1
|
Gunawardena K, Praveenan S, Dissanayake VHW, Ratnayake P. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes with coexisting nemaline myopathy: a case report. J Med Case Rep 2024; 18:420. [PMID: 39252049 PMCID: PMC11385988 DOI: 10.1186/s13256-024-04723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and nemaline myopathy are two rare genetic conditions. We report the first case reported in world literature with coexistence of both these rare disorders. CASE PRESENTATION A 11-year-old previously healthy Sri Lankan male child, product of a nonconsanguineous marriage with normal development presented with acute onset short lasting recurring episodes of right-sided eye deviation with impaired consciousness. In between episodes he regained consciousness. Family history revealed a similar presentation in the mother at 36 years of age. Examination was significant for short stature and proximal upper and lower limb weakness. His plasma and cerebrospinal fluid lactate were elevated. Magnetic resonance imaging brain had evidence of an acute infarction in the right occipital territory. Sanger sequencing for common mitochondrial variants of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes confirmed this diagnosis. Whole exome sequencing revealed pathogenic compound heterozygous variants in NEB gene implicating in coexisting nemaline myopathy. Acute presentation was managed with supportive care, antiepileptics, and mitochondrial supplementation. Currently he is stable on daily supplementation of arginine and limb-strengthening physiotherapy. He is being monitored closely clinically and with serum lactate level. CONCLUSION Genetic diseases are rare. Coexistence of two genetic conditions is even rarer. Genetic confirmation of diagnosis is imperative for prediction of complications, accurate management, and genetic counseling.
Collapse
Affiliation(s)
- Kawmadi Gunawardena
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka.
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| | - Somasundaram Praveenan
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Pyara Ratnayake
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka
| |
Collapse
|
2
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
3
|
Durrleman C, Grevent D, Aubart M, Kossorotoff M, Roux CJ, Kaminska A, Rio M, Barcia G, Boddaert N, Munnich A, Nabbout R, Desguerre I. Clinical and radiological description of 120 pediatric stroke-like episodes. Eur J Neurol 2023; 30:2051-2061. [PMID: 37046408 DOI: 10.1111/ene.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND PURPOSE Stroke-like episodes (SLEs) are defined as acute onset of neurological symptoms mimicking a stroke and radiological lesions non-congruent to vascular territory. We aimed to analyze the acute clinical and radiological features of SLEs to determine their pathophysiology. METHODS We performed a monocenter retrospective analysis of 120 SLEs in 60 children over a 20-year period. Inclusion criteria were compatible clinical symptoms and stroke-like lesions on brain magnetic resonance imaging (MRI; performed for all 120 events) with focal hyperintensity on diffusion-weighted imaging in a non-vascular territory. RESULTS Three groups were identified: children with mitochondrial diseases (n = 22) involving mitochondrial DNA mutations (55%) or nuclear DNA mutations (45%); those with other metabolic diseases or epilepsy disorders (n = 22); and those in whom no etiology was found despite extensive investigations (n = 16). Age at first SLE was younger in the group with metabolic or epilepsy disorders (18 months vs. 128 months; p < 0.0001) and an infectious trigger was more frequent (69% vs. 20%; p = 0.0001). Seizures occurred in 75% of episodes, revealing 50% episodes of SLEs and mainly leading to status epilepticus (90%). Of the 120 MRI scans confirming the diagnosis, 28 were performed within a short and strict 48-h period and were further analyzed to better understand the underlying mechanisms. The scans showed primary cortical hyperintensity (n = 28/28) with decreased apparent diffusion coefficient in 52% of cases. Systematic hyperperfusion was found on spin labeling sequences when available (n = 18/18). CONCLUSION Clinical and radiological results support the existence of a vicious circle based on two main mechanisms: energy deficit and neuronal hyperexcitability at the origin of SLE.
Collapse
Affiliation(s)
- Chloe Durrleman
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - David Grevent
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
- Lumiere Platform, Université Paris Cité, Paris, France
| | - Melodie Aubart
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Manoelle Kossorotoff
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Charles-Joris Roux
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Anna Kaminska
- Neurophysiology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Marlene Rio
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Giulia Barcia
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Nathalie Boddaert
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
- Lumiere Platform, Université Paris Cité, Paris, France
| | - Arnold Munnich
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Rima Nabbout
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Isabelle Desguerre
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Ng YS, Gorman GS. Stroke-like episodes in adult mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:65-78. [PMID: 36813321 DOI: 10.1016/b978-0-12-821751-1.00005-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
5
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Kim WJ, Yum MS, Kim MJ, Jang HN, Ko TS. Stroke-Like Episodes Associated with Coronavirus Disease 2019 in a Child with MELAS Syndrome. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Gramegna LL, Cortesi I, Tonon C, Lodi R. Author response to the letter regarding the publication titled "Major cerebral vessels involvement in patients with MELAS syndrome: worth a scan? A systematic review". J Neuroradiol 2021; 48:473-475. [PMID: 33992632 DOI: 10.1016/j.neurad.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Ludovica Gramegna
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
| | - Irene Cortesi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V. Mitochondrial diseases in adults. J Intern Med 2020; 287:592-608. [PMID: 32463135 DOI: 10.1111/joim.13064] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
Collapse
Affiliation(s)
- C La Morgia
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - A Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - L Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - M L Valentino
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - V Carelli
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
9
|
Patients with MELAS with negative myopathology for characteristic ragged-red fibers. J Neurol Sci 2020; 408:116499. [PMID: 31726383 DOI: 10.1016/j.jns.2019.116499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Muscle pathology usually contributes to mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode (MELAS), even in patients without prominent muscle symptoms. We report a series of patients with MELAS without significant myopathic changes. METHODS Twelve patients without ragged-red fibers (RRFs) on muscle pathology (RRF-negative group) and 99 patients with MELAS and RRFs and/or cytochrome c oxidase (COX)-deficient fibers (control RRF-positive group) were recruited. We analyzed clinical features, neuroimaging and pathological findings, gene mutation data, immunofluorescence assay of key respiratory chain subunits of complexes I and IV and mitochondrial DNA (mtDNA) mutation load in biopsied muscle samples. RESULTS None of the RRF-negative patients had RRF or COX-negative fibers, but four patients had strongly succinate dehydrogenase-stained vessels (SSVs). There was a lower proportion of m.3243A>G and higher proportion of mitochondria-encoded ND gene mutations in RRF-negative than RRF-positive patients. The proportion of aphasia was relatively higher, while complex I and IV subunit abundance in muscle and mutation load were lower in RRF-negative than in RRF-positive patients. CONCLUSION RRF-negative patients had a similar disease course, clinical symptoms, and neuroimaging results to RRF-positive patients with MELAS. SSV is a valuable diagnostic indicator for MELAS. For highly suspected MELAS yet without positive myopathological findings, combined immunofluorescence and genetic studies should be used to achieve final diagnosis.
Collapse
|
10
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|
11
|
Cai C, Anthony DC, Pytel P. A pattern-based approach to the interpretation of skeletal muscle biopsies. Mod Pathol 2019; 32:462-483. [PMID: 30401945 DOI: 10.1038/s41379-018-0164-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
The interpretation of muscle biopsies is complex and provides the most useful information when integrated with the clinical presentation of the patient. These biopsies are performed for workup of a wide range of diseases including dystrophies, metabolic diseases, and inflammatory processes. Recent insights have led to changes in the classification of inflammatory myopathies and have changed the role that muscle biopsies have in the workup of inherited diseases. These changes will be reviewed. This review follows a morphology-driven approach by discussing diseases of skeletal muscle based on a few basic patterns that include cases with (1) active myopathic damage and inflammation, (2) active myopathic damage without associated inflammation, (3) chronic myopathic changes, (4) myopathies with distinctive inclusions or vacuoles, (5) biopsies mainly showing atrophic changes, and (6) biopsies that appear normal on routine preparations. Each of these categories goes along with certain diagnostic considerations and pitfalls. Individual biopsy features are only rarely pathognomonic. Establishing a firm diagnosis therefore typically requires integration of all of the biopsy findings and relevant clinical information. With this approach, a muscle biopsy can often provide helpful information in the diagnostic workup of patients presenting with neuromuscular problems.
Collapse
Affiliation(s)
- Chunyu Cai
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Douglas C Anthony
- Departments of Pathology and Laboratory Medicine, and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Borrelli E, Balasubramanian S, Triolo G, Barboni P, Sadda SR, Sadun AA. Topographic Macular Microvascular Changes and Correlation With Visual Loss in Chronic Leber Hereditary Optic Neuropathy. Am J Ophthalmol 2018; 192:217-228. [PMID: 29885298 DOI: 10.1016/j.ajo.2018.05.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To study the macular microvascular networks in patients affected by chronic Leber hereditary optic neuropathy (LHON) using optical coherence tomography angiography (OCTA), and to quantify these changes in different macular sectors. DESIGN Prospective cross-sectional study. METHODS Patients with a clinical and molecularly confirmed diagnosis of LHON (affected patients in the chronic stage) were enrolled from the neuro-ophthalmology clinic at the Doheny-UCLA. Patients and controls underwent a complete ophthalmologic evaluation, including imaging with OCTA. RESULTS Twenty-nine eyes from 15 LHON patients (14 male) and 20 eyes from 20 healthy subjects (13 male) were included in the analysis. Mean age was 32.0 ± 14.2 years (range 16-49 years) in the LHON group and 34.2 ± 10.1 years (range 23-48 years) in the control group (P = .552). In the parafoveal region, the vessel length density was lower in LHON patients, at both the SCP (9.1% ± 0.5% and 9.3% ± 0.4%, P = .041) and DCP (9.4% ± 0.5% and 9.8% ± 0.3%, P = .008) levels. In the sectorial analysis, vascular changes remained significant only in the parafoveal nasal and inferior regions. Univariate linear regression analysis demonstrated that the strongest associations with visual acuity were with parafoveal SCP perfusion density (R2 = .276, P = .045) and parafoveal SCP vessel length density (R2 = .277, P = .044). CONCLUSIONS LHON eyes have SCP and DCP changes that are mainly confined to the nasal and inferior parafoveal sectors that correspond to the papillomacular bundle. Furthermore, visual loss is associated with the SCP flow impairment, but not with the OCT-detectable structural damage.
Collapse
|
13
|
Clinical syndromes associated with mtDNA mutations: where we stand after 30 years. Essays Biochem 2018; 62:235-254. [DOI: 10.1042/ebc20170097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/16/2023]
Abstract
The landmark year 1988 can be considered as the birthdate of mitochondrial medicine, when the first pathogenic mutations affecting mtDNA were associated with human diseases. Three decades later, the field still expands and we are not ‘scraping the bottom of the barrel’ yet. Despite the tremendous progress in terms of molecular characterization and genotype/phenotype correlations, for the vast majority of cases we still lack a deep understanding of the pathogenesis, good models to study, and effective therapeutic options. However, recent technological advances including somatic cell reprogramming to induced pluripotent stem cells (iPSCs), organoid technology, and tailored endonucleases provide unprecedented opportunities to fill these gaps, casting hope to soon cure the major primary mitochondrial phenotypes reviewed here. This group of rare diseases represents a key model for tackling the pathogenic mechanisms involving mitochondrial biology relevant to much more common disorders that affect our currently ageing population, such as diabetes and metabolic syndrome, neurodegenerative and inflammatory disorders, and cancer.
Collapse
|
14
|
Lax NZ, Gorman GS, Turnbull DM. Review: Central nervous system involvement in mitochondrial disease. Neuropathol Appl Neurobiol 2016; 43:102-118. [PMID: 27287935 PMCID: PMC5363248 DOI: 10.1111/nan.12333] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial respiratory chain defects are an important cause of inherited disorders affecting approximately 1 in 5000 people in the UK population. Collectively these disorders are termed ‘mitochondrial diseases’ and they result from either mitochondrial DNA mutations or defects in nuclear DNA. Although they are frequently multisystem disorders, neurological deficits are particularly common, wide‐ranging and disabling for patients. This review details the manifold neurological impairments associated with mitochondrial disease, and describes the efforts to understand how they arise and progressively worsen in patients with mitochondrial disease. We describe advances in our understanding of disease pathogenesis through detailed neuropathological studies and how this has spurred the development of cellular and animal models of disease. We underscore the importance of continued clinical, molecular genetic, neuropathological and animal model studies to fully characterize mitochondrial diseases and understand mechanisms of neurodegeneration. These studies are instrumental for the next phase of mitochondrial research that has a particular emphasis on finding novel ways to treat mitochondrial disease to improve patient care and quality of life.
Collapse
Affiliation(s)
- N Z Lax
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - G S Gorman
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - D M Turnbull
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Almannai M, Craigen WJ, Jahoor F, Scaglia F. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation. Mol Genet Metab 2016; 117:407-12. [PMID: 26851065 PMCID: PMC4818739 DOI: 10.1016/j.ymgme.2016.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/29/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be beneficial earlier in life. Controlled clinical trials to assess the therapeutic effects of arginine and citrulline on clinical complications of MELAS syndrome are needed.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jean W Hsu
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sirisak Chanprasert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Farook Jahoor
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
16
|
Lorenzoni PJ, Werneck LC, Kay CSK, Silvado CES, Scola RH. When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis? ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 73:959-67. [PMID: 26517220 DOI: 10.1590/0004-282x20150154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is a rare mitochondrial disorder. Diagnostic criteria for MELAS include typical manifestations of the disease: stroke-like episodes, encephalopathy, evidence of mitochondrial dysfunction (laboratorial or histological) and known mitochondrial DNA gene mutations. Clinical features of MELAS are not necessarily uniform in the early stages of the disease, and correlations between clinical manifestations and physiopathology have not been fully elucidated. It is estimated that point mutations in the tRNALeu(UUR) gene of the DNAmt, mainly A3243G, are responsible for more of 80% of MELAS cases. Morphological changes seen upon muscle biopsy in MELAS include a substantive proportion of ragged red fibers (RRF) and the presence of vessels with a strong reaction for succinate dehydrogenase. In this review, we discuss mainly diagnostic criterion, clinical and laboratory manifestations, brain images, histology and molecular findings as well as some differential diagnoses and current treatments.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lineu Cesar Werneck
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Cláudia Suemi Kamoi Kay
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Rosana Herminia Scola
- Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
17
|
Wang YX, Le WD. Progress in Diagnosing Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes. Chin Med J (Engl) 2016; 128:1820-5. [PMID: 26112726 PMCID: PMC4733719 DOI: 10.4103/0366-6999.159360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a progressive, multisystem affected mitochondrial disease associated with a number of disease-related defective genes. MELAS has unpredictable presentations and clinical course, and it can be commonly misdiagnosed as encephalitis, cerebral infarction, or brain neoplasms. This review aimed to update the diagnosis progress in MELAS, which may provide better understanding of the disease nature and help make the right diagnosis as well. Data Sources: The data used in this review came from published peer review articles from October 1984 to October 2014, which were obtained from PubMed. The search term is “MELAS”. Study Selection: Information selected from those reported studies is mainly based on the progress on clinical features, blood biochemistry, neuroimaging, muscle biopsy, and genetics in diagnosing MELAS. Results: MELAS has a wide heterogeneity in genetics and clinical manifestations. The relationship between mutations and phenotypes remains unclear. Advanced serial functional magnetic resonance imaging (MRI) can provide directional information on this disease. Muscle biopsy has meaningful value in diagnosing MELAS, which shows the presence of ragged red fibers and mosaic appearance of cytochrome oxidase negative fibers. Genetic studies have reported that approximately 80% of MELAS cases are caused by the mutation m.3243A>G of the mitochondrial transfer RNA (Leu (UUR)) gene (MT-TL1). Conclusions: MELAS involves multiple systems with variable clinical symptoms and recurrent episodes. The prognosis of MELAS patients depends on timely diagnosis. Therefore, overall diagnosis of MELAS should be based on the maternal inheritance family history, clinical manifestation, and findings from serial MRI, muscle biopsy, and genetics.
Collapse
Affiliation(s)
| | - Wei-Dong Le
- Department of Neurology; Center for Translational Research of Neurology Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
18
|
Kolarova H, Liskova P, Tesarova M, Kucerova Vidrova V, Forgac M, Zamecnik J, Hansikova H, Honzik T. Unique presentation of LHON/MELAS overlap syndrome caused by m.13046T>C in MTND5. Ophthalmic Genet 2016; 37:419-423. [PMID: 26894521 DOI: 10.3109/13816810.2015.1092045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) and mitochondrial encephalopathy, myopathy, lactic acidosis and stroke-like episodes (MELAS) syndromes are mitochondrially inherited disorders characterized by acute visual failure and variable multiorgan system presentation, respectively. MATERIALS AND METHODS A 12-year-old girl with otherwise unremarkable medical history presented with abrupt, painless loss of vision. Over the next few months, she developed moderate sensorineural hearing loss, vertigo, migraines, anhedonia and thyroiditis. Ocular examination confirmed bilateral optic nerve atrophy. Metabolic workup documented elevated cerebrospinal fluid lactate. Initial genetic analyses excluded the three most common LHON mutations. Subsequently, Sanger sequencing of the entire mitochondrial DNA (mtDNA) genome was performed. RESULTS Whole mtDNA sequencing revealed a pathogenic heteroplasmic mutation m.13046T>C in MTND5 encoding the ND5 subunit of complex I. This particular variant has previously been described in a single case report of MELAS/Leigh syndrome (subacute necrotizing encephalopathy). Based on the constellation of clinical symptoms in our patient, we diagnose the condition as LHON/MELAS overlap syndrome. CONCLUSIONS We describe a unique presentation of LHON/MELAS overlap syndrome resulting from a m.13046T>C mutation in a 12-year-old girl. In patients with sudden vision loss in which three of the most prevalent LHON mitochondrial mutations have been ruled out, molecular genetic examination should be extended to other mtDNA-encoded subunits of MTND5 complex I. Furthermore, atypical clinical presentations must be considered, even in well-described phenotypes.
Collapse
Affiliation(s)
- Hana Kolarova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Petra Liskova
- b Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic.,c Department of Ophthalmology, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Marketa Tesarova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Vendula Kucerova Vidrova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Martin Forgac
- d Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Josef Zamecnik
- e Department of Pathology and Molecular Medicine , Second Faculty of Medicine, Charles University in Prague and University Hospital Motol in Prague , Czech Republic
| | - Hana Hansikova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Tomas Honzik
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| |
Collapse
|
19
|
El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 2015; 116:4-12. [PMID: 26095523 DOI: 10.1016/j.ymgme.2015.06.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/14/2015] [Accepted: 06/14/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. MELAS syndrome is a multi-organ disease with broad manifestations including stroke-like episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, hearing impairment, diabetes, and short stature. The most common mutation associated with MELAS syndrome is the m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial tRNA(Leu(UUR)). The m.3243A>G mutation results in impaired mitochondrial translation and protein synthesis including the mitochondrial electron transport chain complex subunits leading to impaired mitochondrial energy production. The inability of dysfunctional mitochondria to generate sufficient energy to meet the needs of various organs results in the multi-organ dysfunction observed in MELAS syndrome. Energy deficiency can also stimulate mitochondrial proliferation in the smooth muscle and endothelial cells of small blood vessels leading to angiopathy and impaired blood perfusion in the microvasculature of several organs. These events will contribute to the complications observed in MELAS syndrome particularly the stroke-like episodes. In addition, nitric oxide deficiency occurs in MELAS syndrome and can contribute to its complications. There is no specific consensus approach for treating MELAS syndrome. Management is largely symptomatic and should involve a multidisciplinary team. Unblinded studies showed that l-arginine therapy improves stroke-like episode symptoms and decreases the frequency and severity of these episodes. Additionally, carnitine and coenzyme Q10 are commonly used in MELAS syndrome without proven efficacy.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Adekunle M Adesina
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy Jones
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Lorenzoni PJ, Scola RH, Kay CSK, Silvado CES, Werneck LC. When should MERRF (myoclonus epilepsy associated with ragged-red fibers) be the diagnosis? ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 72:803-11. [PMID: 25337734 DOI: 10.1590/0004-282x20140124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 11/22/2022]
Abstract
Myoclonic epilepsy associated with ragged red fibers (MERRF) is a rare mitochondrial disorder. Diagnostic criteria for MERRF include typical manifestations of the disease: myoclonus, generalized epilepsy, cerebellar ataxia and ragged red fibers (RRF) on muscle biopsy. Clinical features of MERRF are not necessarily uniform in the early stages of the disease, and correlations between clinical manifestations and physiopathology have not been fully elucidated. It is estimated that point mutations in the tRNALys gene of the DNAmt, mainly A8344G, are responsible for almost 90% of MERRF cases. Morphological changes seen upon muscle biopsy in MERRF include a substantive proportion of RRF, muscle fibers showing a deficient activity of cytochrome c oxidase (COX) and the presence of vessels with a strong reaction for succinate dehydrogenase and COX deficiency. In this review, we discuss mainly clinical and laboratory manifestations, brain images, electrophysiological patterns, histology and molecular findings as well as some differential diagnoses and treatments.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Departamento de Neurologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rosana Herminia Scola
- Departamento de Neurologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Cláudia Suemi Kamoi Kay
- Departamento de Neurologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Carlos Eduardo S Silvado
- Departamento de Neurologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lineu Cesar Werneck
- Departamento de Neurologia, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
21
|
Nozuma S, Okamoto Y, Higuchi I, Yuan J, Hashiguchi A, Sakiyama Y, Yoshimura A, Higuchi Y, Takashima H. Clinical and Electron Microscopic Findings in Two Patients with Mitochondrial Myopathy Associated with Episodic Hyper-creatine Kinase-emia. Intern Med 2015; 54:3209-14. [PMID: 26666615 DOI: 10.2169/internalmedicine.54.5444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial myopathy with episodic hyper-creatine kinase (CK)-emia (MIMECK) is a new disease entity characterized by episodic or persistent muscle weakness and elevated CK levels. We herein report two cases of MIMECK with the findings of histopathological studies. Histopathological examinations revealed strongly succinate dehydrogenase-reactive vessels. Electron microscopy showed abnormal mitochondria in the vessels and proliferating and vacuolated mitochondria under the sarcolemma. Both patients exhibited recurrent severe myalgia, weakness and increased CK levels. L-arginine treatment significantly ameliorated their muscle symptoms. These findings indicate that mitochondrial angiopathy plays an important role in the pathophysiology of MIMECK. L-arginine may be a potential therapeutic agent for this disorder.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
MELAS phenotype associated with m.3302A>G mutation in mitochondrial tRNA(Leu(UUR)) gene. Brain Dev 2014; 36:180-2. [PMID: 23582502 DOI: 10.1016/j.braindev.2013.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 01/31/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
Abstract
The m.3302A>G mutation in the mitochondrial tRNA(Leu(UUR)) gene has been identified in only 12 patients from 6 families, all manifesting adult-onset slowly progressive myopathy with minor central nervous system involvement. An 11-year-old boy presented with progressive proximal-dominant muscle weakness from age 7years. At age 10, he developed recurrent stroke-like episodes. Mitochondrial myopathy, encephalopathy, lactic acidosis, plus stroke-like episodes (MELAS) was diagnosed by clinical symptoms and muscle biopsy findings. Mitochondrial gene analysis revealed a heteroplasmic m.3302A>G mutation. Histological examination showed strongly SDH reactive blood vessels (SSVs), not present in previous cases with myopathies due to the m.3302A>G mutation. These findings broaden the phenotypic spectrum of this mutation.
Collapse
|
23
|
Abstract
Mitochondrial disorders are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain. Muscle tissue is highly metabolically active, and therefore myopathy is a common element of the clinical presentation of these disorders, although this may be overshadowed by central neurological features. This review is aimed at a general medical and neurologist readership and provides a clinical approach to the recognition, investigation, and treatment of mitochondrial myopathies. Emphasis is placed on practical management considerations while including some recent updates in the field.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Institute of Genetic Medicine, Newcastle University, Newcastle NE13BZ, United Kingdom
| | | |
Collapse
|
24
|
Kami K, Fujita Y, Igarashi S, Koike S, Sugawara S, Ikeda S, Sato N, Ito M, Tanaka M, Tomita M, Soga T. Metabolomic profiling rationalized pyruvate efficacy in cybrid cells harboring MELAS mitochondrial DNA mutations. Mitochondrion 2012; 12:644-53. [PMID: 22884939 DOI: 10.1016/j.mito.2012.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Pyruvate treatment was found to alleviate clinical symptoms of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome and is highly promising therapeutic. Using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), we measured time-changes of 161 intracellular and 85 medium metabolites to elucidate metabolic effects of pyruvate treatment on cybrid human 143B osteosarcoma cells harboring normal (2SA) and MELAS mutant (2SD) mitochondria. The results demonstrated dramatic and sustainable effects of pyruvate administration on the energy metabolism of 2SD cells, corroborating pyruvate as a metabolically rational treatment regimen for improving symptoms associated with MELAS and possibly other mitochondrial diseases.
Collapse
Affiliation(s)
- Kenjiro Kami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lax NZ, Pienaar IS, Reeve AK, Hepplewhite PD, Jaros E, Taylor RW, Kalaria RN, Turnbull DM. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. ACTA ACUST UNITED AC 2012; 135:1736-50. [PMID: 22577219 PMCID: PMC3359757 DOI: 10.1093/brain/aws110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropathological findings in mitochondrial DNA disease vary and are often dependent on the type of mitochondrial DNA defect. Many reports document neuronal cell loss, demyelination, gliosis and necrotic lesions in post-mortem material. However, previous studies highlight vascular abnormalities in patients harbouring mitochondrial DNA defects, particularly in those with the m.3243A>G mutation in whom stroke-like events are part of the mitochondrial encephalopathy lactic acidosis and stroke-like episodes syndrome. We investigated microangiopathic changes in the cerebellum of 16 genetically and clinically well-defined patients. Respiratory chain deficiency, high levels of mutated mitochondrial DNA and increased mitochondrial mass were present within the smooth muscle cells and endothelial cells comprising the vessel wall in patients. These changes were not limited to those harbouring the m.3243A>G mutation frequently associated with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes, but were documented in patients harbouring m.8344A>G and autosomal recessive polymerase (DNA directed), gamma (POLG) mutations. In 8 of the 16 patients, multiple ischaemic-like lesions occurred in the cerebellar cortex suggestive of vascular smooth muscle cell dysfunction. Indeed, changes in vascular smooth muscle and endothelium distribution and cell size are indicative of vascular cell loss. We found evidence of blood–brain barrier breakdown characterized by plasma protein extravasation following fibrinogen and IgG immunohistochemistry. Reduced immunofluorescence was also observed using markers for endothelial tight junctions providing further evidence in support of blood–brain barrier breakdown. Understanding the structural and functional changes occurring in central nervous system microvessels in patients harbouring mitochondrial DNA defects will provide an important insight into mechanisms of neurodegeneration in mitochondrial DNA disease. Since therapeutic strategies targeting the central nervous system are limited, modulating vascular function presents an exciting opportunity to lessen the burden of disease in these patients.
Collapse
Affiliation(s)
- Nichola Z Lax
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Koga Y, Povalko N, Nishioka J, Katayama K, Yatsuga S, Matsuishi T. Molecular pathology of MELAS and l-arginine effects. Biochim Biophys Acta Gen Subj 2012; 1820:608-14. [DOI: 10.1016/j.bbagen.2011.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
|
27
|
Abstract
Muscle pathology plays a central role in the diagnosis of muscle diseases. Proper handling, fixation and transportation of muscle biopsy specimens are necessary to avoid artifacts. Hematoxylin and eosin provides information on basic morphological abnormalities, including general structural changes, fiber size variation, necrosis and regeneration, endomysial fibrosis and lymphocyte infiltration. Modified Gomori trichrome is useful to detect abnormal structures including protein aggregates. NADH-tetrazolium reductase highlights intermyofibrillar network, thus serving to detect myofibrillar disorganization. Myosin ATPase is used for evaluating fiber types. Selective type 1 fiber atrophy reflects myopathic process while fiber type grouping reinnervating process. The final interpretation whether the biopsy demonstrates myopathic or neuropathic changes is based upon all these findings.
Collapse
Affiliation(s)
- Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
28
|
Mutations in mitochondrially encoded complex I enzyme as the second common cause in a cohort of Chinese patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. J Hum Genet 2011; 56:759-64. [DOI: 10.1038/jhg.2011.96] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Mimaki M, Hatakeyama H, Komaki H, Yokoyama M, Arai H, Kirino Y, Suzuki T, Nishino I, Nonaka I, Goto YI. Reversible infantile respiratory chain deficiency: a clinical and molecular study. Ann Neurol 2011; 68:845-54. [PMID: 21194154 DOI: 10.1002/ana.22111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To characterize the clinical features and clarify the pathogenicity of "benign cytochrome c oxidase deficiency myopathy." METHODS The study included 8 patients with the phenotype of this disease. Six patients underwent muscle biopsies and all the 8 underwent mitochondrial DNA analyses. To confirm the pathogenicity of the detected mitochondrial DNA mutation, we performed northern blot analysis, using muscle specimens, and blue native polyacrylamide gel electrophoresis and respiratory chain enzyme activity assay of transmitochondrial cell lines (cybrids). RESULTS Clinical symptoms were limited to skeletal muscle and improved spontaneously in all cases; however, 2 siblings had basal ganglia lesions. In all patients, we identified a homoplasmic m.14674T>C or m.14674T>G mitochondrial transfer RNA-glutamate mutation. Northern blot analysis revealed decreased levels of mitochondrial transfer RNA-glutamate molecules. Muscle specimens and cybrids derived from patients showed decreased activity of respiratory complexes IV, and/or I, III; however, this was normal in naive myoblasts. INTERPRETATION Identification of a novel m.14674T>G mutation in addition to m.14674T>C indicated the importance of this site for disease causation. Analyses of cybrids revealed the pathogenicity of m.14674T>C mutation, which resulted in defects of cytochrome c oxidase and multiple respiratory chain enzymes. Furthermore, patients with basal ganglia lesions provided new insights into this disease, in which only skeletal muscle was thought to be affected. Normal respiratory chain enzyme activities in naive myoblasts suggested the compensatory influence of nuclear factors, which may be a clue to understanding the mechanisms of spontaneous recovery and low penetrance in families carrying the mutation.
Collapse
Affiliation(s)
- Masakazu Mimaki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
JINGU A, SUZUKI T, ISHIYAMA T, MATSUMOTO H, YAMAMOTO T, HASEGAWA K. A CASE OF MITOCHONDRIAL MYOPATHY, ENCEPHALOPATHY, LACTIC ACIDOSIS AND STROKE-LIKE EPISODES WITH SEVERE MUCOSAL NECROSIS OF THE SIGMOID COLON. ACTA ACUST UNITED AC 2011. [DOI: 10.3919/jjsa.72.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Zhang ZQ, Niu ST, Liang XH, Jian F, Wang Y. Vascular involvement in the pathogenesis of mitochondrial encephalomyopathies. Neurol Res 2010; 32:403-8. [PMID: 20483008 DOI: 10.1179/016164110x12670144526345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to perform perfusion CT imaging in the acute phase of myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), to assess whether these patients had cerebral perfusion abnormalities. Furthermore, the pathology of muscle vessel was evaluated, to explore the role of vasculopathy and ischemic events in the pathogenesis of mitochondrial encephalomyopathies. METHODS Computed tomography perfusion (CTP) imaging was applied to the evaluation of brain perfusion during the symptomatic period of mitochondrial encephalomyopathies. Mitochondria structures in the blood vessels wall within muscle fibers were observed by light and electron microscopy analyses. RESULTS Neuroimaging studies demonstrated uni- and bilateral lesions predominantly in the occipital and temporal-parietal lobes. Compared with the healthy control subjects, significant decreases in cerebral blood flow and cerebral blood volume were noted in affected brain areas of individuals with MELAS. In particular, mean transit time and the time to peak were prolonged both in lesion and non-lesion brain areas. Muscle pathology showed large granular deposits on vessel wall as demonstrated by succinic acid dehydrogenase staining. Electron microscopy of blood vessels revealed swelling of cristae and a striking increase in the number of mitochondria in the smooth muscle and endothelial cells. CONCLUSION Insufficient cerebral perfusion or vascular reserve and secondary metabolic dysfunction may represent an important feature of the pathogenesis of the stroke-like episodes in MELAS.
Collapse
Affiliation(s)
- Zai-Qiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | |
Collapse
|
32
|
Koga Y, Povalko N, Nishioka J, Katayama K, Kakimoto N, Matsuishi T. MELAS and l-arginine therapy: pathophysiology of stroke-like episodes. Ann N Y Acad Sci 2010; 1201:104-10. [DOI: 10.1111/j.1749-6632.2010.05624.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Granular swollen epithelial cells: a histologic and diagnostic marker for mitochondrial nephropathy. Am J Surg Pathol 2010; 34:262-70. [PMID: 20090504 DOI: 10.1097/pas.0b013e3181cb4ed3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a progressive kidney disease, and mitochondrial disease known to be a primary malady for secondary FSGS. Mitochondrial nephropathy with FSGS is diagnosed by genetic analysis or electron microscopy when it is suspected. As adequate morphologic features to diagnose mitochondrial nephropathy by light microscopy are lacking, this study used 10 cases with genetically proven mitochondrial disease and analyzed the kidney samples obtained by biopsy (n = 7) or autopsy (n = 3). We found granular swollen epithelial cells (GSECs) among the distal tubuli and collecting ducts in all patients, whereas such features were absent in IgA nephropathy, primary FSGS, and interstitial nephritis. Ultrastructural analysis of GSECs displayed accumulation of abnormal-shaped mitochondria in GSECs. To test whether GSECs were really associated with mitochondrial mutations, laser-captured single GSECs in 1 case with a position where 3,271 mutation were measured using a single-cell PCR analysis. This revealed that the mutant load of GSECs was significantly higher than normal-appearing epithelial cells within the same sample (63.4 + or - 17.8% vs. 32.5 + or - 4.6%; P <0.0001). This is direct evidence that GSEC is a characteristic cellular feature, indicating cells with mutant mitochondrial DNA accumulation. In addition, the incidence of GSECs did not correlate with serum creatinine levels, proteinuria, percent glomerulosclerosis, tubulointerstitial changes, or arteriolar hyalinosis, suggesting that GSECs per se may not cause tissue damage. In conclusion, GSEC is a distinct morphologic feature suggesting mitochondrial nephropathy and is a useful tool to identify secondary FSGS on the basis of mitochondrial abnormalities.
Collapse
|
34
|
Lorenzoni PJ, Scola RH, Kay CSK, Arndt RC, Freund AA, Bruck I, Santos MLS, Werneck LC. MELAS: clinical features, muscle biopsy and molecular genetics. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:668-76. [DOI: 10.1590/s0004-282x2009000400018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/28/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: The aim of the study was to analyze a series of Brazilian patients suffering from MELAS. METHOD: Ten patients with MELAS were studied with correlation between clinical findings, laboratorial data, electrophysiology, histochemical and molecular features. RESULTS: Blood lactate was increased in eight patients. Brain image studies revealed a stroke-like pattern in all patients. Muscle biopsy showed ralled-red fibers (RRF) in 90% of patients on modified Gomori-trichrome and in 100% on succinate dehydrogenase stains. Cytochrome c oxidase stain analysis indicated deficient activity in one patient and subsarcolemmal accumulation in seven patients. Strongly succinate dehydrogenase-reactive blood vessels (SSV) occurred in six patients. The molecular analysis of tRNA Leu(UUR) gene by PCR/RLFP and direct sequencing showed the A3243G mutation on mtDNA in 4 patients. CONCLUSION: The muscle biopsy often confirmed the MELAS diagnosis by presence of RRF and SSV. Molecular analysis of tRNA Leu(UUR) gene should not be the only diagnostic criteria for MELAS.
Collapse
|
35
|
Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:518-28. [DOI: 10.1016/j.bbabio.2009.02.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 01/30/2023]
|
36
|
Rossmanith W, Freilinger M, Roka J, Raffelsberger T, Moser-Their K, Prayer D, Bernert G, Bittner R. Isolated cytochrome c oxidase deficiency as a cause of MELAS. BMJ Case Rep 2009; 2009:bcr08.2008.0666. [PMID: 21686692 PMCID: PMC3027970 DOI: 10.1136/bcr.08.2008.0666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Deletion of a single nucleotide (7630delT) within MT-CO2, the gene of subunit II of cytochrome c oxidase (COX), was identified in a clinically typical MELAS case. The deletion-induced frameshift results in a stop codon close to the 5' end of the reading frame. The lack of subunit II (COII) precludes the assembly of COX and leads to the degradation of unassembled subunits, even those not directly affected by the mutation. Despite mitochondrial proliferation and transcriptional upregulation of nuclear and mtDNA-encoded COX genes (including MT-CO2), a severe COX deficiency was found with all investigations of the muscle biopsy (histochemistry, biochemistry, immunoblotting). The 7630delT mutation in MT-CO2 leads to a lack of COII with subsequent misassembly and degradation of respiratory complex IV despite transcriptional upregulation of its subunits. The genetic and pathobiochemical heterogeneity of MELAS appears to be greater than previously appreciated.
Collapse
Affiliation(s)
- Walter Rossmanith
- Medical University of Vienna, Währinger Straße 13, Vienna, 1090, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mimaki M, Hatakeyama H, Ichiyama T, Isumi H, Furukawa S, Akasaka M, Kamei A, Komaki H, Nishino I, Nonaka I, Goto YI. Different effects of novel mtDNA G3242A and G3244A base changes adjacent to a common A3243G mutation in patients with mitochondrial disorders. Mitochondrion 2009; 9:115-22. [PMID: 19460299 DOI: 10.1016/j.mito.2009.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/09/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Two novel mitochondrial DNA base changes were identified at both sides of the 3243A>G mutation, the most common mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). One was a 3244G>A transition in a girl with MELAS. The other was a 3242G>A transition in a girl with a mitochondrial disorder without a MELAS phenotype. Although the two base changes were adjacent to the 3243A>G mutation, they had different effects on the clinical phenotype, muscle pathology, and respiratory chain enzyme activity. Investigations of the different effects of the 3244G>A and 3242G>A base changes may provide a better understanding of tRNA dysfunction in mitochondrial disorders.
Collapse
Affiliation(s)
- Masakazu Mimaki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Wong LJ, Cohen BH, Naviaux RK. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008; 94:16-37. [PMID: 18243024 PMCID: PMC2810849 DOI: 10.1016/j.ymgme.2007.11.018] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 12/12/2022]
Abstract
Mitochondrial disease confirmation and establishment of a specific molecular diagnosis requires extensive clinical and laboratory evaluation. Dual genome origins of mitochondrial disease, multi-organ system manifestations, and an ever increasing spectrum of recognized phenotypes represent the main diagnostic challenges. To overcome these obstacles, compiling information from a variety of diagnostic laboratory modalities can often provide sufficient evidence to establish an etiology. These include blood and tissue histochemical and analyte measurements, neuroimaging, provocative testing, enzymatic assays of tissue samples and cultured cells, as well as DNA analysis. As interpretation of results from these multifaceted investigations can become quite complex, the Diagnostic Committee of the Mitochondrial Medicine Society developed this review to provide an overview of currently available and emerging methodologies for the diagnosis of primary mitochondrial disease, with a focus on disorders characterized by impairment of oxidative phosphorylation. The aim of this work is to facilitate the diagnosis of mitochondrial disease by geneticists, neurologists, and other metabolic specialists who face the challenge of evaluating patients of all ages with suspected mitochondrial disease.
Collapse
Affiliation(s)
- Richard H. Haas
- Departments of Neurosciences & Pediatrics, University of California San Diego, La Jolla, CA and Rady Children's Hospital San Diego, San Diego, CA
- Corresponding Author: Richard H. Haas, MB, BChir, MRCP, Professor of Neurosciences and Pediatrics, University of California San Diego, T. 858-822-6700; F. 858-822-6707;
| | - Sumit Parikh
- Division of Neuroscience, The Cleveland Clinic, Cleveland, OH
| | - Marni J. Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Russell P. Saneto
- Division of Pediatric Neurology, Children's Hospital and Regional Medical Center, University of Washington, Seattle, WA
| | - Nicole I. Wolf
- Department of Child Neurology, University Children's Hospital, Heidelberg, Germany
| | - Niklas Darin
- Division of Child Neurology, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bruce H. Cohen
- Division of Neuroscience, The Cleveland Clinic, Cleveland, OH
| | - Robert K. Naviaux
- Departments of Medicine and Pediatrics, Division of Medical and Biochemical Genetics, University of California San Diego, La Jolla, CA and Rady Children's Hospital San Diego, San Diego, CA
| |
Collapse
|
39
|
Scaglia F, Wong LJC. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve 2008; 37:150-71. [PMID: 17999409 DOI: 10.1002/mus.20917] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human mitochondrial genome encodes 13 proteins. All are subunits of the respiratory chain complexes involved in energy metabolism. These proteins are translated by a set of 22 mitochondrial transfer RNAs (tRNAs) that are required for codon reading. Human mitochondrial tRNA genes are hotspots for pathogenic mutations and have attracted interest over the last two decades with the rapid discovery of point mutations associated with a vast array of neuromuscular disorders and diverse clinical phenotypes. In this review, we use a scoring system to determine the pathogenicity of the mutations and summarize the current knowledge of structure-function relationships of these mutant tRNAs. We also provide readers with an overview of a large variety of mechanisms by which mutations may affect the mitochondrial translation machinery and cause disease.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
40
|
Tanji K, Kaufmann P, Naini AB, Lu J, Parsons TC, Wang D, Willey JZ, Shanske S, Hirano M, Bonilla E, Khandji A, Dimauro S, Rowland LP. A novel tRNA(Val) mitochondrial DNA mutation causing MELAS. J Neurol Sci 2008; 270:23-7. [PMID: 18314141 DOI: 10.1016/j.jns.2008.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/15/2008] [Accepted: 01/18/2008] [Indexed: 11/29/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common mitochondrial disease due to mitochondrial DNA (mtDNA) mutations. At least 15 distinct mtDNA mutations have been associated with MELAS, and about 80% of the cases are caused by the A3243G tRNA(Leu(UUR)) gene mutation. We report here a novel tRNA(Val) mutation in a 37-year-old woman with manifestations of MELAS, and compare her clinicopathological phenotype with other rare cases associated tRNA(Val) mutations.
Collapse
Affiliation(s)
- Kurenai Tanji
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Finsterer J, Walker WF, Hernandez-Rosa E. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 2007; 9:463-70. [PMID: 17587249 DOI: 10.1016/j.mito.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/30/2022]
Abstract
Mitochondrial disorders are frequently caused by mutations in mitochondrial genes and usually present as multisystem disease. One of the most frequent mitochondrial mutations is the A3,243G transition in the tRNALeu(UUR) gene. The phenotypic expression of the mutation is variable and comprises syndromic or non-syndromic mitochondrial disorders. Among the syndromic manifestations the mitochondrial encephalopathy, lactacidosis, and stroke-like episode (MELAS) syndrome is the most frequent. In single cases the A3,243G mutation may be associated with maternally inherited diabetes and deafness syndrome, myoclonic epilepsy and ragged-red fibers (MERRF) syndrome, MELAS/MERRF overlap syndrome, maternally inherited Leigh syndrome, chronic external ophthalmoplegia, or Kearns-Sayre syndrome. The wide phenotypic variability of the mutation is explained by the peculiarities of the mitochondrial DNA, such as heteroplasmy and mitotic segregation, resulting in different mutation loads in different tissues and family members. Moreover, there is some evidence that additional mtDNA sequence variations (polymorphisms, haplotypes) influence the phenotype of the A3,243G mutation. This review aims to give an overview on the actual knowledge about the genetic, pathogenetic, and phenotypic implications of the A3,243G mtDNA mutation.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | | | |
Collapse
|
42
|
Takahashi N, Shimada T, Ishibashi Y, Yoshitomi H, Oyake N, Murakami Y, Nishino I, Nonaka I, Goto YI, Kitamura J. Marked left ventricular hypertrophy in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Int J Cardiol 2007; 129:e77-80. [PMID: 17900719 DOI: 10.1016/j.ijcard.2007.06.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 06/23/2007] [Indexed: 10/22/2022]
|
43
|
Filosto M, Tomelleri G, Tonin P, Scarpelli M, Vattemi G, Rizzuto N, Padovani A, Simonati A. Neuropathology of mitochondrial diseases. Biosci Rep 2007; 27:23-30. [PMID: 17541738 DOI: 10.1007/s10540-007-9034-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The term "mitochondrial diseases" (MD) refers to a group of disorders related to respiratory chain dysfunction. Clinical features are usually extremely heterogeneous because MD may involve several tissues with different degrees of severity. Muscle and brain are mostly affected, probably because of their high dependence on oxidative metabolism. Muscle can be the only affected tissue or involved as a part of a multi-system disease; ragged red fibers, accumulation of structurally altered mitochondria and cytochrome-c-oxidase (COX) negative fibers are the main pathological features. In mitochondrial encephalopathies, central nervous system (CNS) structures are affected according to different patterns of distribution and severity. Characteristic lesions are neuronal loss, vasculo-necrotic changes, gliosis, demyelination and spongy degeneration. In accordance with either grey matter or white matter involvement two main groups of diseases may be distinguished. Neuronal loss and vasculo-necrotic multifocal lesions are the common features of grey matter involvement; demyelination and spongy degeneration occur when white matter is affected, often associated with less severe lesions of the grey structures. Grey matter lesions are prevalent in MERRF, MELAS, Alpers and Leigh syndromes. White matter involvement is always seen in Kearns-Sayre syndrome and was recently described in mtDNA depletion syndrome linked to dGK mutations and in the rare conditions associated with complex I and II deficiency. In this review we describe the main histopathological features of muscle and CNS lesions in mitochondrial diseases.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital Spedali Civili, P.le Spedali Civili 1, 25100, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Disturbances in vascular function contribute to the development of several diseases of increasing prevalence and thereby contribute significantly to human mortality and morbidity. Atherosclerosis, diabetes, heart failure, and ischemia with attendant reperfusion injury share many of the same risk factors, among the most important being oxidative stress and alterations in the blood concentrations of compounds that influence oxidative stress, such as oxidized low-density lipoprotein. In this review, we focus on endothelial cells: cells in the frontline against these disturbances. Because ATP supplies in endothelial cells are relatively independent of mitochondrial oxidative pathways, the mitochondria of endothelial cells have been somewhat neglected. However, they are emerging as agents with diverse roles in modulating the dynamics of intracellular calcium and the generation of reactive oxygen species and nitric oxide. The mitochondria may also constitute critical "targets" of oxidative stress, because survival of endothelial cells can be compromised by opening of the mitochondrial permeability transition pore or by mitochondrial pathways of apoptosis. In addition, evidence suggests that endothelial mitochondria may play a "reconnaissance" role. For example, although the exact mechanism remains obscure, endothelial mitochondria may sense levels of oxygen in the blood and relay this information to cardiac myocytes as well as modulating the vasodilatory response mediated by endothelial nitric oxide.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, Department of Medicine, Royal Free and University College Medical School, London, United Kingdom.
| | | |
Collapse
|
45
|
Koga Y, Akita Y, Nishioka J, Yatsuga S, Povalko N, Katayama K, Matsuishi T. MELAS and l-arginine therapy. Mitochondrion 2007; 7:133-9. [PMID: 17276739 DOI: 10.1016/j.mito.2006.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
We investigated the endothelial function in MELAS patients and also evaluated the therapeutic effects of L-arginine. Concentrations of L-arginine during the acute phase of MELAS were significantly lower than in control subjects. L-arginine infusions significantly improved all symptoms suggesting stroke within 30 min, and oral administration significantly decreased frequency and severity of stroke-like episodes. Flow-mediated dilation (FMD) in patients showed a significant decrease than those in the controls. Two years of oral supplementation of L-arginine significantly improved endothelial function to the control levels and was harmonized with the normalized plasma levels of L-arginine in patients. L-arginine therapy showed promise in treating stroke-like episodes in MELAS.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi Machi, Kurume, Fukuoka 830-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Therapy for mitochondrial diseases is woefully inadequate. However, lack of a cure does not equate with lack of treatment. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10 (CoQ10). There is increasing interest in the administration of reactive oxygen radicals (ROS) scavengers, both in primary mitochondrial diseases and in neurodegenerative diseases. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but novel experimental approaches are being pursued. One important strategy is to decrease the ratio of mutant to wild-type mitochondrial genomes ("gene shifting") by different means: (1) converting mutated mitochondrial DNA (mtDNA) genes into normal nuclear DNA genes ("allotopic expression"); (2) importing cognate genes from other species ("xenotopic expression"); (3) correcting mtDNA mutations by importing specific restriction endonucleases; (4) selecting for respiratory function; and (5) inducing muscle regeneration. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is becoming increasingly important for nuclear DNA-related disorders.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 4-420 College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA.
| | | | | |
Collapse
|
47
|
Abstract
The central nervous system (CNS) is, after the peripheral nervous system, the second most frequently affected organ in mitochondrial disorders (MCDs). CNS involvement in MCDs is clinically heterogeneous, manifesting as epilepsy, stroke-like episodes, migraine, ataxia, spasticity, extrapyramidal abnormalities, bulbar dysfunction, psychiatric abnormalities, neuropsychological deficits, or hypophysial abnormalities. CNS involvement is found in syndromic and non-syndromic MCDs. Syndromic MCDs with CNS involvement include mitochondrial encephalomyopathy, lactacidosis, stroke-like episodes syndrome, myoclonic epilepsy and ragged red fibers syndrome, mitochondrial neuro-gastrointestinal encephalomyopathy syndrome, neurogenic muscle weakness, ataxia, and retinitis pigmentosa syndrome, mitochondrial depletion syndrome, Kearns-Sayre syndrome, and Leigh syndrome, Leber's hereditary optic neuropathy, Friedreich's ataxia, and multiple systemic lipomatosis. As CNS involvement is often subclinical, the CNS including the spinal cord should be investigated even in the absence of overt clinical CNS manifestations. CNS investigations comprise the history, clinical neurological examination, neuropsychological tests, electroencephalogram, cerebral computed tomography scan, and magnetic resonance imaging. A spinal tap is indicated if there is episodic or permanent impaired consciousness or in case of cognitive decline. More sophisticated methods are required if the CNS is solely affected. Treatment of CNS manifestations in MCDs is symptomatic and focused on epilepsy, headache, lactacidosis, impaired consciousness, confusion, spasticity, extrapyramidal abnormalities, or depression. Valproate, carbamazepine, corticosteroids, acetyl salicylic acid, local and volatile anesthetics should be applied with caution. Avoiding certain drugs is often more beneficial than application of established, apparently indicated drugs.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| |
Collapse
|
48
|
Betts J, Jaros E, Perry RH, Schaefer AM, Taylor RW, Abdel-All Z, Lightowlers RN, Turnbull DM. Molecular neuropathology of MELAS: level of heteroplasmy in individual neurones and evidence of extensive vascular involvement. Neuropathol Appl Neurobiol 2006; 32:359-73. [PMID: 16866982 DOI: 10.1111/j.1365-2990.2006.00731.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA (mtDNA) disease is an important genetic cause of neurological disability. A variety of different clinical features are observed and one of the most common phenotypes is MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). The majority of patients with MELAS have the 3243A>G mtDNA mutation. The neuropathology is dominated by multifocal infarct-like lesions in the posterior cortex, thought to underlie the stroke-like episodes seen in patients. To investigate the relationship between mtDNA mutation load, mitochondrial dysfunction and neuropathological features in MELAS, we studied individual neurones from several brain regions of two individuals with the 3243A>G mutation using dual cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry, and Polymerase Chain Reaction Restriction Fragment Lenght Polymorphism (PCR-RFLP) analysis. We found a low number of COX-deficient neurones in all brain regions. There appeared to be no correlation between the threshold level for the 3243A>G mutation to cause COX deficiency within single neurones and the degree of pathology in affected brain regions. The most severe COX deficiency associated with the highest proportion of mutated mtDNA was present in the walls of the leptomeningeal and cortical blood vessels in all brain regions. We conclude that vascular mitochondrial dysfunction is important in the pathogenesis of the stroke-like episodes in MELAS patients. As migraine is a commonly encountered feature in MELAS, we propose that coupling of the vascular mitochondrial dysfunction with cortical spreading depression (CSD) might underlie the selective distribution of ischaemic lesions in the posterior cortex in these patients.
Collapse
Affiliation(s)
- J Betts
- Mitochondrial Research Group, The Medical School, University of Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Scaglia F, Northrop JL. The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: a review of treatment options. CNS Drugs 2006; 20:443-64. [PMID: 16734497 DOI: 10.2165/00023210-200620060-00002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitochondrial encephalomyopathies are a multisystemic group of disorders that are characterised by a wide range of biochemical and genetic mitochondrial defects and variable modes of inheritance. Among this group of disorders, the mitochondrial myopathy, encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome is one of the most frequently occurring, maternally inherited mitochondrial disorders. As the name implies, stroke-like episodes are the defining feature of the MELAS syndrome, often occurring before the age of 15 years. The clinical course of this disorder is highly variable, ranging from asymptomatic, with normal early development, to progressive muscle weakness, lactic acidosis, cognitive dysfunction, seizures, stroke-like episodes, encephalopathy and premature death. This syndrome is associated with a number of point mutations in the mitochondrial DNA, with over 80% of the mutations occurring in the dihydrouridine loop of the mitochondrial transfer RNA(Leu(UUR)) [tRNA(Leu)((UUR))] gene. The pathophysiology of the disease is not completely understood; however, several different mechanisms are proposed to contribute to this disease. These include decreased aminoacylation of mitochondrial tRNA, resulting in decreased mitochondrial protein synthesis; changes in calcium homeostasis; and alterations in nitric oxide metabolism. Currently, no consensus criteria exist for treating the MELAS syndrome or mitochondrial dysfunction in other diseases. Many of the therapeutic strategies used have been adopted as the result of isolated case reports or limited clinical studies that have included a heterogeneous population of patients with the MELAS syndrome, other defects in oxidative phosphorylation or lactic acidosis due to disorders of pyruvate metabolism. Current approaches to the treatment of the MELAS syndrome are based on the use of antioxidants, respiratory chain substrates and cofactors in the form of vitamins; however, no consistent benefits have been observed with these treatments.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
50
|
Abstract
Cytochrome c oxidase (COX) deficiency is an important cause of myopathy or encephalomyopathy. Considering the structural complexity of COX, its dual genetic control, and the several nuclear genes needed for its proper assembly, the phenotypic heterogeneity is not surprising. From a morphologic view point, the application of histochemistry and immunohistochemistry to the study of COX deficiency in muscle has revealed specific patterns that -we believe- are helpful both for diagnosis and for directing sequencing studies of either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) genes. Similar studies in brain have shown that patients with mutations in mtDNA appear to have different patterns of COX deficiency from patients with mutations in nDNA genes. The recent discovery of mutations in COX assembly genes coupled with the potential to generate knock-out mice with these mutations holds the promise of providing the neuropathologist with the animal models needed to study the pathogenesis of COX deficiency in brain and muscle.
Collapse
Affiliation(s)
- Kurenai Tanji
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Eduardo Bonilla
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|