1
|
Edelbo BL, Andreassen SN, Steffensen AB, MacAulay N. Day-night fluctuations in choroid plexus transcriptomics and cerebrospinal fluid metabolomics. PNAS NEXUS 2023; 2:pgad262. [PMID: 37614671 PMCID: PMC10443925 DOI: 10.1093/pnasnexus/pgad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
The cerebrospinal fluid (CSF) provides mechanical protection for the brain and serves as a brain dispersion route for nutrients, hormones, and metabolic waste. The CSF secretion rate is elevated in the dark phase in both humans and rats, which could support the CSF flow along the paravascular spaces that may be implicated in waste clearance. The similar diurnal CSF dynamics pattern observed in the day-active human and the nocturnal rat suggests a circadian regulation of this physiological variable, rather than sleep itself. To obtain a catalog of potential molecular drivers that could provide the day-night-associated modulation of the CSF secretion rate, we determined the diurnal fluctuation in the rat choroid plexus transcriptomic profile with RNA-seq and in the CSF metabolomics with ultraperformance liquid chromatography combined with mass spectrometry. We detected significant fluctuation of 19 CSF metabolites and differential expression of 2,778 choroid plexus genes between the light and the dark phase, the latter of which encompassed circadian rhythm-related genes and several choroid plexus transport mechanisms. The fluctuating components were organized with joint pathway analysis, of which several pathways demonstrated diurnal regulation. Our results illustrate substantial transcriptional and metabolic light-dark phase-mediated changes taking place in the rat choroid plexus and its encircling CSF. The combined data provide directions toward future identification of the molecular pathways governing the fluctuation of this physiological process and could potentially be harnessed to modulate the CSF dynamics in pathology.
Collapse
Affiliation(s)
| | | | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Abstract
N,N-dimethyltryptamine (DMT) is a potent psychedelic naturally produced by many plants and animals, including humans. Whether or not DMT is significant to mammalian physiology, especially within the central nervous system, is a debate that started in the early 1960s and continues to this day. This review integrates historical and recent literature to clarify this issue, giving special attention to the most controversial subjects of DMT's biosynthesis, its storage in synaptic vesicles and the activation receptors like sigma-1. Less discussed topics, like DMT's metabolic regulation or the biased activation of serotonin receptors, are highlighted. We conclude that most of the arguments dismissing endogenous DMT's relevance are based on obsolete data or misleading assumptions. Data strongly suggest that DMT can be relevant as a neurotransmitter, neuromodulator, hormone and immunomodulator, as well as being important to pregnancy and development. Key experiments are addressed to definitely prove what specific roles DMT plays in mammalian physiology.
Collapse
Affiliation(s)
- Javier Hidalgo Jiménez
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| | - José Carlos Bouso
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| |
Collapse
|
3
|
Dean JG, Liu T, Huff S, Sheler B, Barker SA, Strassman RJ, Wang MM, Borjigin J. Biosynthesis and Extracellular Concentrations of N,N-dimethyltryptamine (DMT) in Mammalian Brain. Sci Rep 2019; 9:9333. [PMID: 31249368 PMCID: PMC6597727 DOI: 10.1038/s41598-019-45812-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
N,N-dimethyltryptamine (DMT), a psychedelic compound identified endogenously in mammals, is biosynthesized by aromatic-L-amino acid decarboxylase (AADC) and indolethylamine-N-methyltransferase (INMT). Whether DMT is biosynthesized in the mammalian brain is unknown. We investigated brain expression of INMT transcript in rats and humans, co-expression of INMT and AADC mRNA in rat brain and periphery, and brain concentrations of DMT in rats. INMT transcripts were identified in the cerebral cortex, pineal gland, and choroid plexus of both rats and humans via in situ hybridization. Notably, INMT mRNA was colocalized with AADC transcript in rat brain tissues, in contrast to rat peripheral tissues where there existed little overlapping expression of INMT with AADC transcripts. Additionally, extracellular concentrations of DMT in the cerebral cortex of normal behaving rats, with or without the pineal gland, were similar to those of canonical monoamine neurotransmitters including serotonin. A significant increase of DMT levels in the rat visual cortex was observed following induction of experimental cardiac arrest, a finding independent of an intact pineal gland. These results show for the first time that the rat brain is capable of synthesizing and releasing DMT at concentrations comparable to known monoamine neurotransmitters and raise the possibility that this phenomenon may occur similarly in human brains.
Collapse
Affiliation(s)
- Jon G Dean
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Tiecheng Liu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sean Huff
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ben Sheler
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Barker
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Rick J Strassman
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michael M Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Jimo Borjigin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA. .,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Schmidt A, Vogel R, Rutledge SJ, Opas EE, Rodan GA, Friedman E. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway. Pharmacol Biochem Behav 2005; 80:379-85. [PMID: 15740779 DOI: 10.1016/j.pbb.2004.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/05/2004] [Accepted: 11/17/2004] [Indexed: 11/16/2022]
Abstract
Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.
Collapse
Affiliation(s)
- Azriel Schmidt
- Department of Bone Biology and Osteoporosis Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | |
Collapse
|
5
|
Mignini F, Bronzetti E, Felici L, Ricci A, Sabbatini M, Tayebati SK, Amenta F. Dopamine receptor immunohistochemistry in the rat choroid plexus. JOURNAL OF AUTONOMIC PHARMACOLOGY 2000; 20:325-32. [PMID: 11350498 DOI: 10.1046/j.1365-2680.2000.00198.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Earlier studies have demonstrated a high density of dopamine D1-like receptor binding in the choroid plexus by light microscope autoradiography, but the dopaminergic specificity of this binding was questioned. 2. In this study the localization of dopamine receptor subtypes was investigated in the rat choroid plexus by Western blot analysis and immunohistochemistry using antibodies raised against dopamine D1-D5 receptor protein. 3. Western blot analysis revealed reactivity with immune bands of approximately 50 and 51 KDa corresponding to dopamine D1 and D5 receptors, respectively. Dopamine D1-like (D1 and D5) receptor protein immunoreactivity insensitive to superior cervical ganglionectomy was located in smooth muscle of choroid arteries and to a larger extent within choroid plexus epithelium. 4. Western blot analysis revealed reactivity with immune bands of approximately 53 KDa and 40-42 KDa corresponding to dopamine D2 and D4 receptors, respectively, and no dopamine D3 receptor reactivity. Dopamine D2-like receptor protein immunoreactivity displayed a distribution similar to that of tyrosine-hydroxylase (TH)-immunoreactive sympathetic fibres and disappeared after superior cervical ganglionectomy. It consisted in the expression of dopamine D2 and to a lesser extent of D4 receptor protein immunoreactivity perivascularly and associated with choroid epithelium. No D3 receptor protein immunoreactivity was found in rat choroid plexus. 5. The above results indicate that rat choroid plexus expresses dopamine receptor protein, being dopamine D1-like receptors predominant in epithelium and arterial smooth muscle and D2-like receptors in sympathetic nerve fibres supplying choroid plexus epithelium and vasculature. 6. These findings suggests that dopamine receptors with a different anatomical localization may modulate production of cerebrospinal fluid.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Choroid Plexus/metabolism
- Immunohistochemistry
- Male
- Molecular Weight
- Rats
- Rats, Wistar
- Receptors, Dopamine/chemistry
- Receptors, Dopamine/classification
- Receptors, Dopamine/metabolism
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Receptors, Dopamine D4
- Receptors, Dopamine D5
Collapse
Affiliation(s)
- F Mignini
- Sezione di Anatomia Umana, Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Na+,K+-ATPase Phosphorylation in the Choroid Plexus: Synergistic Regulation by Serotonin/Protein Kinase C and Isoproterenol/cAMP-PK/PP-1 Pathways. Mol Med 1998. [DOI: 10.1007/bf03401922] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
|
8
|
Abstract
In this manuscript, current knowledge about central nervous system serotonin (5-HT) receptors is discussed with an emphasis toward describing the functional significance of the multiple 5-HT receptors. Five characteristics of 5-HT receptors, which are hypothesized to contribute to this functional significance, are discussed: (a) 5-HT has varying affinity and potency for the different receptor subtypes; (b) multiple transduction pathways are used by the different receptor subtypes; (c) receptor subtypes differ in their susceptibility to agonist-mediated desensitization/downregulation; (d) receptor subtypes interact in mediating cellular responses to the neurotransmitter; and (e) receptor subtypes respond differently to changes in the physiological environment. It is hypothesized that these characteristics of the multiple neurotransmitter receptors provide the nervous system with a capacity for coding and decoding of 5-HT-mediated neuronal transmission that could not take place with a single neurotransmitter receptor. Serotonergic regulation of female reproduction and regulation of glucocorticoid release are used to illustrate the integrative potential deriving from the existence of multiple 5-HT receptors.
Collapse
Affiliation(s)
- L Uphouse
- Department of Biology, Texas Woman's University, Denton 76204, USA
| |
Collapse
|
9
|
Bonhaus DW, Weinhardt KK, Taylor M, DeSouza A, McNeeley PM, Szczepanski K, Fontana DJ, Trinh J, Rocha CL, Dawson MW, Flippin LA, Eglen RM. RS-102221: a novel high affinity and selective, 5-HT2C receptor antagonist. Neuropharmacology 1997; 36:621-9. [PMID: 9225287 DOI: 10.1016/s0028-3908(97)00049-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 5-HT2C receptor is one of three closely related receptor subtypes in the 5-HT2 receptor family. 5-HT2A and 5-HT2B selective antagonists have been described. However, no 5-HT2C selective antagonists have yet been disclosed. As part of an effort to further explore the function of 5-HT2C receptors, we have developed a selective 5-HT2C receptor antagonist, RS-102221 (a benzenesulfonamide of 8-[5-(5-amino-2,4-dimethoxyphenyl) 5-oxopentyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione). This compound exhibited nanomolar affinity for human (pKi = 8.4) and rat (pKi = 8.5) 5-HT2C receptors. The compound also demonstrated nearly 100-fold selectivity for the 5-HT2C receptor as compared to the 5-HT2A and 5-HT2B receptors. RS-102221 acted as an antagonist in a cell-based microphysiometry functional assay (pA2 = 8.1) and had no detectable intrinsic efficacy. Consistent with its action as a 5-HT2C receptor antagonist, daily dosing with RS-102221 (2 mg/kg intraperitoneal) increased food-intake and weight-gain in rats. Surprisingly, RS-102221 failed to reverse the hypolocomotion induced by the 5-HT2 receptor agonist 1-(3-chlorophenyl)piperazine (m-CPP). It is concluded that RS-102221 is the first selective, high affinity 5-HT2C receptor antagonist to be described.
Collapse
Affiliation(s)
- D W Bonhaus
- Institute of Pharmacology, Roche Bioscience, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Woodward RM, Panicker MM, Miledi R. Actions of dopamine and dopaminergic drugs on cloned serotonin receptors expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 1992; 89:4708-12. [PMID: 1350095 PMCID: PMC49152 DOI: 10.1073/pnas.89.10.4708] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using electrophysiological techniques, we studied interactions of dopamine and selected dopaminergic drugs with serotonin (5-hydroxytryptamine; 5-HT) receptors expressed in Xenopus oocytes by RNAs transcribed from cloned cDNAs. Oocytes showing strong expression of 5-HT1c and 5-HT2 receptors became weakly responsive to the neurotransmitter dopamine, which, like 5-HT, elicited Cl- currents through activation of the phosphatidylinositol/Ca2+ messenger pathway. The two types of 5-HT receptors showed similar sensitivity to dopamine; threshold responses were activated at concentrations as low as 1 microM. However, maximum dopamine responses were only 5-20% of maximum responses activated by 5-HT. The dopamine D1 receptor antagonist SCH 23390 was a potent agonist on 5-HT1c and 5-HT2 receptors. SCH 23390 elicited currents at concentrations as low as 1 nM, but maximum responses were again only 5-20% of those activated by 5-HT. Fenoldopam, a dopamine D1 receptor agonist, also interacted with 5-HT1c and 5-HT2 receptors, eliciting threshold responses between 10 and 20 nM. Our experiments raise the possibility that low micromolar concentrations of dopamine can cause weak activation and concomitant desensitization of serotoninergic systems in vivo and demonstrate that benzazepines can interact with 5-HT receptors at nanomolar concentrations.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Benzazepines/pharmacology
- Catecholamines/pharmacology
- Cloning, Molecular
- Dopamine/pharmacology
- Dopamine Agents/pharmacology
- Dose-Response Relationship, Drug
- Ergolines/pharmacology
- Female
- Fenoldopam
- In Vitro Techniques
- Kinetics
- Membrane Potentials/drug effects
- Oocytes/drug effects
- Oocytes/physiology
- Quinpirole
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/physiology
- Salicylamides/pharmacology
- Transcription, Genetic
- Xenopus
Collapse
Affiliation(s)
- R M Woodward
- Department of Psychobiology, University of California, Irvine 92717-4550
| | | | | |
Collapse
|
11
|
Nilsson C, Lindvall-Axelsson M, Owman C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1992; 17:109-38. [PMID: 1393190 DOI: 10.1016/0165-0173(92)90011-a] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CSF is often regarded as merely a mechanical support for the brain, as well as an unspecific sink for waste products from the CNS. New methodology in receptor autoradiography, immunohistochemistry and molecular biology has revealed the presence of many different neuroendocrine substances or their corresponding receptors in the main CSF-forming structure, the choroid plexus. Both older research on the sympathetic nerves and recent studies of peptide neurotransmitters in the choroid plexus support a neurogenic regulation of choroid plexus CSF production and other transport functions. Among the endocrine substances present in blood and CSF, 5-HT, ANP, vasopressin and the IGFs have high receptor concentrations in the choroid plexus and have been shown to influence choroid plexus function. Finally, the choroid plexus produces the growth factor IGF-II and a number of transport proteins, most importantly transthyretin, that might regulate hormone transport from blood to brain. These studies suggest that the choroid plexus-CSF system could constitute an important pathway for neuroendocrine signalling in the brain, although clearcut evidence for such a role is still largely lacking.
Collapse
Affiliation(s)
- C Nilsson
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|