Human biodistribution and radiation dosimetry of the demyelination tracer [ 18F]3F4AP. Eur J Nucl Med Mol Imaging 2023; 50:344-351. [PMID: 36197499 PMCID: PMC9816249 DOI: 10.1007/s00259-022-05980-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/19/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE [18F]3F4AP is a novel PET radiotracer that targets voltage-gated potassium (K+) channels and has shown promise for imaging demyelinated lesions in animal models of neurological diseases. This study aimed to evaluate the biodistribution, safety, and radiation dosimetry of [18F]3F4AP in healthy human volunteers. METHODS Four healthy volunteers (2 females) underwent a 4-h dynamic PET scan from the cranial vertex to mid-thigh using multiple bed positions after administration of 368 ± 17.9 MBq (9.94 ± 0.48 mCi) of [18F]3F4AP. Volumes of interest for relevant organs were manually drawn guided by the CT, and PET images and time-activity curves (TACs) were extracted. Radiation dosimetry was estimated from the integrated TACs using OLINDA software. Safety assessments included measuring vital signs immediately before and after the scan, monitoring for adverse events, and obtaining a comprehensive metabolic panel and electrocardiogram within 30 days before and after the scan. RESULTS [18F]3F4AP distributed throughout the body with the highest levels of activity in the kidneys, urinary bladder, stomach, liver, spleen, and brain and with low accumulation in muscle and fat. The tracer cleared quickly from circulation and from most organs. The clearance of the tracer was noticeably faster than previously reported in nonhuman primates (NHPs). The average effective dose (ED) across all subjects was 12.1 ± 2.2 μSv/MBq, which is lower than the estimated ED from the NHP studies (21.6 ± 0.6 μSv/MBq) as well as the ED of other fluorine-18 radiotracers such as [18F]FDG (~ 20 μSv/MBq). No differences in ED between males and females were observed. No substantial changes in safety assessments or adverse events were recorded. CONCLUSION The biodistribution and radiation dosimetry of [18F]3F4AP in humans are reported for the first time. The average total ED across four subjects was lower than most 18F-labeled PET tracers. The tracer and study procedures were well tolerated, and no adverse events occurred.
Collapse
Affiliation(s)
- Pedro Brugarolas
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Moses Q Wilks
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jacqueline Noel
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Julia-Ann Kaiser
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Danielle R Vesper
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Karla M Ramos-Torres
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Nicolas J Guehl
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marina T Macdonald-Soccorso
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yang Sun
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter A Rice
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel L Yokell
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ruth Lim
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marc D Normandin
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Sun Y, Guehl NJ, Zhou YP, Takahashi K, Belov V, Dhaynaut M, Moon SH, El Fakhri G, Normandin MD, Brugarolas P. Radiochemical Synthesis and Evaluation of 3-[ 11C]Methyl-4-aminopyridine in Rodents and Nonhuman Primates for Imaging Potassium Channels in the CNS. ACS Chem Neurosci 2022; 13:3342-3351. [PMID: 36417797 PMCID: PMC9732819 DOI: 10.1021/acschemneuro.2c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Demyelination, the loss of the insulating sheath of neurons, causes failed or slowed neuronal conduction and contributes to the neurological symptoms in multiple sclerosis, traumatic brain and spinal cord injuries, stroke, and dementia. In demyelinated neurons, the axonal potassium channels Kv1.1 and Kv1.2, generally under the myelin sheath, become exposed and upregulated. Therefore, imaging these channels using positron emission tomography can provide valuable information for disease diagnosis and monitoring. Here, we describe a novel tracer for Kv1 channels, [11C]3-methyl-4-aminopyridine ([11C]3Me4AP). [11C]3Me4AP was efficiently synthesized via Pd(0)-Cu(I) comediated Stille cross-coupling of a stannyl precursor containing a free amino group. Evaluation of its imaging properties in rats and nonhuman primates showed that [11C]3Me4AP has a moderate brain permeability and slow kinetics. Additional evaluation in monkeys showed that the tracer is metabolically stable and that a one-tissue compartment model can accurately model the regional brain time-activity curves. Compared to the related tracers [18F]3-fluoro-4-aminopyridine ([18F]3F4AP) and [11C]3-methoxy-4-aminopyridine ([11C]3MeO4AP), [11C]3Me4AP shows lower initial brain uptake, which indicates reduced permeability to the blood-brain barrier and slower kinetics, suggesting higher binding affinity consistent with in vitro studies. While the slow kinetics and strong binding affinity resulted in a tracer with less favorable properties for imaging the brain than its predecessors, these properties may make 3Me4AP useful as a therapeutic.
Collapse
|
8
|
Guehl NJ, Ramos-Torres KM, Linnman C, Moon SH, Dhaynaut M, Wilks MQ, Han PK, Ma C, Neelamegam R, Zhou YP, Popko B, Correia JA, Reich DS, Fakhri GE, Herscovitch P, Normandin MD, Brugarolas P. Evaluation of the potassium channel tracer [ 18F]3F4AP in rhesus macaques. J Cereb Blood Flow Metab 2021; 41:1721-1733. [PMID: 33090071 PMCID: PMC8221756 DOI: 10.1177/0271678x20963404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Demyelination causes slowed or failed neuronal conduction and is a driver of disability in multiple sclerosis and other neurological diseases. Currently, the gold standard for imaging demyelination is MRI, but despite its high spatial resolution and sensitivity to demyelinated lesions, it remains challenging to obtain specific and quantitative measures of molecular changes involved in demyelination. To understand the contribution of demyelination in different diseases and to assess the efficacy of myelin-repair therapies, it is critical to develop new in vivo imaging tools sensitive to changes induced by demyelination. Upon demyelination, axonal K+ channels, normally located underneath the myelin sheath, become exposed and increase in expression, causing impaired conduction. Here, we investigate the properties of the K+ channel PET tracer [18F]3F4AP in primates and its sensitivity to a focal brain injury that occurred three years prior to imaging. [18F]3F4AP exhibited favorable properties for brain imaging including high brain penetration, high metabolic stability, high plasma availability, high reproducibility, high specificity, and fast kinetics. [18F]3F4AP showed preferential binding in areas of low myelin content as well as in the previously injured area. Sensitivity of [18F]3F4AP for the focal brain injury was higher than [18F]FDG, [11C]PiB, and [11C]PBR28, and compared favorably to currently used MRI methods.
Collapse
Affiliation(s)
- Nicolas J Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Karla M Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clas Linnman
- Spaulding Neuroimaging Lab, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul K Han
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chao Ma
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Popko
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - John A Correia
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Dietrich M, Hartung HP, Albrecht P. Neuroprotective Properties of 4-Aminopyridine. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e976. [PMID: 33653963 PMCID: PMC7931640 DOI: 10.1212/nxi.0000000000000976] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
As an antagonist of voltage-gated potassium (Kv) channels, 4-aminopyridine (4-AP) is used as symptomatic therapy in several neurologic disorders. The improvement of visual function and motor skills and relieve of fatigue in patients with MS have been attributed to 4-AP. Its prolonged release formulation (fampridine) has been approved for the symptomatic treatment of walking disability in MS. The beneficial effects were explained by the blockade of axonal Kv channels, thereby enhancing conduction along demyelinated axons. However, an increasing body of evidence suggests that 4-AP may have additional properties beyond the symptomatic mode of action. In this review, we summarize preclinical and clinical data on possible neuroprotective features of 4-AP.
Collapse
Affiliation(s)
- Michael Dietrich
- From the Department of Neurology (M.D., H.-P.H., P.A.), Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; and Brain and Mind Center (H.-P.H.), University of Sydney, Australia
| | - Hans-Peter Hartung
- From the Department of Neurology (M.D., H.-P.H., P.A.), Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; and Brain and Mind Center (H.-P.H.), University of Sydney, Australia
| | - Philipp Albrecht
- From the Department of Neurology (M.D., H.-P.H., P.A.), Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; and Brain and Mind Center (H.-P.H.), University of Sydney, Australia.
| |
Collapse
|
10
|
De Giglio L, Cortese F, Pennisi EM. Aminopiridines in the treatment of multiple sclerosis and other neurological disorders. Neurodegener Dis Manag 2020; 10:409-423. [PMID: 33054615 DOI: 10.2217/nmt-2020-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Symptomatic treatment has a great relevance for the management of patients with neurologic diseases, since it reduces disease burden and improves quality of life. Aminopyridines (APs) are a group of potassium (K+) channel blocking agents that exert their activity both at central nervous system level and on neuromuscular junction. This review describes the use of APs for the symptomatic treatment of neurological conditions. We will describe trials leading to the approval of the extended-release 4-aminopyridine for MS and evidence in support of the use in other neurological diseases.
Collapse
Affiliation(s)
- Laura De Giglio
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| | - Francesca Cortese
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| | - Elena Maria Pennisi
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| |
Collapse
|
11
|
Rodríguez-Rangel S, Bravin AD, Ramos-Torres KM, Brugarolas P, Sánchez-Rodríguez JE. Structure-activity relationship studies of four novel 4-aminopyridine K + channel blockers. Sci Rep 2020; 10:52. [PMID: 31919372 PMCID: PMC6952366 DOI: 10.1038/s41598-019-56245-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
4-Aminopyridine (4AP) is a specific blocker of voltage-gated potassium channels (KV1 family) clinically approved for the symptomatic treatment of patients with multiple sclerosis (MS). It has recently been shown that [18F]3F4AP, a radiofluorinated analog of 4AP, also binds to KV1 channels and can be used as a PET tracer for the detection of demyelinated lesions in rodent models of MS. Here, we investigate four novel 4AP derivatives containing methyl (-CH3), methoxy (-OCH3) as well as trifluoromethyl (-CF3) in the 2 and 3 position as potential candidates for PET imaging and/or therapy. We characterized the physicochemical properties of these compounds (basicity and lipophilicity) and analyzed their ability to block Shaker K+ channel under different voltage and pH conditions. Our results demonstrate that three of the four derivatives are able to block voltage-gated potassium channels. Specifically, 3-methyl-4-aminopyridine (3Me4AP) was found to be approximately 7-fold more potent than 4AP and 3F4AP; 3-methoxy- and 3-trifluoromethyl-4-aminopyridine (3MeO4AP and 3CF34AP) were found to be about 3- to 4-fold less potent than 4AP; and 2-trifluoromethyl-4-AP (2CF34AP) was found to be about 60-fold less active. These results suggest that these novel derivatives are potential candidates for therapy and imaging.
Collapse
Affiliation(s)
| | - Alyssa D Bravin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Karla M Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | | |
Collapse
|
12
|
Modrak M, Sundem L, Gupta R, Zuscik MJ, Elfar J. Pharmacological Attenuation of Electrical Effects in a Model of Compression Neuropathy. J Bone Joint Surg Am 2019; 101:523-530. [PMID: 30893233 PMCID: PMC6738556 DOI: 10.2106/jbjs.18.00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Peripheral nerve compression and entrapment can be debilitating. Using a validated animal model of peripheral nerve compression, we examined the utility of 2 drugs approved for other uses in humans, 4-aminopyridine (4-AP) and erythropoietin (EPO), as treatments for surgically induced ischemia and as adjuvants to surgical decompression. METHODS Peripheral nerve compression was induced in wild-type mice by placing an inert silicone sleeve around the sciatic nerve. Decompression surgery was performed at 6 weeks with mice receiving 4-AP, EPO, or saline solution either during and after compression or only after decompression. A nerve conduction study and morphometric analyses were performed to compare the extent of the injury and the efficacy of the therapies, and the findings were subjected to statistical analysis. RESULTS During peripheral nerve compression, there was a progressive decline in nerve conduction velocity compared with that in sham-treatment animals, in which nerve conduction velocity remained normal (∼55 m/s). Mice treated with 4-AP or EPO during the compression phase had significantly smaller declines in nerve conduction velocity and increased plateau nerve conduction velocities compared with untreated controls (animals that received saline solution). Histomorphometric analyses of newly decompressed nerves (i.e., nerves that underwent decompression on the day that the mouse was sacrificed) revealed that both treated groups had significantly greater proportions of large (>5-µm) axons than the untreated controls. Following surgical decompression, all animals recovered to a normal baseline nerve conduction velocity by day 15; however, treatment significantly accelerated improvement (in both the 4-AP and the EPO group), even when it was only started after decompression. Histomorphometric analyses at 7 and 15 days following surgical decompression revealed significantly increased myelin thickness and significantly greater proportions of large axons among the treated animals. CONCLUSIONS Both the 4-AP and the EPO-treated group demonstrated improvements in tissue architectural and electrodiagnostic measurements, both during and after peripheral nerve compression, compared with untreated mice. CLINICAL RELEVANCE Peripheral nerve decompression is one of the most commonly performed procedures in orthopaedic surgery. We believe that there is reason for some optimism about the translation of our findings to the clinical setting. Our findings in this murine model suggest that 4-AP and EPO may lessen the effects of nerve entrapment and that the use of these agents after decompression may speed and perhaps otherwise optimize recovery after surgery.
Collapse
Affiliation(s)
- Maxwell Modrak
- School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Leigh Sundem
- School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Ranjan Gupta
- Department of Orthopaedic Surgery, University of California at Irvine, Irvine, California
| | - Michael J. Zuscik
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | - John Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
13
|
Leussink VI, Montalban X, Hartung HP. Restoring Axonal Function with 4-Aminopyridine: Clinical Efficacy in Multiple Sclerosis and Beyond. CNS Drugs 2018; 32:637-651. [PMID: 29992409 DOI: 10.1007/s40263-018-0536-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The oral potassium channel blocker 4-aminopyridine has been used in various neurological conditions for decades. Numerous case reports and studies have supported its clinical efficacy in ameliorating the clinical presentation of certain neurological disorders. However, its short half-life, erratic drug levels, and safety-related dose restrictions limited its use as a self-compounded drug in clinical practice. This changed with the introduction of a prolonged-release formulation, which was successfully tested in patients with multiple sclerosis. It was fully approved by the US FDA in January 2010 but initially received only conditional approval from the European Medicines Agency (EMA) in July 2011. After additional clinical studies, this conditional approval was changed to unrestricted approval in August 2017. This article reviews and discusses these recent studies and places aminopyridines and their clinical utility into the context of a broader spectrum of neurological disorders, where clinical efficacy has been suggested. In 2010, prolonged-release 4-aminopyridine became the first drug specifically licensed to improve walking in patients with multiple sclerosis. About one-third of patients across disease courses benefit from this treatment. In addition, various reports indicate clinical efficacy beyond multiple sclerosis, which may broaden its use in clinical practice.
Collapse
Affiliation(s)
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Barcelona, Spain.,St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
14
|
Brugarolas P, Sánchez-Rodríguez JE, Tsai HM, Basuli F, Cheng SH, Zhang X, Caprariello AV, Lacroix JJ, Freifelder R, Murali D, DeJesus O, Miller RH, Swenson RE, Chen CT, Herscovitch P, Reich DS, Bezanilla F, Popko B. Development of a PET radioligand for potassium channels to image CNS demyelination. Sci Rep 2018; 8:607. [PMID: 29330383 PMCID: PMC5766510 DOI: 10.1038/s41598-017-18747-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/16/2017] [Indexed: 01/22/2023] Open
Abstract
Central nervous system (CNS) demyelination represents the pathological hallmark of multiple sclerosis (MS) and contributes to other neurological conditions. Quantitative and specific imaging of demyelination would thus provide critical clinical insight. Here, we investigated the possibility of targeting axonal potassium channels to image demyelination by positron emission tomography (PET). These channels, which normally reside beneath the myelin sheath, become exposed upon demyelination and are the target of the MS drug, 4-aminopyridine (4-AP). We demonstrate using autoradiography that 4-AP has higher binding in non-myelinated and demyelinated versus well-myelinated CNS regions, and describe a fluorine-containing derivative, 3-F-4-AP, that has similar pharmacological properties and can be labeled with 18F for PET imaging. Additionally, we demonstrate that [18F]3-F-4-AP can be used to detect demyelination in rodents by PET. Further evaluation in Rhesus macaques shows higher binding in non-myelinated versus myelinated areas and excellent properties for brain imaging. Together, these data indicate that [18F]3-F-4-AP may be a valuable PET tracer for detecting CNS demyelination noninvasively.
Collapse
Affiliation(s)
- Pedro Brugarolas
- Department of Neurology, University of Chicago, Chicago, IL, USA. .,Massachusetts General Hospital, Boston, MA, USA.
| | - Jorge E Sánchez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Hsiu-Ming Tsai
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Falguni Basuli
- Imaging Probe Development Center, NIH/NHLBI, Bethesda, MD, USA
| | - Shih-Hsun Cheng
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Xiang Zhang
- Imaging Probe Development Center, NIH/NHLBI, Bethesda, MD, USA
| | - Andrew V Caprariello
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.,University of Calgary, Calgary, Alberta, Canada
| | - Jerome J Lacroix
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Western University of Health Sciences, Pomona, CA, USA
| | | | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA
| | - Onofre DeJesus
- Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA
| | - Robert H Miller
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.,George Washington University, Washington, DC, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, NIH/NHLBI, Bethesda, MD, USA
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | - Daniel S Reich
- Translational Neuroradiology Section, NIH/NINDS, Bethesda, MD, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Brian Popko
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Ayache SS, Chalah MA. Fatigue in multiple sclerosis – Insights into evaluation and management. Neurophysiol Clin 2017; 47:139-171. [PMID: 28416274 DOI: 10.1016/j.neucli.2017.02.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
|
16
|
Fragoso YD, Adoni T, Alves-Leon SV, Apostolos-Pereira SL, Barreira AA, Brooks JBB, Claudino R, Correa EC, Ferreira MLB, Finkelsztejn A, Finkelsztejn J, da Gama PD, Goncalves MVM, Guerreiro CT, da Cunha Matta AP, Marques VD, Rizo Morales R, Parolin MFK, de Castro Ribeiro M, Ribeiro TAGJ, Ruocco HH, Sato H, Scherpenhuijzen S, Siquineli F, de Carvalho Sousa NA, Varela DL, Tauil CB, Winckler TC. Real-life experience with fampridine (Fampyra®) for patients with multiple sclerosis and gait disorders. NeuroRehabilitation 2017; 39:301-4. [PMID: 27372365 DOI: 10.3233/nre-161361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Fampridine is a broad-spectrum voltage-dependent potassium channel blocker that enhances synaptic transmission. The drug has been shown to be able to ameliorate conduction in demyelinated axons, thereby leading to improved gait in patients with multiple sclerosis (MS). OBJECTIVE To assess the "real-life" efficacy and safety of fampridine prescribed for gait disorders in MS. This was an observational and prospective study carried out at MS Units participating in the Brazilian Multiple Sclerosis Study Group. METHODS Patients with MS and gait disorders were prescribed fampridine (10 mg twice a day), irrespectively of the degree of disability determined by MS. Neurological disability determined by MS was assessed with the expanded disability scale score (EDSS). Outcomes for efficacy and safety of the drug were evaluated by the 25 foot-walk test and by the adverse events of fampridine. RESULTS The time taken to walk 25 feet decreased by 20% or more in 62 patients (70%). Twenty-five patients were considered to be non-responders to this treatment. Improvement in walking speed was independent of improvement of disability. Mild or moderate adverse events were reported in 8% of patients. CONCLUSION Fampridine is an efficient and safe therapeutic option for patients with MS and gait disorders.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Department of Neurology, Universidade Metropolitana de Santos, Santos, SP, Brazil
| | - Tarso Adoni
- Department of Neurology, Hospital Sirio Libanes, Sao Paulo, SP, Brazil
| | - Soniza Vieira Alves-Leon
- Department of Neurology, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Amilton Antunes Barreira
- Department of Neurology, Universidade de Sao Paulo campus Ribeirao Preto, Ribeirao Preto, SP, Brazil
| | | | - Rinaldo Claudino
- Department of Neurology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | | | | | - Juliana Finkelsztejn
- Department of Neurology, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Paulo Diniz da Gama
- Department of Neurology, Pontificia Universidade Catolica Campus Sorocaba, Sorocaba, SP, Brazil
| | | | - Carlos Tostes Guerreiro
- Department of Neurology, Universidade de Sao Paulo campus Ribeirao Preto, Ribeirao Preto, SP, Brazil
| | | | - Vanessa Daccach Marques
- Department of Neurology, Universidade de Sao Paulo campus Ribeirao Preto, Ribeirao Preto, SP, Brazil
| | - Rogerio Rizo Morales
- Department of Neurology, Universidade Federal de Uberlandia, Uberlandia, MG, Brazil
| | | | - Marlise de Castro Ribeiro
- Department of Neurology, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Henry Sato
- Department of Neurology, Neurological Institute Curitiba, Curitiba, PR, Brazil
| | - Simone Scherpenhuijzen
- Department of Neurology, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabio Siquineli
- Department of Neurology, Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | | | - Daniel Lima Varela
- Department of Neurology, Servico de Neurologia e Neurocirurgia de Passo Fundo, Passo Fundo, RS, Brazil
| | | | | |
Collapse
|
17
|
Tseng KC, Li H, Clark A, Sundem L, Zuscik M, Noble M, Elfar J. 4-Aminopyridine promotes functional recovery and remyelination in acute peripheral nerve injury. EMBO Mol Med 2016; 8:1409-1420. [PMID: 27861125 PMCID: PMC5167128 DOI: 10.15252/emmm.201506035] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 01/12/2023] Open
Abstract
Traumatic peripheral nerve damage is a major medical problem without effective treatment options. In repurposing studies on 4-aminopyridine (4-AP), a potassium channel blocker that provides symptomatic relief in some chronic neurological afflictions, we discovered this agent offers significant promise as a small molecule regenerative agent for acute traumatic nerve injury. We found, in a mouse model of sciatic crush injury, that sustained early 4-AP administration increased the speed and extent of behavioral recovery too rapidly to be explained by axonal regeneration. Further studies demonstrated that 4-AP also enhanced recovery of nerve conduction velocity, promoted remyelination, and increased axonal area post-injury. We additionally found that 4-AP treatment enables distinction between incomplete and complete lesions more rapidly than existing approaches, thereby potentially addressing the critical challenge of more effectively distinguishing injured individuals who may require mutually exclusive treatment approaches. Thus, 4-AP singularly provides both a new potential therapy to promote durable recovery and remyelination in acute peripheral nerve injury and a means of identifying lesions in which this therapy would be most likely to be of value.
Collapse
Affiliation(s)
- Kuang-Ching Tseng
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew Clark
- Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Leigh Sundem
- Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - John Elfar
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Short-term impact of fampridine on motor and cognitive functions, mood and quality of life among multiple sclerosis patients. Clin Neurol Neurosurg 2015; 139:35-40. [DOI: 10.1016/j.clineuro.2015.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/07/2015] [Accepted: 08/15/2015] [Indexed: 11/23/2022]
|
19
|
Effects of dalfampridine on multi-dimensional aspects of gait and dexterity in multiple sclerosis among timed walk responders and non-responders. J Neurol Sci 2015; 356:77-82. [DOI: 10.1016/j.jns.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
|
20
|
Blight AR, Henney HR, Cohen R. Development of dalfampridine, a novel pharmacologic approach for treating walking impairment in multiple sclerosis. Ann N Y Acad Sci 2014; 1329:33-44. [PMID: 25154911 DOI: 10.1111/nyas.12512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Walking impairment is a clinical hallmark of multiple sclerosis (MS). Dalfampridine-ER, an extended-release formulation of dalfampridine (also known by its chemical name, 4-aminopyridine, and its international nonproprietary name, fampridine), was developed to maintain drug plasma levels within a narrow therapeutic window, and assessed for its ability to improve walking in MS. The putative mechanism of action of dalfampridine-ER is restoration of axonal conduction via blockade of the potassium channels that become exposed during axonal demyelination. Two pivotal phase III clinical trials demonstrated that dalfampridine-ER 10-mg tablets administered twice daily improved walking speed and patient-reported perceptions of walking in some patients. Dalfampridine-ER was generally well tolerated, and, at the approved dose, risk of seizure was neither elevated relative to placebo nor higher than the rate in the MS population. Dalfampridine-ER (AMPYRA®) was approved in the United States for the treatment of walking in patients with MS as demonstrated by an increase in walking speed. The use of the dalfampridine-ER is contraindicated in patients with a history of seizure. It is the first pharmacologic therapy for this indication and has been incorporated into clinical management of MS.
Collapse
|
21
|
Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W. Remyelination after spinal cord injury: Is it a target for repair? Prog Neurobiol 2014; 117:54-72. [DOI: 10.1016/j.pneurobio.2014.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
|
22
|
Sustained-release fampridine (4-aminopyridine) in multiple sclerosis: efficacy and impact on motor function. Drugs R D 2014; 13:175-81. [PMID: 23873597 PMCID: PMC3784065 DOI: 10.1007/s40268-013-0020-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective The aim of this study was to determine the efficacy of sustained-release fampridine (4-aminopyridine) in veterans with multiple sclerosis (MS) with limited ambulatory ability, and its impact on motor function in an outpatient setting. Design Retrospective. Setting Tertiary referral center [Veterans Affairs (VA) Medical Center]. Participants Veterans; 20 MS patients were prescribed dalfampridine (10 mg twice daily) due to their difficulty with walking based on patient and caregiver report and clinician impression of change in the ability to ambulate based on prior 10-meter (10M) and 2-minute walk tests (2MWTs). Intervention Not applicable. Main Outcome Measures The primary outcome measures were mean changes in walking speed (10M walk test), walking distance (2MWT), and Total Functional Independence Measure (TFIM). Improvement of >20 % in walking speed was indicated as a clinically meaningful change. Results Treatment with dalfampridine resulted in significant improvement in walking speed and endurance (p < 0.05). Walking speed increased by 33 % and walking endurance by 31 %, representing clinically meaningful improvement. This change was not influenced by change in muscle tone. This improvement in mobility was associated with a clinically significant change in motor function. Adverse effects, including insomnia, dizziness, and headache, were experienced by five patients who discontinued the medication after a minimum of 4 weeks. Conclusion Treatment with dalfampridine resulted in clinically relevant improvements in walking speed and endurance in MS patients with limited ambulation and helped improve their motor function. Electronic supplementary material The online version of this article (doi:10.1007/s40268-013-0020-x) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Jensen HB, Ravnborg M, Dalgas U, Stenager E. 4-Aminopyridine for symptomatic treatment of multiple sclerosis: a systematic review. Ther Adv Neurol Disord 2014; 7:97-113. [PMID: 24587826 PMCID: PMC3932769 DOI: 10.1177/1756285613512712] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This systematic review summarizes the existing evidence on the effect of 4-aminopyridine (4-AP) as a symptomatic treatment of decreased walking capacity in patients with multiple sclerosis (MS) when administered as an immediate release compound and a slow release compound. It summarizes existing evidence on the basic mechanisms of 4-AP from experimental studies and evidence on the clinical use of the compound. A systematic literature search was conducted of the following databases: PubMed and EMBASE. Thirty-five studies were included in the review divided into 16 experimental studies, two clinical studies with paraclinical endpoints and 17 clinical studies with clinical endpoints. Animal studies show that 4-AP can improve impulse conduction through demyelinated lesions. In patients with MS this translates into improved walking speed and muscle strength of the lower extremities in a subset of patients at a level that is often of clinical relevance. Phase III trials demonstrate approximately 25% increase in walking speed in roughly 40% and improved muscle strength in the lower extremities. Furthermore, 4-AP might have an effect on other domains such as cognition, upper extremity function and bowel and bladder, but this warrants further investigation. Side effects are mainly mild to moderate, consisting primarily of paraesthesia, dizziness, nausea/vomiting, falls/balance disorders, insomnia, urinary tract infections and asthenia. Side effects are worse when administered intravenously and when administered as an immediate release compound. Serious adverse events are rarely seen in the marketed clinical dosages. In conclusion, 4-AP is easy and safe to use. Slow release 4-AP shows more robust clinical effects and a more beneficial side-effect profile than immediate release 4-AP.
Collapse
Affiliation(s)
- Henrik Boye Jensen
- Institute of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense C, Denmark
| | - Mads Ravnborg
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Ulrik Dalgas
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
| | - Egon Stenager
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Bagchi B, Al-Sabi A, Kaza S, Scholz D, O'Leary VB, Dolly JO, Ovsepian SV. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination. PLoS One 2014; 9:e87736. [PMID: 24498366 PMCID: PMC3912067 DOI: 10.1371/journal.pone.0087736] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice. Immuno-fluorescence confocal analysis of the expression and distribution of voltage-activated K⁺ channels (K(V)1.1 and 1.2 α subunits) revealed their spread from typical juxta-paranodal (JXP) sites to nodes in demyelinated axons, albeit with a disproportionate increase in the level of K(V)1.1 subunit. Functionally, in contrast to monophasic compound action potentials (CAPs) recorded in controls, responses derived from optic nerves of cuprizone-treated mice displayed initial synchronous waveform followed by a dispersed component. Partial restoration of CAPs by broad spectrum (4-aminopyridine) or K(V)1.1-subunit selective (dendrotoxin K) blockers of K⁺ currents suggest enhanced K(V)1.1-mediated conductance in the demyelinated optic nerve. Biophysical profiling of K⁺ currents mediated by recombinant channels comprised of different K(V)1.1 and 1.2 stoichiometries revealed that the enrichment of K(V)1 channels K(V)1.1 subunit endows a decrease in the voltage threshold and accelerates the activation kinetics. Together with the morphometric data, these findings provide important clues to a molecular basis for temporal dispersion of CAPs and reduced excitability of demyelinated optic nerves, which could be of potential relevance to the patho-physiology of MS and related disorders.
Collapse
Affiliation(s)
- Bandita Bagchi
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Ahmed Al-Sabi
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Seshu Kaza
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Dimitri Scholz
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Valerie B. O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - J. Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- * E-mail: (SVO); (JOD)
| | - Saak V. Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- Department of Biotechnology, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ludwig-Maximilians-Universität München, Zentrum für Neuropathologie, Feodor-Lynen-Str. 23, Munich, Germany
- * E-mail: (SVO); (JOD)
| |
Collapse
|
25
|
Fernandez O, Berger T, Hartung HP, Putzki N. Historical overview of the rationale for the pharmacological use of prolonged-release fampridine in multiple sclerosis. Expert Rev Clin Pharmacol 2014; 5:649-65. [DOI: 10.1586/ecp.12.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Mathiesen HK, Sorensen PS. Prolonged-release fampridine improves walking in a proportion of patients with multiple sclerosis. Expert Rev Neurother 2014; 13:1309-17. [DOI: 10.1586/14737175.2013.859523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Weir S, Torkin R, Henney HR. Pharmacokinetic profile of dalfampridine extended release: clinical relevance in patients with multiple sclerosis. Curr Med Res Opin 2013; 29:1627-36. [PMID: 23157467 DOI: 10.1185/03007995.2012.749221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND In January 2010, dalfampridine extended release tablets (dalfampridine-ER [Ampyra *]; prolonged-, modified- or sustained-release fampridine [Fampyra †] in some countries), 10 mg to be administered twice daily approximately 12 hours apart, were approved by the US Food and Drug Administration. This was the first drug indicated to improve walking in patients with MS. SCOPE Publications describing the pharmacokinetics of dalfampridine-ER or the immediate release formulation were identified from a search of PubMed through June 2012 using the search terms 'dalfampridine OR fampridine OR 4-aminopyridine' AND 'pharmacokinetics' and were supplemented with unpublished studies made available by Acorda Therapeutics Inc. FINDINGS Pharmacokinetic studies show dose proportionality, with dalfampridine-ER having a more favorable profile than immediate-release dalfampridine. With twice-daily dosing of dalfampridine-ER, time to peak plasma concentration (3.2-3.9 hours) and apparent terminal plasma half-life (5.6-6.4 hours) are approximately twice those of immediate-release formulations, with comparable overall exposure and peak plasma concentrations (21.6 ng/mL) that were maintained at levels approximately 50% lower than immediate release. Steady state is achieved within 39 hours; pharmacokinetics are predictable based on single dosing. Trough plasma concentrations of 13-15 ng/mL are required to maintain efficacy. Renal excretion is predominantly as unchanged compound, and renal clearance in healthy individuals exceeds the glomerular filtration rate. Since dalfampridine-ER exposure increases with renal impairment, it is contraindicated in patients with moderate or severe impairment in the US, and in patients with any renal impairment in the European Union. CONCLUSIONS Dalfampridine-ER has low protein binding, is not a substrate for p-glycoprotein and does not affect CYP450 enzymes, suggesting a low potential for drug-drug interactions. Because of the narrow therapeutic range and risk of adverse events, including seizure, with increasing plasma concentrations, the recommended dose and regimen of dalfampridine-ER should not be exceeded and not be used with other dalfampridine formulations. A limitation of this review is that it includes some data that have not yet been published.
Collapse
Affiliation(s)
- Scott Weir
- University of Kansas Cancer Center , Kansas City, KS , USA
| | | | | |
Collapse
|
28
|
Weir S, Gao Y, Henney HR. Population pharmacokinetics and pharmacodynamics of dalfampridine-ER in healthy volunteers and in patients with multiple sclerosis. Curr Med Res Opin 2013; 29:1637-45. [PMID: 23157466 DOI: 10.1185/03007995.2012.749222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Using data pooled from several studies of dalfampridine extended release (ER), a population pharmacokinetic model was developed for the purposes of characterizing the population pharmacokinetics and pharmacodynamics of dalfampridine-ER with respect to variability in pharmacokinetics, covariates affecting the pharmacokinetics, and whether the current therapeutic dosage represents an optimal dosage. Studies were conducted in healthy volunteers and multiple sclerosis (MS) patients over the course of development and registration of dalfampridine extended release tablets (dalfampridine-ER [Ampyra *]; prolonged-, modified- or sustained-release fampridine [Fampyra †] in some countries). METHODS The model used to best describe the population pharmacokinetics of dalfampridine-ER was an open, one-compartment model with first-order absorption, first-order elimination and an absorption lag time. RESULTS The population median estimated oral clearance was 36 L/h for a 50-year-old woman with a creatinine clearance of 105 mL/min and 42 L/h for a comparable man. The typical volume of distribution was 304 L for women and 403 L for men. The estimated absorption rate constant was 1.22 hours(-1) in the fasted state and 2.22 hours(-1) when given with food. The covariates identified as having a significant effect (p < 0.01) on model fit were food and gender on absorption rate, and gender, age and creatinine clearance on oral clearance. Only creatinine clearance and age are of clinical relevance. Concomitant medications did not affect any of the parameters in the model. Exposure-response relationships for both efficacy and safety were consistent with what has been observed in clinical trials. Limitations of this study include some reliance on unpublished data, and the limited effectiveness of the model for determining the likelihood of the efficacy and safety of dalfampridine-ER in clinical practice. CONCLUSIONS The approved therapeutic dosage regimen of dalfampridine-ER 10 mg twice daily was identified as the optimum dosing regimen based on model-predicted exposure response relationships for efficacy and adverse events. A limitation of this study is the limited effectiveness of the models used to predict long-term efficacy and safety of dalfampridine-ER in clinical use.
Collapse
Affiliation(s)
- Scott Weir
- University of Kansas Cancer Center , Kansas City, KS , USA
| | | | | |
Collapse
|
29
|
Preiningerova JL, Baumhackl U, Csepany T, Czaplinski A, Deisenhammer F, Derfuss T, Fabjan TH, Fazekas F, Fuchs S, Havrdova E, Ledinek AH, Illes Z, Jazbec SS, Klimova E, Komoly S, Kurca E, Linnebank M, Lisy L, Mares J, Prochazkova L, Csilla R, Szilasiova J, Stourac P, Talab R, Turcani P, Vachova M, Vecsei L, Vodusek D, Zapletalova O, Berger T. Recommendations for the use of prolonged-release fampridine in patients with multiple sclerosis (MS). CNS Neurosci Ther 2013; 19:302-6. [PMID: 23607697 DOI: 10.1111/cns.12101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/29/2022] Open
Abstract
Prolonged-release fampridine (fampridine PR) is a potassium channel blocker that improves conductivity of signal on demyelinated axons in central nervous system. Fampridine PR has been approved to improve speed of walking in patients with multiple sclerosis. This statement provides a brief summary of data on fampridine PR and recommendations on practical use of the medication in clinical practice, prediction, and evaluation of response to treatment and patient management.
Collapse
Affiliation(s)
- Jana Lizrova Preiningerova
- Department of Neurology and Center for Clinical Neuroscience, Charles University, General Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Aminopyridines are members of a family of monoamino and diamino derivatives of pyridine, and their principal mechanism of action is dose-dependent blockade of voltage-gated potassium channels, in particular, fast voltage-gated potassium channels. To date, only 2 main broad-spectrum potassium channel blockers, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP), have been used as investigational new drugs in various neurological diseases. More recently, licensed versions of these compounds including dalfampridine extended release (Fampyra, Biogen Idec) for the improvement of walking in adult patients with multiple sclerosis, and amifampridine (Firdapse, Biomarin Europe Ltd) for the treatment of Lambert-Eaton myasthenic syndrome have been released, and the costs associated with using these new products highlights the importance of evaluating the clinically meaningful treatment effects of these drugs.The current review summarizes the evidence of aminopyridine use in neurological conditions and in particular presents a systematic review of all randomized trials of 3,4-DAP in Lambert-Eaton myasthenic syndrome to determine the efficacy of this treatment using meta-analysis of clinical and electrophysiological end points.
Collapse
|
31
|
Horton L, Conger A, Conger D, Remington G, Frohman T, Frohman E, Greenberg B. Effect of 4-aminopyridine on vision in multiple sclerosis patients with optic neuropathy. Neurology 2013; 80:1862-6. [PMID: 23616154 DOI: 10.1212/wnl.0b013e3182929fd5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The objective of this randomized, double-blind, placebo-controlled, crossover study was to examine if patients with optic neuropathy would derive a therapeutic benefit from 4-aminopyridine (4-AP) treatment. Furthermore, the study was intended to determine if patients with certain P100 latencies or retinal nerve fiber layer (RNFL) measures would be more likely to respond to therapy. METHODS Patients were enrolled in a randomized, placebo-controlled, double-blind, crossover study of 10 weeks duration. Patients underwent visual evoked potentials (VEP), optical coherence tomography (OCT), and visual acuity before starting 5 weeks of either placebo or 4-AP. After 5 weeks, they completed a second evaluation (VEP, OCT, and visual acuity) and were crossed over between treatment arms. Five weeks later, they had their final evaluation. All investigators were blinded to treatment arm until after data analysis. RESULTS On average, patients had faster P100s on 4-AP when compared to placebo. A subset of patients had distinct responses to 4-AP as measured by improvements in visual acuity. Finally, eyes with an RNFL measure between 60 and 80 µm had the highest response rate. CONCLUSIONS 4-Aminopyridine is useful for improving vision in patients with demyelinating optic neuropathy. Future clinical trials may be able to enrich a patient population for potential responders using OCT and VEP measures. Selecting patients for future trials should use RNFL measures as part of inclusion/exclusion criteria. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence supporting the use of 4-AP in certain patients with optic neuropathy to improve visual function (patients with RNFL between 60 and 80 µm).
Collapse
Affiliation(s)
- Lindsay Horton
- FrDepartment of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center at Dallas, Dallas, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Krishnan AV, Kiernan MC. Sustained-release fampridine and the role of ion channel dysfunction in multiple sclerosis. Mult Scler 2012; 19:385-91. [DOI: 10.1177/1352458512463769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ion channel dysfunction is an important mechanism that contributes to functional disability and axonal degeneration in multiple sclerosis (MS). Recent studies have revealed that there are complex rearrangements of voltage-gated Na+ channels that occur with acute brain inflammation in MS, with up-regulation of primitive Na+ channel isoforms such as Nav 1.2 during acute inflammation. While these changes may help support neural conduction, increased expression of ‘persistent’ Na+ conductances and altered function of the Na+/K+ pump may contribute to axonal degeneration in MS. Increased expression of K+ channels due to demyelination has also been considered as a contributing factor to conduction failure in MS. Recent phase II and phase III clinical trials have demonstrated improvements in walking speed in patients receiving fampridine SR, a K+ channel blocker. This medication appears to be well-tolerated with a low risk of serious adverse events and provides benefits in both relapsing and progressive forms of MS.
Collapse
Affiliation(s)
- Arun V Krishnan
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Australia
| |
Collapse
|
33
|
Henney HR, Blight AR. Walking impairment in patients with multiple sclerosis - a new therapeutic approach and clinical potential of dalfampridine extended release tablets. Degener Neurol Neuromuscul Dis 2012; 2:53-64. [PMID: 30890878 DOI: 10.2147/dnnd.s19839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Walking impairment is a clinical hallmark of multiple sclerosis (MS) that has been under-recognized as a therapeutic target for pharmacologic intervention. The development and approval of dalfampridine extended release tablets (dalfampridine-ER; known as prolonged-, modified, or sustained-release fampridine outside the USA), 10 mg taken twice daily, to improve walking in patients with MS, fills a previously unmet need. In three randomized, double-blind, placebo-controlled trials, dalfampridine-ER improved walking speed in approximately one-third (37%) of treated patients, and average walking speed on therapy among these responders improved by approximately 25% relative to baseline. Walking-speed improvement among responders was clinically significant, as determined by a statistically significant improvement in the patient-reported 12-item Multiple Sclerosis Walking Scale. Long-term extension studies indicate that responders were able to maintain benefits, compared with nonresponders over prolonged periods of treatment. Dalfampridine-ER was generally well tolerated. Dizziness, insomnia, balance disorder, headache, nausea, urinary tract infection, and asthenia were the most common adverse events. Although the incidence of seizures appeared to be dose related, among patients treated with dalfampridine-ER in the three trials, the rate of seizures was 0.25%. These efficacy and safety data suggest that dalfampridine-ER can be a useful and clinically relevant addition to the pharmacologic armamentarium for the management of MS symptoms and disabilities. Because of its narrow therapeutic index and potential for seizures, it is especially important in the clinical setting to adhere to the dosing recommended in the approved labels.
Collapse
|
34
|
Comparison of 10-mg doses of 4-aminopyridine and 3,4-diaminopyridine for the treatment of downbeat nystagmus. J Neuroophthalmol 2012; 31:320-5. [PMID: 21734596 DOI: 10.1097/wno.0b013e3182258086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Animal experiments have demonstrated that aminopyridines increase Purkinje cell excitability, and in clinical studies, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP) improved downbeat nystagmus. In this double-blind, prospective, crossover study, the effects of equivalent doses of 4-AP and 3,4-DAP on the slow-phase velocity (SPV) of downbeat nystagmus were compared. METHODS Eight patients with downbeat nystagmus due to different etiologies (cerebellar degeneration [n = 1], bilateral vestibulopathy [n = 1], bilateral vestibulopathy and cerebellar degeneration [n = 1], Arnold-Chiari I malformation and cerebellar ataxia [n = 1], cryptogenic cerebellar ataxia [n = 4]) were included. They were randomly assigned to receiving a single capsule of 10 mg of 3,4-DAP or 4-AP followed by 6 days with no medication. One week later, the treatment was switched, that is, 1 single capsule (10 mg) of the other agent. Recordings with 3-dimensional video-oculography were performed before and 45 and 90 minutes after drug administration. RESULTS Both medications had a significant effect throughout time (pre vs post 45 vs post 90) (F() = 8.876; P < 0.01). Following the administration of 3,4-DAP, mean slow velocity decreased from -5.68°/s (pre) to -3.29°/s (post 45) to -2.96°/s (post 90) (pre vs post 45/post 90 P < 0.01). In 4-AP, the mean SPV decreased from -6.04°/s (pre) to -1.58°/s (post 45) to -1.21°/s (post 90) (pre vs post 45/post 90 P < 0.00001). Both after 45 and after 90, the mean SPVs were significantly lower for 4-AP than for 3,4-DAP (P < 0.05). None of the patients reported serious side effects. CONCLUSION Based on these results, 10-mg doses of 4-AP lead to a more pronounced decrease of the SPV of downbeat nystagmus than do equivalent doses of 3,4-DAP.
Collapse
|
35
|
Liu J, Xu C, Chen L, Xu P, Xiong H. Involvement of Kv1.3 and p38 MAPK signaling in HIV-1 glycoprotein 120-induced microglia neurotoxicity. Cell Death Dis 2012; 3:e254. [PMID: 22258405 PMCID: PMC3270274 DOI: 10.1038/cddis.2011.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.
Collapse
Affiliation(s)
- J Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
36
|
Blight AR. Treatment of walking impairment in multiple sclerosis with dalfampridine. Ther Adv Neurol Disord 2011; 4:99-109. [PMID: 21694807 DOI: 10.1177/1756285611403960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Potassium channel blockade has long been considered a potential therapeutic strategy for treatment of multiple sclerosis (MS) based on the pathophysiology of demyelinated axons. Dalfampridine, which is also known as fampridine or 4-aminopyridine (4-AP), is the potassium channel blocker that has been studied most extensively in MS and other demyelinating neurologic disorders. An extended-release formulation of dalfampridine was recently approved by the US Food and Drug Administration to improve walking in patients with MS. In randomized, double-blind, placebo-controlled trials, with dalfampridine extended release tablets 10 mg taken twice daily, about 12 h apart, walking speed was improved in approximately one-third of treated patients; in these patients, average walking speed on therapy was about 25% above baseline. This improvement was clinically meaningful as assessed by concurrent measurement of patient-reported severity of walking-related disability. Dalfampridine extended release tablets were generally well tolerated, with a range of adverse effects that appear to be related to increases in central nervous system excitation. There is a dose-dependent increase in the occurrence of seizures at doses higher than the recommended 10 mg twice daily.
Collapse
Affiliation(s)
- Andrew R Blight
- Chief Scientific Officer, Acorda Therapeutics, Inc., 15 Skyline Drive, Hawthorne, NY 10532, USA
| |
Collapse
|
37
|
Dunn J, Blight A. Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis. Curr Med Res Opin 2011; 27:1415-23. [PMID: 21595605 DOI: 10.1185/03007995.2011.583229] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) can cause progressive walking impairment that contributes to disability, loss of independence, and reduced quality of life. Dalfampridine (4-aminopyridine), a voltage-dependent potassium channel blocker, has been shown to improve walking in patients with MS, as demonstrated by an increase in walking speed. OBJECTIVE To summarize knowledge about the mechanism of action of dalfampridine in the context of clinical evidence of walking improvement in MS patients. METHODS Although this was not a systematic review, which is the primary limitation of this study, searches of PubMed were performed using relevant search terms to identify studies that examined the mechanism of action related to MS and its effects in patients with MS in clinical trials. RESULTS Voltage-gated potassium channels represent a family of related proteins that span cell membranes, open and close in response to changes in the transmembrane potential, and help regulate ionic potassium currents. Action potential conduction deficits in demyelinated axons result in part from the exposure after demyelination of the paranodal and internodal potassium channels that are distributed in the axonal membrane. This exposure leads to abnormal currents across the axonal membrane that can slow action potential conduction, result in conduction failure, or affect the axon's capacity for repetitive discharge. While dalfampridine is a broad-spectrum blocker of voltage-dependent potassium channels at millimolar concentrations, studies have shown improvement in action potential conduction in demyelinated axons at concentrations as low as 1 μM, and therapeutic plasma concentrations (associated with improved walking) are in the range of 0.25 µM. However, no specific potassium channel subtype has yet been characterized with significant sensitivity to dalfampridine in this range, and the effects of the drug at this low concentration appear to be quite selective. Improved conduction translates into clinical benefit as measured by objectively and subjectively assessed walking relative to placebo. Such improvements were observed in approximately one third of patients treated with an extended-release formulation of dalfampridine in clinical trials. These patients who responded to dalfampridine had an average increase in walking speed of approximately 25%, and greater improvements than nonresponders on a self-reported subjective measure of walking. CONCLUSIONS The extended-release formulation of dalfampridine has been shown in clinical trials to improve walking speed in approximately one third of MS patients with ambulatory impairment. The putative mechanism of action of dalfampridine is restoration of action potential conduction via blockade of an as yet uncharacterized subset of potassium channels in demyelinated axons.
Collapse
Affiliation(s)
- Jeffrey Dunn
- Stanford Multiple Sclerosis Center, Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA 94305-5235, USA.
| | | |
Collapse
|
38
|
Panitch H, Applebee A. Treatment of walking impairment in multiple sclerosis: an unmet need for a disease-specific disability. Expert Opin Pharmacother 2011; 12:1511-21. [PMID: 21635193 DOI: 10.1517/14656566.2011.586338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Walking impairment is a clinical hallmark of multiple sclerosis (MS), a chronic neurologic disease characterized by axonal demyelination and dysfunction that results in progressive disability. Until recently, there were no therapies that specifically targeted the axonal dysfunction associated with walking impairment in MS. AREAS COVERED The purpose of this review is to discuss the unmet need for the treatment of walking impairment in MS patients and to evaluate how a new class of pharmacologic therapies, neurofunctional modifiers, potentially addresses this unmet need. Discussion is based on clinical experience and opinions supported by publications identified in the PubMed literature using the search terms 'multiple sclerosis' and 'mobility OR walking'. EXPERT OPINION The development and approval of new treatments for MS show promise for improving adherence to therapy and increasing the potential for clinical effectiveness. Renewed emphasis on integrating strategies that target the underlying pathophysiology with those that address symptoms of concern to patients also has the potential to improve the lives of MS patients and their caregivers. The introduction of neurofunctional modifiers, such as dalfampridine for the improvement of walking impairment, may be of benefit by improving function, mobility and overall quality of life for MS patients.
Collapse
Affiliation(s)
- Hillel Panitch
- University of Vermont College of Medicine, Neurology Service, Fletcher Allen Health Care, 1 South Prospect Street, Burlington, VT 05401, USA
| | | |
Collapse
|
39
|
Abstract
OBJECTIVE To study the safety of 3-4 diaminopyridine (DAP) in patients with motor neuron diseases and to examine its efficacy in reducing muscle fatigue and weakness and in improving objective parameters of muscle function. DESIGN Assessments of safety included a questionnaire of symptoms, clinical examination, blood testing, and electrocardiography at each visit; efficacy was assessed by subjective scores of fatigue and weakness; an Amyotrophic Lateral Sclerosis Functional Rating Scale and functional ability scores, including timed verbal scores; manual muscle testing; grip dynamometry; pulmonary function tests; timed functional tests; and electrophysiological studies. PARTICIPANTS Thirteen subjects with amyotrophic lateral sclerosis and seven subjects with only a lower motor neuron syndrome. MAIN OUTCOMES Assess tolerability of DAP and determine if there was symptomatic improvement of muscle fatigue. SECONDARY OUTCOME: To determine the effects of DAP on objective parameters of muscle function. RESULTS The drug was well tolerated with only four subjects reporting tingling of lips and fingers during the active drug period. The subjective scores for fatigue and weakness showed a mild improvement after 4 weeks on DAP compared with placebo. A significant benefit of DAP was also demonstrated in the timed verbal scores. CONCLUSION 3-4 DAP appeared to be safe and produced subjective benefit in motor neuron diseases. The drug could be added for symptomatic treatment in these diseases. Larger studies are necessary to demonstrate efficacy.
Collapse
|
40
|
Shi R, Sun W. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons. Neurosci Bull 2011; 27:36-44. [PMID: 21270902 DOI: 10.1007/s12264-011-1048-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.
Collapse
Affiliation(s)
- Riyi Shi
- Department of Basic Medical Sciences, School of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
41
|
Hayes KC. Impact of extended-release dalfampridine on walking ability in patients with multiple sclerosis. Neuropsychiatr Dis Treat 2011; 7:229-39. [PMID: 21573085 PMCID: PMC3090287 DOI: 10.2147/ndt.s10469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
Dalfampridine extended release (ER) 10 mg is an oral tablet form of the potassium (K(+)) channel-blocking compounded dalfampridine, also known as fampridine, and chemically 4-aminopyridine or 4-AP, which received regulatory approval in the United States for the treatment of walking in patients with multiple sclerosis (MS) in January 2010. Two pivotal Phase 3 clinical trials demonstrated significant improvements in walking in patients with the four primary forms of MS following administration of dalfampridine ER tablets 10 mg twice daily. The drug is thought to act by restoring conduction in focally demyelinated axons and by enhancing neurotransmission, thereby leading to improved neurological function. This review describes how dalfampridine represents a new pharmacotherapeutic approach to the clinical management of mobility impairment. It describes the mechanism of action and chemistry of dalfampridine ER, its pharmacokinetics, tolerability, and side effects, and the outcomes of multicenter trials showing its efficacy in improving walking speed. Clinician and patient global assessments, as well as patient self-assessment of the impact of MS on their gait disability, confirm clinically relevant benefit from the therapy. Patients tolerate the drug well and their improvement in terms of household and community ambulation, inferred from analysis of pooled data from several studies, is likely to translate into benefits in the performance of instrumental activities of daily living and a reduction in the neuropsychiatric burden of disease.
Collapse
Affiliation(s)
- Keith C Hayes
- Department of Physical Medicine and Rehabilitation, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
42
|
Jeffery DR, Pharr EP. Dalfampridine sustained-release for symptomatic improvement of walking speed in patients with multiple sclerosis. CORE EVIDENCE 2010; 5:107-12. [PMID: 21468366 PMCID: PMC3065554 DOI: 10.2147/ce.s9046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Indexed: 11/23/2022]
Abstract
Dalfampridine sustained-release (SR) is a time-release formulation of 4-aminopyridine, recently approved by the Food and Drug Administration to improve walking in patients with multiple sclerosis (MS). In Phase II trials, walking speed and lower extremity muscle strength was increased in patients with MS, but the increase in walking speed did not reach statistical significance. A responder analysis revealed that approximately 35% of treated patients had a statistically significant and clinically meaningful increase in walking speed. When treated responders were compared with treated nonresponders, walking speed significantly increased in the responder group, but not in the nonresponder or placebo groups. This result was duplicated in two larger Phase III trials. The optimal dose to maximize the risk-benefit ratio was 10 mg twice daily. Higher doses were associated with a greater risk of seizure, but no further improvement in walking speed or in the proportion of responders. Dalfampridine SR is eliminated by renal clearance and undergoes only limited metabolism (<10%). It is contraindicated in patients with moderate or severe renal insufficiency and in those with a history of seizures or epileptiform activity on electroencephalography. The development of time-released 4-aminopyridine represents a major advance in symptomatic therapy for MS.
Collapse
|
43
|
Tang J, Rodriguez M. Dalfampridine for the treatment of ambulatory impairment in multiple sclerosis. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dalfampridine is a potassium-channel blocker that is approved by the US FDA as 10 mg extended-release tablets to improve walking in patients with multiple sclerosis. Approval is currently pending in Europe. This is the first pharmacological symptomatic treatment approved for multiple sclerosis patients of any type with walking difficulties. Relative to an immediate-release formulation, the extended-release formulation of dalfampridine lowers peak serum concentrations that contribute to toxicity while maintaining a comparable amount of total drug exposure. Several studies show the efficacy and tolerability of dalfampridine. The pivotal published clinical trial demonstrated a treatment–responder rate of 35% compared with an 8% placebo–responder rate (p < 0.0001). The subjects who responded to treatment had an average improvement in their 25-foot walking test time of 25.2% (95% CI: 21.5–28.8) compared with an average improvement of 4.7% (95% CI: 1.0–8.4) in subjects who responded to placebo. Seizures are the most serious adverse effect of dalfampridine with a probable dose-dependent likelihood of occurrence.
Collapse
Affiliation(s)
- Junger Tang
- Mayo Graduate School of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
44
|
Husseini L, Leussink VI, Kieseier BC, Hartung HP. [4-Aminopyridine (Fampridine). A new attempt for the symptomatic treatment of multiple sclerosis]. DER NERVENARZT 2010; 81:203-211. [PMID: 20112006 DOI: 10.1007/s00115-009-2902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mobility limitation is a frequent clinical symptom of multiple sclerosis (MS) that poses a therapeutic challenge. For years results of animal experiments and clinical experience have indicated that the potassium channel blocker 4-aminopyridine improves axonal excitatory circuits and thus muscular strength in demyelinating diseases. A recently conducted randomized, placebo-controlled, multicenter phase 3 clinical trial in MS patients was able to show that an oral sustained-release formulation of 4-aminopyridine (Fampridine-SR) represents a suitable agent for treatment of walking disability in MS patients.This overview presents the study data and discusses the value of 4-aminopyridine for the symptomatic treatment of MS as a neurofunctional modifier of this disabling disease.
Collapse
Affiliation(s)
- L Husseini
- Neurologische Klinik, Heinrich-Heine-Universität Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | |
Collapse
|
45
|
Sun W, Smith D, Fu Y, Cheng JX, Bryn S, Borgens R, Shi R. Novel Potassium Channel Blocker, 4-AP-3-MeOH, Inhibits Fast Potassium Channels and Restores Axonal Conduction in Injured Guinea Pig Spinal Cord White Matter. J Neurophysiol 2010; 103:469-78. [DOI: 10.1152/jn.00154.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have demonstrated that 4-aminopyridine-3-methanol (4-AP-3-MeOH), a 4-aminopyridine derivative, significantly restores axonal conduction in stretched spinal cord white-matter strips and shows no preference in restoring large and small axons. This compound is 10 times more potent when compared with 4-AP and other derivatives in restoring axonal conduction. Unlike 4-AP, 4-AP-3-MeOH can restore axonal conduction without changing axonal electrophysiological properties. In addition, we also have confirmed that 4-AP-3-MeOH is indeed an effective blocker of IA based on patch-clamp studies using guinea pig dorsal root ganglia cells. Furthermore, we have also provided the critical evidence to confirm the unmasking of potassium channels following mechanical injury. Taken together, our data further supports and implicates the role of potassium channels in conduction loss and its therapeutic value as an effective target for intervention to restore function in spinal cord trauma. Furthermore, due to its high potency and possible low side effect of impacting electrophysiological properties, 4-AP-3-MeOH is perhaps the optimal choice in reversing conduction block in spinal cord injury compared with other derivatives previously reported from this group.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Basic Medical Sciences, Center for Paralysis Research
| | - Daniel Smith
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana
| | - Yan Fu
- Weldon School of Biomedical Engineering; and
| | | | - Steven Bryn
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana
| | - Richard Borgens
- Department of Basic Medical Sciences, Center for Paralysis Research
- Weldon School of Biomedical Engineering; and
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research
- Weldon School of Biomedical Engineering; and
| |
Collapse
|
46
|
OLBY NJ, SMITH DT, HUMPHREY J, SPINAPOLICE K, PARKE N, MEHTA PM, DISE D, PAPICH M. Pharmacokinetics of 4-aminopyridine derivatives in dogs. J Vet Pharmacol Ther 2009; 32:485-91. [DOI: 10.1111/j.1365-2885.2009.01072.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Keblesh JP, Dou H, Gendelman HE, Xiong H. 4-Aminopyridine improves spatial memory in a murine model of HIV-1 encephalitis. J Neuroimmune Pharmacol 2009; 4:317-27. [PMID: 19462247 PMCID: PMC3106106 DOI: 10.1007/s11481-009-9161-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/08/2009] [Indexed: 11/24/2022]
Abstract
HIV-1-associated neurocognitive disorders (HAND) remains a significant source of morbidity in the era of wide spread use of highly active antiretroviral therapy. Disease is precipitated by low levels of viral growth and glial immune activation within the central nervous system. Blood borne macrophage and microglia affect a proinflammatory response and release viral proteins that affects neuronal viability and leads to death of nerve cells. Increasing evidence supports the notion that HAND is functional channelopathy, but proof of this concept remains incomplete. Based on their role in learning and memory processes, we now posit that voltage-gated potassium (K(v)) channels could be a functional substrate for disease. This was tested in the severe combined immunodeficient (SCID) mouse model of HIV-1 encephalitis (HIVE) by examining whether the K(v) channel blocker, 4-aminopyridine (4-AP), could affect behavioral, electrophysiological, and morphological measures of learning and memory. HIVE SCID mice showed impaired spatial memory in radial arm water maze tests. Electrophysiology studies revealed a reduction of long-term potentiation (LTP) in the CA1 region of the hippocampus. Importantly, systemic administration of 4-AP blocked HIV-1-associated reduction of LTP and improved animal performance in the radial arm water maze. These results support the importance of K(v) channel dysfunction in disease but, more importantly, provide a potential target for adjunctive therapies for HAND.
Collapse
Affiliation(s)
- James P Keblesh
- Neurophysiology Laboratory, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
48
|
Krishnan AV, Lin CSY, Park SB, Kiernan MC. Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog Neurobiol 2009; 89:288-313. [PMID: 19699774 DOI: 10.1016/j.pneurobio.2009.08.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/13/2022]
Abstract
Over recent decades, the development of specialised techniques such as patch clamping and site-directed mutagenesis have established the contribution of neuronal ion channel dysfunction to the pathophysiology of common neurological conditions including epilepsy, multiple sclerosis, spinal cord injury, peripheral neuropathy, episodic ataxia, amyotrophic lateral sclerosis and neuropathic pain. Recently, these insights from in vitro studies have been translated into the clinical realm. In keeping with this progress, novel clinical axonal excitability techniques have been developed to provide information related to the activity of a variety of ion channels, energy-dependent pumps and ion exchange processes activated during impulse conduction in peripheral axons. These non-invasive techniques have been extensively applied to the study of the biophysical properties of human peripheral nerves in vivo and have provided important insights into axonal ion channel function in health and disease. This review will provide a translational perspective, focusing on an overview of the investigational method, the clinical utility in assessing the biophysical basis of ectopic symptom generation in peripheral nerve disease and a review of the major findings of excitability studies in acquired and inherited neurological disease states.
Collapse
Affiliation(s)
- Arun V Krishnan
- Translational Neuroscience Facility, University of New South Wales, Randwick, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Kachuck NJ. Sustained release oral fampridine in the treatment of multiple sclerosis. Expert Opin Pharmacother 2009; 10:2025-35. [DOI: 10.1517/14656560903075994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Bohuslavizki KH, Hinck-kneip C, Kneip A, Koppenhöfer E, Reimers A. Reduction of MS-related scotomata by a new class of potassium channel blockers from Ruta graveolens. Neuroophthalmology 2009. [DOI: 10.3109/01658109309038150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|