1
|
Fang X, Yang S, Chen M, Sun R, Zhao L, Gu B, Zhang J, Huang D, Zheng T, Zhao Y, Peng P, Zhao Y. Association analysis of polymorphisms at GLRB, GRIA2, and GASK1B genes with reproductive traits in Dazu Black Goats. Anim Biotechnol 2023; 34:4721-4729. [PMID: 36927330 DOI: 10.1080/10495398.2023.2187406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Reproductive traits are essential economic traits in goats. This study aimed to analyze the relationship between single nucleotide polymorphisms (SNPs) within the genes of GLRB, GRIA2, and GASK1B, and reproductive traits (kidding traits and placental traits) in goats. We used the resequencing data of 150 Dazu Black Goats to perform correlation analysis with the average litter size. We screened thirteen SNPs loci in introns and then used the Sanger method to genotype the remaining 150 Dazu Black Goats. The results showed that a total of six SNPs were screened. Three SNPs related to litter size and live litter size (g.28985790T > G, g.28986352A > G, and g.28987976A > G); one SNP related to total cotyledon area (g.29203243G > A); two SNPs related to placental efficiency (g.30189055G > A and g.30193974C > T); one SNP associated with cotyledon support efficiency (g.30193974C > T). The qPCR results showed that GLRB, GRIA2, and GASK1B were all highly expressed in the udder, kidney, uterus, and ovary. It indicated that these three candidate genes might affect the reproductive traits, which could be used as candidate markers for reproductive traits in Dazu Black Goats. Moreover, association studies on a large scale are still needed to figure out what effect these SNPs have on reproductive traits.
Collapse
Affiliation(s)
- Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Songjian Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| | - Deli Huang
- Tengda Animal Husbandry Co., Ltd., Chongqing, China
| | | | - Yuanping Zhao
- Dazu County Agriculture and Rural Committee, Chongqing, China
| | - Peng Peng
- Tengda Animal Husbandry Co., Ltd., Chongqing, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing, China
| |
Collapse
|
2
|
Aboheimed GI, AlRasheed MM, Almudimeegh S, Peña-Guerra KA, Cardona-Londoño KJ, Salih MA, Seidahmed MZ, Al-Mohanna F, Colak D, Harvey RJ, Harvey K, Arold ST, Kaya N, Ruiz AJ. Clinical, genetic, and functional characterization of the glycine receptor β-subunit A455P variant in a family affected by hyperekplexia syndrome. J Biol Chem 2022; 298:102018. [PMID: 35526563 PMCID: PMC9241032 DOI: 10.1016/j.jbc.2022.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family. Extensive genetic screening using exome sequencing coupled with autozygome analysis and iterative filtering supplemented by in silico prediction identified that the patient carries the homozygous missense mutation A455P in GLRB, which encodes the GlyR β-subunit. To unravel the physiological and molecular effects of A455P on GlyRs, we used electrophysiology in a heterologous system as well as immunocytochemistry, confocal microscopy, and cellular biochemistry. We found a reduction in glycine-evoked currents in N2A cells expressing the mutation compared to WT cells. Western blot analysis also revealed a reduced amount of GlyR β protein both in cell lysates and isolated membrane fractions. In line with the above observations, coimmunoprecipitation assays suggested that the GlyR α1-subunit retained coassembly with βA455P to form membrane-bound heteromeric receptors. Finally, structural modeling showed that the A455P mutation affected the interaction between the GlyR β-subunit transmembrane domain 4 and the other helices of the subunit. Taken together, our study identifies and validates a novel loss-of-function mutation in GlyRs whose pathogenicity is likely to cause hyperekplexia in the affected individual.
Collapse
Affiliation(s)
- Ghada I Aboheimed
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia; Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom
| | - Maha M AlRasheed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Karla A Peña-Guerra
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Kelly J Cardona-Londoño
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Z Seidahmed
- Department of Pediatrics, Security Forces Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Kirsten Harvey
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom
| | - Stefan T Arold
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.
| | - Arnaud J Ruiz
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Absalom NL, Liao VW, Chebib M. Ligand-gated ion channels in genetic disorders and the question of efficacy. Int J Biochem Cell Biol 2020; 126:105806. [DOI: 10.1016/j.biocel.2020.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
|
4
|
A novel nonsense autosomal dominant mutation in the GLRA1 gene causing hyperekplexia. J Neural Transm (Vienna) 2018; 125:1877-1883. [PMID: 30182260 DOI: 10.1007/s00702-018-1924-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
We present a family with two members affected by hyperekplexia and two unaffected members. All exons in the glycine receptor alpha 1 subunit gene (GLRA1) were sequenced in all four family members. Our index patient harbored a novel nonsense mutation (p.Trp314*; rs867618642) in the transmembrane domain three of the GLRA1 and a novel missense variant in the NH2-terminal part (p.Val67Met; rs142888296). After development of tolerance for the effective treatment with clobazam a drug holiday led to a sustained restoration of the treatment response.
Collapse
|
5
|
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 2018; 11:291. [PMID: 30186111 PMCID: PMC6110938 DOI: 10.3389/fnmol.2018.00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Involvement of glycine receptor α1 subunits in cannabinoid-induced analgesia. Neuropharmacology 2018; 133:224-232. [PMID: 29407767 DOI: 10.1016/j.neuropharm.2018.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Some cannabinoids have been shown to suppress chronic pain by targeting glycine receptors (GlyRs). Although cannabinoid potentiation of α3 GlyRs is thought to contribute to cannabinoid-induced analgesia, the role of cannabinoid potentiation of α1 GlyRs in cannabinoid suppression of chronic pain remains unclear. Here we report that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, significantly suppresses chronic inflammatory pain caused by noxious heat stimulation. This effect may involve spinal α1 GlyRs since the expression level of α1 subunits in the spinal cord is positively correlated with CFA-induced inflammatory pain and the GlyRs antagonist strychnine blocks the DH-CBD-induced analgesia. A point-mutation of S296A in TM3 of α1 GlyRs significantly inhibits DH-CBD potentiation of glycine currents (IGly) in HEK-293 cells and neurons in lamina I-II of spinal cord slices. To explore the in vivo consequence of DH-CBD potentiation of α1 GlyRs, we generated a GlyRα1S296A knock-in mouse line. We observed that DH-CBD-induced potentiation of IGly and analgesia for inflammatory pain was absent in GlyRα1S296A knock-in mice. These findings suggest that spinal α1 GlyR is a potential target for cannabinoid analgesia in chronic inflammatory pain.
Collapse
|
7
|
Abstract
Stiff-man syndrome (SMS) is a rare disease of progressive muscle stiffness, most common in middle age, often associated with autoimmunity to glutamic acid decarboxylase (GAD) and responsive to treatment with GABA agonists. Diagnosis is established by clinical characteristics and confirmed by EMG or antibody testing. Anti-GAD antibodies are present in 60% of those with SMS and antiamphiphysin antibodies are found in fewer than 10%. The production of antibodies has an unclear relationship to the pathological processes of the disease. GABA receptors and GABA receptor mRNAs are found in high density in the spinal cord laminae and identify possible sites of dys-function in SMS. At some spinal cord synapses, GABA co-localizes with glycine, a neurotransmitter implicated in hyperekplexia. Failure of spinal cord reflexes explains the symptoms of SMS, but electrophysiological studies have not yet identified a single locus of inhibitory failure. Immunomodulation may alter the disease course, but consistently effective treatments for SMS await development.
Collapse
|
8
|
Wilkins ME, Caley A, Gielen MC, Harvey RJ, Smart TG. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation. J Physiol 2016; 594:3589-607. [PMID: 27028707 PMCID: PMC4929309 DOI: 10.1113/jp272122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022] Open
Abstract
Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease.
Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application revealed faster glycine deactivation times for the N46K mutant compared with the WT receptor. Overall, these data are consistent with N46 ensuring correct alignment of the α1 subunit interface by interaction with juxtaposed residues to preserve the structural integrity of the glycine binding site. This represents a new mechanism by which GlyR dysfunction induces startle disease. Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease.
Collapse
Affiliation(s)
- Megan E Wilkins
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alex Caley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marc C Gielen
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39, Brunswick Square, London, WC1N 1AX, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
9
|
Maleeva GV, Bregestovski PD. [GLYCINE RECEPTOR: MOLECULAR ORGANIZATION AND PATHOLOGY]. ACTA ACUST UNITED AC 2016; 61:107-17. [PMID: 26845851 DOI: 10.15407/fz61.05.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycine receptor is the anion-selective channel, providing fast synaptic transmission in the central nervous system of vertebrates. Together with the nicotinic acetylcholine, GABA and serotonin (5-HT3R) receptors, it belongs to the superfamily of pentameric cys-loop receptors. In this review we briefly describe main functions of these transmembrane proteins, their distribution and molecular architecture. Special attention is paid to recent studies on the molecular physiology of these receptors, as well as on presenting of molecular domains responsible for their dysfunction.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Central Nervous System/metabolism
- Central Nervous System/physiopathology
- Gene Expression
- Humans
- Ion Transport
- Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, GABA/chemistry
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, Glycine/chemistry
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Reflex, Startle/genetics
- Serotonin/metabolism
- Synaptic Transmission
Collapse
|
10
|
Thomas RH, Drew CJG, Wood SE, Hammond CL, Chung SK, Rees MI. Ethnicity can predict GLRA1 genotypes in hyperekplexia. J Neurol Neurosurg Psychiatry 2015; 86:341-3. [PMID: 24970905 DOI: 10.1136/jnnp-2014-307903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Hyperekplexia is predominantly caused by mutations in the α-1 subunit of the inhibitory glycine receptor (GLRA1). Three quarters of cases show autosomal-recessive inheritance. METHODS We carefully ascertained reports of ethnicity from our hyperekplexia research cohort. These were compared with all published cases of hyperekplexia with an identified genetic cause. Ethnicities were subgrouped as Caucasian, Asian, Arabic, Turkish, Jewish or Afro-American. RESULTS We report the ethnicity of 90 cases: 56 cases from our service augmented by 34 cases from the literature. Homozygous deletions of exons 1 to 7 are predominantly seen in people with Turkish backgrounds (n=16/17, p<0.001). In contrast, the dominant point mutation R271 is seen in people of Asian, Caucasian and African-American heritage (n=19) but not in people with Arab or Turkish ethnicities (p<0.001). CONCLUSIONS Self-declared ethnicity can predict gene-screening outcomes. Cultural practices influence the inheritance patterns and a Caucasian founder is postulated for R271 mutations.
Collapse
Affiliation(s)
- R H Thomas
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, Cathays, UK Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea, UK Epilepsy Research Centre, Austin Hospital, Heidelberg, Melbourne, Victoria, Australia
| | - C J G Drew
- Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea, UK Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - S E Wood
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - C L Hammond
- Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea, UK Genetic Counselling Service, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | - S K Chung
- Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea, UK Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - M I Rees
- Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea, UK Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
11
|
Abstract
Hyperekplexia is a rare disorder caused by autosomal dominant or recessive modes of inheritance and characterized by episodes of exaggerated startle. Five causative genes have been identified to date. The syndrome has been recognized for decades and due to its rarity, the literature contains mostly descriptive reports, many early studies lacking molecular genetic diagnoses. A spectrum of clinical severity exists. Severe cases can lead to neonatal cardiac arrest and death during an episode, an outcome prevented by early diagnosis and clinical vigilance. Large treatment studies are not feasible, so therapeutic measures continue to be empiric. A marked response to clonazepam is often reported but refractory cases exist. Herein we report the clinical course and treatment response of a severely affected infant homozygous for an SLC6A5 nonsense mutation and review the literature summarizing the history and genetic understanding of the disease as well as the described comorbidities and treatment options.
Collapse
|
12
|
Schaefer N, Langlhofer G, Kluck CJ, Villmann C. Glycine receptor mouse mutants: model systems for human hyperekplexia. Br J Pharmacol 2014; 170:933-52. [PMID: 23941355 DOI: 10.1111/bph.12335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022] Open
Abstract
Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
13
|
Bode A, Lynch JW. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain 2014; 7:2. [PMID: 24405574 PMCID: PMC3895786 DOI: 10.1186/1756-6606-7-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023] Open
Abstract
Hyperekplexia is a rare neurological disorder characterized by neonatal hypertonia, exaggerated startle responses to unexpected stimuli and a variable incidence of apnoea, intellectual disability and delays in speech acquisition. The majority of motor defects are successfully treated by clonazepam. Hyperekplexia is caused by hereditary mutations that disrupt the functioning of inhibitory glycinergic synapses in neuromotor pathways of the spinal cord and brainstem. The human glycine receptor α1 and β subunits, which predominate at these synapses, are the major targets of mutations. International genetic screening programs, that together have analysed several hundred probands, have recently generated a clear picture of genotype-phenotype correlations and the prevalence of different categories of hyperekplexia mutations. Focusing largely on this new information, this review seeks to summarise the effects of mutations on glycine receptor structure and function and how these functional alterations lead to hyperekplexia.
Collapse
Affiliation(s)
| | - Joseph W Lynch
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
14
|
Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography. Proc Natl Acad Sci U S A 2013; 110:18716-21. [PMID: 24167270 DOI: 10.1073/pnas.1313156110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryoelectron microscopy and X-ray crystallography have recently been used to generate structural models that likely represent the unliganded closed-channel conformation and the fully liganded open-channel conformation of different members of the nicotinic-receptor superfamily. To characterize the structure of the closed-channel conformation in its liganded state, we identified a number of positions in the loop between transmembrane segments 2 (M2) and 3 (M3) of a proton-gated ortholog from the bacterium Gloeobacter violaceus (GLIC) where mutations to alanine reduce the liganded-gating equilibrium constant, and solved the crystal structures of two such mutants (T25'A and Y27'A) at pH ~4.0. At the level of backbone atoms, the liganded closed-channel model presented here differs from the liganded open-channel structure of GLIC in the pre-M1 linker, the M3-M4 loop, and much more prominently, in the extracellular half of the pore lining, where the more pronounced tilt of the closed-channel M2 α-helices toward the pore's long axis narrows the permeation pathway. On the other hand, no differences between the liganded closed-channel and open-channel models could be detected at the level of the extracellular domain, where conformational changes are expected to underlie the low-to-high proton-affinity switch that drives gating of proton-bound channels. Thus, the liganded closed-channel model is nearly indistinguishable from the recently described "locally closed" structure. However, because cross-linking strategies (which could have stabilized unstable conformations) and mutations involving ionizable side chains (which could have affected proton-gated channel activation) were purposely avoided, we favor the notion that this structure represents one of the end states of liganded gating rather than an unstable intermediate.
Collapse
|
15
|
Bode A, Wood SE, Mullins JGL, Keramidas A, Cushion TD, Thomas RH, Pickrell WO, Drew CJG, Masri A, Jones EA, Vassallo G, Born AP, Alehan F, Aharoni S, Bannasch G, Bartsch M, Kara B, Krause A, Karam EG, Matta S, Jain V, Mandel H, Freilinger M, Graham GE, Hobson E, Chatfield S, Vincent-Delorme C, Rahme JE, Afawi Z, Berkovic SF, Howell OW, Vanbellinghen JF, Rees MI, Chung SK, Lynch JW. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms. J Biol Chem 2013; 288:33745-33759. [PMID: 24108130 DOI: 10.1074/jbc.m113.509240] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus β subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors.
Collapse
Affiliation(s)
- Anna Bode
- University of Queensland, Queensland Brain Institute and School of Biomedical Sciences, Queensland 4072, Australia
| | - Sian-Elin Wood
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Jonathan G L Mullins
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Angelo Keramidas
- University of Queensland, Queensland Brain Institute and School of Biomedical Sciences, Queensland 4072, Australia
| | - Thomas D Cushion
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Rhys H Thomas
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom; Wales Epilepsy Research Network, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - William O Pickrell
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom; Wales Epilepsy Research Network, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Cheney J G Drew
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom; Wales Epilepsy Research Network, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Amira Masri
- Department of Paediatrics, Division of Child Neurology, Faculty of Medicine, University of Jordan, Amman 11942, Jordan
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom; Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom
| | - Grace Vassallo
- Royal Manchester Children's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom
| | - Alfred P Born
- Department of Pediatrics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Fusun Alehan
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Basşkent University, 06990 Ankara, Turkey
| | - Sharon Aharoni
- Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69987, Israel
| | - Gerald Bannasch
- Neurology Department, Affinity Medical Group, Menasha, Wisconsin 54952
| | - Marius Bartsch
- Department of Neonatology, University Medical Center of the Johannes Gutenberg University Mainz, D-55099 Mainz, Germany
| | - Bulent Kara
- Kocaeli University Medical Faculty, Department of Pediatrics, Division of Child Neurology, 41380 Kocaeli, Turkey
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - Elie G Karam
- Department of Psychiatry and Clinical Psychology, Saint George Hospital University Medical Center, Balamand University, Faculty of Medicine, Beirut 1100 2807, Lebanon
| | - Stephanie Matta
- Department of Psychiatry and Clinical Psychology, Saint George Hospital University Medical Center, Balamand University, Faculty of Medicine, Beirut 1100 2807, Lebanon
| | - Vivek Jain
- Royal Children's Hospital Melbourne, Children's Neuroscience Centre, Royal Children's Hospital, Victoria 3052, Australia
| | - Hanna Mandel
- Metabolic Unit, Meyer Children's Hospital, Rambam Medical Center, Technion Faculty of Medicine, Haifa 31096, Israel
| | - Michael Freilinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Gail E Graham
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Emma Hobson
- Yorkshire Regional Genetic Service, Chapel Allerton Hospital, Leeds, West Yorkshire LS9 7TF, United Kingdom
| | - Sue Chatfield
- Neonatal Unit, Bradford Royal Infirmary, Bradford, West Yorkshire BD9 6RJ, United Kingdom
| | | | | | - Zaid Afawi
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Samuel F Berkovic
- Epilepsy Research Centre, Melbourne Brain Centre, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Owain W Howell
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom; Wales Epilepsy Research Network, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | | | - Mark I Rees
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom; Wales Epilepsy Research Network, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Seo-Kyung Chung
- Department of Neurology Research and Molecular Neuroscience, Institute of Life Science, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom; Wales Epilepsy Research Network, College of Medicine, Swansea University Swansea SA2 8PP, United Kingdom
| | - Joseph W Lynch
- University of Queensland, Queensland Brain Institute and School of Biomedical Sciences, Queensland 4072, Australia.
| |
Collapse
|
16
|
Thomas RH, Chung SK, Wood SE, Cushion TD, Drew CJG, Hammond CL, Vanbellinghen JF, Mullins JGL, Rees MI. Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay. Brain 2013; 136:3085-95. [DOI: 10.1093/brain/awt207] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
James VM, Bode A, Chung SK, Gill JL, Nielsen M, Cowan FM, Vujic M, Thomas RH, Rees MI, Harvey K, Keramidas A, Topf M, Ginjaar I, Lynch JW, Harvey RJ. Novel missense mutations in the glycine receptor β subunit gene (GLRB) in startle disease. Neurobiol Dis 2012; 52:137-49. [PMID: 23238346 PMCID: PMC3581774 DOI: 10.1016/j.nbd.2012.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 02/03/2023] Open
Abstract
Startle disease is a rare, potentially fatal neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden unexpected auditory, visual or tactile stimuli. Mutations in the GlyR α(1) subunit gene (GLRA1) are the major cause of this disorder, since remarkably few individuals with mutations in the GlyR β subunit gene (GLRB) have been found to date. Systematic DNA sequencing of GLRB in individuals with hyperekplexia revealed new missense mutations in GLRB, resulting in M177R, L285R and W310C substitutions. The recessive mutation M177R results in the insertion of a positively-charged residue into a hydrophobic pocket in the extracellular domain, resulting in an increased EC(50) and decreased maximal responses of α(1)β GlyRs. The de novo mutation L285R results in the insertion of a positively-charged side chain into the pore-lining 9' position. Mutations at this site are known to destabilize the channel closed state and produce spontaneously active channels. Consistent with this, we identified a leak conductance associated with spontaneous GlyR activity in cells expressing α(1)β(L285R) GlyRs. Peak currents were also reduced for α(1)β(L285R) GlyRs although glycine sensitivity was normal. W310C was predicted to interfere with hydrophobic side-chain stacking between M1, M2 and M3. We found that W310C had no effect on glycine sensitivity, but reduced maximal currents in α(1)β GlyRs in both homozygous (α(1)β(W310C)) and heterozygous (α(1)ββ(W310C)) stoichiometries. Since mild startle symptoms were reported in W310C carriers, this may represent an example of incomplete dominance in startle disease, providing a potential genetic explanation for the 'minor' form of hyperekplexia.
Collapse
Affiliation(s)
- Victoria M James
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carta E, Chung SK, James VM, Robinson A, Gill JL, Remy N, Vanbellinghen JF, Drew CJG, Cagdas S, Cameron D, Cowan FM, Del Toro M, Graham GE, Manzur AY, Masri A, Rivera S, Scalais E, Shiang R, Sinclair K, Stuart CA, Tijssen MAJ, Wise G, Zuberi SM, Harvey K, Pearce BR, Topf M, Thomas RH, Supplisson S, Rees MI, Harvey RJ. Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease. J Biol Chem 2012; 287:28975-85. [PMID: 22700964 PMCID: PMC3436555 DOI: 10.1074/jbc.m112.372094] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/11/2012] [Indexed: 11/06/2022] Open
Abstract
Hereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor β subunit (GLRB) and the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of SLC6A5 in 93 new unrelated human hyperekplexia patients revealed 20 sequence variants in 17 index cases presenting with homozygous or compound heterozygous recessive inheritance. Five apparently unrelated cases had the truncating mutation R439X. Genotype-phenotype analysis revealed a high rate of neonatal apneas and learning difficulties associated with SLC6A5 mutations. From the 20 SLC6A5 sequence variants, we investigated glycine uptake for 16 novel mutations, confirming that all were defective in glycine transport. Although the most common mechanism of disrupting GlyT2 function is protein truncation, new pathogenic mechanisms included splice site mutations and missense mutations affecting residues implicated in Cl(-) binding, conformational changes mediated by extracellular loop 4, and cation-π interactions. Detailed electrophysiology of mutation A275T revealed that this substitution results in a voltage-sensitive decrease in glycine transport caused by lower Na(+) affinity. This study firmly establishes the combination of missense, nonsense, frameshift, and splice site mutations in the GlyT2 gene as the second major cause of startle disease.
Collapse
Affiliation(s)
- Eloisa Carta
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Seo-Kyung Chung
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Victoria M. James
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Angela Robinson
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Jennifer L. Gill
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Nathalie Remy
- Human Genetics, Liège University Hospital, B-4000 Liège, Belgium
| | | | - Cheney J. G. Drew
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Sophie Cagdas
- Department of Child Neuropsychiatry, C Poma Hospital, 46100 Mantova, Italy
| | - Duncan Cameron
- Department of Paediatrics, Glan Clwyd Hospital, Rhyl LL18 5UJ, United Kingdom
| | - Frances M. Cowan
- Department of Paediatrics, Imperial College, London W12 0HS, United Kingdom
| | - Mireria Del Toro
- Servicio de Neurologia Pediatrica, Hospital General Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Gail E. Graham
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Adnan Y. Manzur
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
| | - Amira Masri
- Department of Paediatrics, University of Jordan, 11941 Amman, Jordan
| | - Serge Rivera
- Service de Pédiatrie, Centre Hospitalier de la Côte Basque, 64109 Bayonne, France
| | - Emmanuel Scalais
- Neurologie Pédiatrique, Centre Hospitalier de Luxembourg, L-1210 Luxembourg
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0033
| | - Kate Sinclair
- Queensland Paediatric Rehabilitation Service, Royal Children's Hospital, Herston 4029, Australia
| | | | - Marina A. J. Tijssen
- Department of Neurology, University Medical Centre Groningen, 9713 GZ, Groningen, The Netherlands
| | - Grahame Wise
- Sydney Children's Hospital, Randwick NSW 2031, Australia
| | - Sameer M. Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow G3 8SJ, United Kingdom
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Brian R. Pearce
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Rhys H. Thomas
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
- Wales Epilepsy Research Network, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Stéphane Supplisson
- Institut de Biologie de l'Ecole Normale Supérieure, Paris 75000, France
- Institut National de la Santé et de la Recherche Médicale, U1024, Paris 75000, France, and
- CNRS, UMR 8197, Paris 75000, France
| | - Mark I. Rees
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
- Wales Epilepsy Research Network, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Robert J. Harvey
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| |
Collapse
|
19
|
A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J Neurosci 2012; 32:5200-8. [PMID: 22496565 DOI: 10.1523/jneurosci.6347-11.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both exogenous and endogenous cannabinoids can allosterically modulate glycine receptors (GlyRs). However, little is known about the molecular basis of cannabinoid-GlyR interactions. Here we report that sustained incubation with the endocannabinoid anandamide (AEA) substantially increased the amplitude of glycine-activated current in both rat cultured spinal neurons and in HEK-293 cells expressing human α1, rat α2 and α3 GlyRs. While the α1 and α3 subunits were highly sensitive to AEA-induced potentiation, the α2 subunit was relatively insensitive to AEA. Switching a serine at 296 and 307 in the TM3 (transmembrane domain 3) of the α1 and α3 subunits with an alanine (A) at the equivalent position in the α2 subunit converted the α1/α3 AEA-sensitive receptors to sensitivity resembling that of α2. The S296 residue is also critical for exogenous cannabinoid-induced potentiation of I(Gly). The magnitude of AEA potentiation decreased with removal of either the hydroxyl or oxygen groups on AEA. While desoxy-AEA was significantly less efficacious in potentiating I(Gly), desoxy-AEA inhibited potentiation produced by both Δ(9)-tetrahydrocannabinol (THC), a major psychoactive component of marijuana, and AEA. Similarly, didesoxy-THC, a modified THC with removal of both hydroxyl/oxygen groups, did not affect I(Gly) when applied alone but inhibited the potentiation of I(Gly) induced by AEA and THC. These findings suggest that exogenous and endogenous cannabinoids potentiate GlyRs via a hydrogen bonding-like interaction. Such a specific interaction likely stems from a common molecular basis involving the S296 residue in the TM3 of the α1 and α3 subunits.
Collapse
|
20
|
Dreissen YE, Bakker MJ, Koelman JH, Tijssen MA. Exaggerated startle reactions. Clin Neurophysiol 2012; 123:34-44. [DOI: 10.1016/j.clinph.2011.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/31/2011] [Accepted: 09/03/2011] [Indexed: 11/15/2022]
|
21
|
Bouzat C. New insights into the structural bases of activation of Cys-loop receptors. ACTA ACUST UNITED AC 2011; 106:23-33. [PMID: 21995938 DOI: 10.1016/j.jphysparis.2011.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/07/2011] [Accepted: 09/26/2011] [Indexed: 11/27/2022]
Abstract
Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
22
|
Abstract
This review examines some of the advances in understanding myoclonus over the last 25 years. The classification of myoclonus into cortical, brainstem, and spinal forms has been consolidated, each with distinctive clinical characteristics and physiological mechanisms. New genetic causes of myoclonus have been identified, and the molecular basis of several of these conditions has been discovered. It is increasingly apparent that disease of the cerebellum is particularly important in the genesis of cortical reflex myoclonus. However, the precise mechanism and origin of myoclonus in many situations remain uncertain. Effective treatment of myoclonus remains limited, and the challenge lies ahead to develop more therapeutic options.
Collapse
Affiliation(s)
- Hiroshi Shibasaki
- Kyoto University Graduate School of Medicine and Takeda General Hospital, Kyoto, Japan
| | | |
Collapse
|
23
|
Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol 2011; 7:296-303. [PMID: 21460829 DOI: 10.1038/nchembio.552] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/16/2011] [Indexed: 02/07/2023]
Abstract
Cannabinoids enhance the function of glycine receptors (GlyRs). However, little is known about the mechanisms and behavioral implication of cannabinoid-GlyR interaction. Using mutagenesis and NMR analysis, we have identified a serine at 296 in the GlyR protein critical for the potentiation of I(Gly) by Δ(9)-tetrahydrocannabinol (THC), a major psychoactive component of marijuana. The polarity of the amino acid residue at 296 and the hydroxyl groups of THC are critical for THC potentiation. Removal of the hydroxyl groups of THC results in a compound that does not affect I(Gly) when applied alone but selectively antagonizes cannabinoid-induced potentiating effect on I(Gly) and analgesic effect in a tail-flick test in mice. The cannabinoid-induced analgesia is absent in mice lacking α3GlyRs but not in those lacking CB1 and CB2 receptors. These findings reveal a new mechanism underlying cannabinoid potentiation of GlyRs, which could contribute to some of the cannabis-induced analgesic and therapeutic effects.
Collapse
|
24
|
Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene. Neurobiol Dis 2011; 43:184-9. [PMID: 21420493 PMCID: PMC4068303 DOI: 10.1016/j.nbd.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/01/2011] [Accepted: 03/11/2011] [Indexed: 11/21/2022] Open
Abstract
Defects in glycinergic synaptic transmission in humans, cattle, and rodents result in an exaggerated startle reflex and hypertonia in response to either acoustic or tactile stimuli. Molecular genetic studies have determined that mutations in the genes encoding the postsynaptic glycine receptor (GlyR) α1 and β subunits (GLRA1 and GLRB) and the presynaptic glycine transporter GlyT2 (SLC6A5) are the major cause of these disorders. Here, we report the first genetically confirmed canine cases of startle disease. A litter of seven Irish wolfhounds was identified in which two puppies developed muscle stiffness and tremor in response to handling. Although sequencing of GLRA1 and GLRB did not reveal any pathogenic mutations, analysis of SLC6A5 revealed a homozygous 4.2 kb microdeletion encompassing exons 2 and 3 in both affected animals. This results in the loss of part of the large cytoplasmic N-terminus and all subsequent transmembrane domains due to a frameshift. This genetic lesion was confirmed by defining the deletion breakpoint, Southern blotting, and multiplex ligation-dependent probe amplification (MLPA). This analysis enabled the development of a rapid genotyping test that revealed heterozygosity for the deletion in the dam and sire and three other siblings, confirming recessive inheritance. Wider testing of related animals has identified a total of 13 carriers of the SLC6A5 deletion as well as non-carrier animals. These findings will inform future breeding strategies and enable a rational pharmacotherapy of this new canine disorder.
Collapse
|
25
|
Abstract
Startle refers to a sudden involuntary movement of the body in response to a surprising and unexpected stimulus. It is a fast twitch of facial and body muscles evoked by a sudden and intense tactile, visual, or acoustic stimulus. While startle can be considered to be a protective function against injury, startle syndromes are abnormal responses to startling events, consisting of three heterogeneous groups of disorders. The first is hyperekplexia, characterized by brisk and generalized startle in response to trivial stimulation. The major form of hereditary hyperekplexia has a genetic basis, frequently due to mutations in the α1 subunit of the glycine receptor (GLRA1) on chromosome 5q. In the second group, normal startle induces complex but stereotyped motor and/or behavioral abnormalities lasting several seconds, termed as startle epilepsy. It usually occurs in the setting of severe brain damage, particularly perinatal hypoxia. The third group is characterized by nonhabituating hyperstartling, provoked by loud noises, sudden commands, or gestures. The intensity of startle response tends to increase with frequency of stimulation, which often leads to injury. Interestingly, its occurrence is restricted to certain social or ethnic groups in different parts of the world, such as jumping Frenchmen of Maine among Franco-Canadian lumberjack communities, and Latah in Southeast Asia. So far, no neurological abnormalities have been reported in association with these neuropsychiatric startle syndromes. In this chapter, the authors discuss the clinical presentation, physiology, and the neuronal basis of the normal human startle as well as different groups of abnormal startle syndromes. The aim is to provide an overview of hyperstartling with some diagnostic hints and the distinguishing features among these syndromes.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Comprehensive Movement Disorders Center, Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
26
|
Davies JS, Chung SK, Thomas RH, Robinson A, Hammond CL, Mullins JGL, Carta E, Pearce BR, Harvey K, Harvey RJ, Rees MI. The glycinergic system in human startle disease: a genetic screening approach. Front Mol Neurosci 2010; 3:8. [PMID: 20407582 PMCID: PMC2854534 DOI: 10.3389/fnmol.2010.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/08/2010] [Indexed: 11/17/2022] Open
Abstract
Human startle disease, also known as hyperekplexia (OMIM 149400), is a paroxysmal neurological disorder caused by defects in glycinergic neurotransmission. Hyperekplexia is characterised by an exaggerated startle reflex in response to tactile or acoustic stimuli which first presents as neonatal hypertonia, followed in some with episodes of life-threatening infantile apnoea. Genetic screening studies have demonstrated that hyperekplexia is genetically heterogeneous with several missense and nonsense mutations in the postsynaptic glycine receptor (GlyR) alpha1 subunit gene (GLRA1) as the primary cause. More recently, missense, nonsense and frameshift mutations have also been identified in the glycine transporter GlyT2 gene, SLC6A5, demonstrating a presynaptic component to this disease. Further mutations, albeit rare, have been identified in the genes encoding the GlyR beta subunit (GLRB), collybistin (ARHGEF9) and gephyrin (GPHN) - all of which are postsynaptic proteins involved in orchestrating glycinergic neurotransmission. In this review, we describe the clinical ascertainment aspects, phenotypic considerations and the downstream molecular genetic tools utilised to analyse both presynaptic and postsynaptic components of this heterogeneous human neurological disorder. Moreover, we will describe how the ancient startle response is the preserve of glycinergic neurotransmission and how animal models and human hyperekplexia patients have provided synergistic evidence that implicates this inhibitory system in the control of startle reflexes.
Collapse
Affiliation(s)
- Jeff S Davies
- Institute of Life Science, School of Medicine, Swansea University Singleton Park, Swansea, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bartos M, Corradi J, Bouzat C. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Mol Neurobiol 2009; 40:236-52. [PMID: 19859835 DOI: 10.1007/s12035-009-8084-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/22/2009] [Indexed: 10/25/2022]
Abstract
Cys-loop receptors mediate rapid transmission throughout the nervous system by converting a chemical signal into an electric one. They are pentameric proteins with an extracellular domain that carries the transmitter binding sites and a transmembrane region that forms the ion pore. Their essential function is to couple the binding of the agonist at the extracellular domain to the opening of the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50 A to the gate is therefore central for the understanding of the receptor function. A step forward toward the identification of the structures involved in gating has been given by the recently elucidated high-resolution structures of Cys-loop receptors and related proteins. The extracellular-transmembrane interface has attracted attention because it is a structural transition zone where beta-sheets from the extracellular domain merge with alpha-helices from the transmembrane domain. Within this zone, several regions form a network that relays structural changes from the binding site toward the pore, and therefore, this interface controls the beginning and duration of a synaptic response. In this review, the most recent findings on residues and pairwise interactions underlying channel gating are discussed, the main focus being on the extracellular-transmembrane interface.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
28
|
Gating mechanisms in Cys-loop receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:37-49. [PMID: 19404635 DOI: 10.1007/s00249-009-0452-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten beta-strands in the extracellular domain and four alpha-helical transmembrane domains (M1-M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2-M3 loop have been implicated in receptor activation. The current "conformational change wave" hypothesis suggests that binding of a ligand initiates a rotation of the beta-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2-M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.
Collapse
|
29
|
The genetics of hyperekplexia: more than startle! Trends Genet 2008; 24:439-47. [DOI: 10.1016/j.tig.2008.06.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
|
30
|
Pless SA, Lynch JW. Illuminating the structure and function of Cys-loop receptors. Clin Exp Pharmacol Physiol 2008; 35:1137-42. [PMID: 18505452 DOI: 10.1111/j.1440-1681.2008.04954.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cys-loop receptors are an important class of ligand-gated ion channels. They mediate fast synaptic neurotransmission, are implicated in various 'channelopathies' and are important pharmacological targets. Recent progress in X-ray crystallography and electron microscopy has provided a considerable insight into the structure of Cys-loop receptors. However, data from these experiments only provide 'snapshots' of the proteins under investigation. They cannot provide information about the various conformations the protein adopts during transition from the closed to the open and desensitized states. Voltage-clamp fluorometry helps overcome this problem by simultaneously monitoring movements at the channel gate (through changes in current) and conformational rearrangements in a domain of interest (through changes in fluorescence) in real time. Thus, the technique can provide information on both transitional and steady state conformations and serves as a real time correlate of the channel structure and its function. Voltage-clamp fluorometry experiments on Cys-loop receptors have yielded a large body of data concerning the mechanisms by which agonists, antagonists and modulators act on these receptors. They have shed new light on the conformational mobility of both the ligand-binding and the transmembrane domain of Cys-loop receptors.
Collapse
Affiliation(s)
- Stephan A Pless
- School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
31
|
Jha A, Cadugan DJ, Purohit P, Auerbach A. Acetylcholine receptor gating at extracellular transmembrane domain interface: the cys-loop and M2-M3 linker. ACTA ACUST UNITED AC 2008; 130:547-58. [PMID: 18040057 PMCID: PMC2151658 DOI: 10.1085/jgp.200709856] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a “gate” in the transmembrane domain (TMD). We used Φ-value analysis to probe the relative timing of the gating motions of α-subunit residues located near the ECD–TMD interface. Mutation of four of the seven amino acids in the M2–M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (Keq) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Φ-value for the whole linker was ∼0.64. One interpretation of this result is that the gating motions of the M2–M3 linker are approximately synchronous with those of much of M2 (∼0.64), but occur after those of the transmitter binding site region (∼0.93) and loops 2 and 7 (∼0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed Keq by 2800-, 10-, and 18-fold, respectively, and with an average Φ-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (≤0.51 kcal mol−1). The M2–M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an ∼16-Å border and involve about a dozen residues.
Collapse
Affiliation(s)
- Archana Jha
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
32
|
Forsyth RJ, Gika AD, Ginjaar I, Tijssen MAJ. A novel GLRA1 mutation in a recessive hyperekplexia pedigree. Mov Disord 2007; 22:1643-5. [PMID: 17534957 DOI: 10.1002/mds.21574] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report the identification of a novel Y228C mutation within the M1 trans-membrane domain of the GLRA1 subunit of the glycine receptor responsible for a severe recessive hyperekplexia phenotype in a Kurdish pedigree.
Collapse
Affiliation(s)
- Rob J Forsyth
- Sir James Spence Institute, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne NE1 4LP, and Paediatric Neurology Department, St George's Hospital, London, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Doria Lamba L, Giribaldi G, De Negri E, Follo R, De Grandis E, Pintaudi M, Veneselli E. A case of major form familial hyperekplexia: prenatal diagnosis and effective treatment with clonazepam. J Child Neurol 2007; 22:769-72. [PMID: 17641268 DOI: 10.1177/0883073807303996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hyperekplexia (OMIM 149400) is an uncommon neurologic disorder characterized by exaggerated response to sensitive stimuli. It may be sporadic or familial. The disease is usually caused by mutations in the inhibitory glycine receptor alpha1-subunit. The authors report a male patient who is affected by the major form of familial hyperekplexia. He is currently 5 years old and is being successfully treated with clonazepam. Prenatal diagnosis was made owing to prior identification of point mutation K276E in his affected mother. Early diagnosis avoided complex and prolonged differential diagnostic procedures and allowed for early and effective intervention on severe neonatal symptoms: hypertonia, episodes of cyanosis, apneic spells, and massive myoclonic jerks. During his first year of life, the patient was treated with cycles of phenobarbital and diazepam and achieved partial clinical response. Subsequent therapy with low-dose clonazepam was highly effective in reducing myoclonic jerks and exaggerated startle reaction, and unlike previously used drugs, it was decisive in reducing hypertonia.
Collapse
Affiliation(s)
- Laura Doria Lamba
- Department of Neuroscience, Ophthalmology and Genetics, University of Genoa, Children Neuropsychiatry Operative Unit, G Gaslini Institute, Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Hyperekplexia is a rare, hereditary, non-epileptic disorder characterized by an exaggerated startle reaction to unexpected auditory, somatosensory and visual stimuli. The authors describe a one-day-old term neonate, who presented with jitteriness and episodic tonic spasms, and his elder sister with hyperekplexia. Hyperekplexia though is a rare disorder is one of the differential diagnoses for refractory tonic spasms in infancy. The prognosis is generally good in hereditary hyperekplexia. Recent molecular studies have revealed many associated mutations in the glycine receptor alpha and beta subunit genes.
Collapse
Affiliation(s)
- M L Kulkarni
- Department of Pediatrics, JJMMC, Davangere, Karnataka, India.
| | | | | |
Collapse
|
35
|
Abstract
Startle syndromes consist of three heterogeneous groups of disorders with abnormal responses to startling events. The first is hyperekplexia, which can be split up into the "major" or "minor" form. The major form of hyperekplexia is characterised by excessive startle reflexes, startle-induced falls, and continuous stiffness in the neonatal period. This form has a genetic basis: mutations in the alpha1 subunit of the glycine receptor gene, GLRA1, or related genes. The minor form, which is restricted to excessive startle reflexes with no stiffness, has no known genetic cause or underlying pathophysiological substrate. The second group of startle syndromes are neuropsychiatric, in which excessive startling and various additional behavioural features occur. The third group are disorders in which startling stimuli can induce responses other than startle reflexes, such as startle-induced epilepsy. Diagnosis of startle syndromes depends on clinical history, electromyographic studies, and genetic screening. Further study of these disorders may enable improved discrimination between the different groups.
Collapse
Affiliation(s)
- Mirte J Bakker
- Department of Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
36
|
Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JBP, Owen MJ, Tijssen MAJ, van den Maagdenberg AMJM, Smart TG, Supplisson S, Harvey RJ. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 2006; 38:801-6. [PMID: 16751771 PMCID: PMC3204411 DOI: 10.1038/ng1814] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 05/05/2006] [Indexed: 11/08/2022]
Abstract
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.
Collapse
Affiliation(s)
- Mark I Rees
- School of Medicine, University of Wales Swansea, Singleton Park, West Glamorgan SA2 8PP, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kimura M, Taketani T, Horie A, Isumi H, Sejima H, Yamaguchi S. Two Japanese families with hyperekplexia who have a Arg271Gln mutation in the glycine receptor alpha 1 subunit gene. Brain Dev 2006; 28:228-31. [PMID: 16478653 DOI: 10.1016/j.braindev.2005.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 11/24/2022]
Abstract
We report two Japanese patients from two families with hyperekplexia who have a Arg271Gln mutation in the glycine receptor alpha 1 subunit gene. The clinical course of both patients was typical for hyperekplexia, characterized by neonatal hypertonia and exaggerated startle response, and which improved gradually with age. One was associated with umbilical hernia and hip dislocation, diagnosed at 11 months, while the other was diagnosed at 1 month. Both showed positive head retraction reflex. Four Japanese families have been reported as having hyperekplexia including our cases, of which three have shown the same missense Arg271Gln mutation, most frequently found in patients from Northern Europe and the United States.
Collapse
Affiliation(s)
- Masahiko Kimura
- Department of Pediatrics, School of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693 8501 Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Throughout the nervous system, moment-to-moment communication relies on postsynaptic receptors to detect neurotransmitters and change the membrane potential. For the Cys-loop superfamily of receptors, recent structural data have catalysed a leap in our understanding of the three steps of chemical-to-electrical transduction: neurotransmitter binding, communication between the binding site and the barrier to ions, and opening and closing of the barrier. The emerging insights might be expected to explain how mutations of receptors cause neurological disease, but the opposite is generally true. Namely, analyses of disease-causing mutations have clarified receptor structure-function relationships as well as mechanisms governing the postsynaptic response.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
39
|
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2006. [DOI: 10.1007/bf02904502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Poon WT, Au KM, Chan YW, Chan KY, Chow CB, Tong SF, Lam CW. Novel missense mutation (Y279S) in the GLRA1 gene causing hyperekplexia. Clin Chim Acta 2006; 364:361-2. [PMID: 16236274 DOI: 10.1016/j.cca.2005.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 09/16/2005] [Accepted: 09/17/2005] [Indexed: 10/25/2022]
|
41
|
Rivera S, Villega F, de Saint-Martin A, Matis J, Escande B, Chaigne D, Astruc D. Congenital hyperekplexia: five sporadic cases. Eur J Pediatr 2006; 165:104-7. [PMID: 16211400 DOI: 10.1007/s00431-005-0015-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
UNLABELLED We report fives sporadic cases of hyperekplexia or startle disease characterized by a highly exaggerated startle reflex and tonic attacks. Affected neonates suffer from prolonged periods of stiffness and are at risk for sudden death from apnea. An early diagnosis is needed. Sudden loud sounds, unexpected tactile stimuli or percussion at the base of the nose can also elicit excessive jerking or tonic attack. The diagnosis of hyperekplexia is a purely clinical one. A defect of the alpha1 subunit of inhibitory glycine receptor (GLRA1) has been observed in the dominant form with a mutation in the chromosome 5. Clonazepam is effective and decreases the severity of the symptoms. The disease tends to improve after infancy and the psychomotor development is normal. The major form of "hyperekplexia" should be considered whenever one is confronted with neonatal hypertonicity associated with paroxysmal tonic manifestations (without electroencephalography anomalies). CONCLUSION the diagnosis of hyperekplexia should be evaluated in any neonate with tonic attacks without evident cause.
Collapse
Affiliation(s)
- Serge Rivera
- Service de Réanimation Néonatale, Pédiatrie 2, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, 67098 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Gilbert SL, Ozdag F, Ulas UH, Dobyns WB, Lahn BT. Hereditary hyperekplexia caused by novel mutations of GLRA1 in Turkish families. ACTA ACUST UNITED AC 2005; 8:151-5. [PMID: 15771552 DOI: 10.1007/bf03260058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hyperekplexia, also known as startle disease or stiff-person syndrome, is a neurological condition characterized by neonatal hypertonia and a highly exaggerated startle reflex. Genetic studies have linked mutations in the gene encoding glycine receptor alpha1 (GLRA1) with hereditary hyperekplexia. METHODS We analyzed four Turkish families with a history of hyperekplexia. Genomic DNA was obtained from members of these families, and the entire coding sequence of GLRA1 was amplified by PCR followed by the sequencing of PCR products. DNA sequences were analyzed by direct observation using an electropherogram and compared with a published reference sequence. RESULTS We identified three novel mutations in GLRA1. These included a large deletion removing the first 7 of 9 exons, a single-base deletion in exon 8 that results in protein truncation immediately after the deletion, and a missense mutation in exon 7 causing a tryptophan-to-cysteine change in the first transmembrane domain (M1). These mutant alleles have some distinct features as compared to previously identified GLRA1 mutations. Our data provides further evidence for mutational heterogeneity in GLRA1. The new mutant alleles reported here should advance our understanding of the etiology of hyperekplexia.
Collapse
Affiliation(s)
- Sandra L Gilbert
- Department of Human Genetics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning GlyR molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
Collapse
Affiliation(s)
- Joseph W Lynch
- School of Biomedical Sciences, Univ. of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
44
|
Khasani S, Becker K, Meinck HM. Hyperekplexia and stiff-man syndrome: abnormal brainstem reflexes suggest a physiological relationship. J Neurol Neurosurg Psychiatry 2004; 75:1265-9. [PMID: 15314112 PMCID: PMC1739206 DOI: 10.1136/jnnp.2003.018135] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Hyperekplexia and the stiff-man syndrome (SMS) are both conditions with exaggerated startle suggesting abnormal brainstem function. Investigation of brainstem reflexes may provide insight into disturbed reflex excitation and inhibition underlying these movement disorders. PATIENTS AND METHODS Using four-channel EMG, we examined four trigeminal brainstem reflexes (monosynaptic masseter, masseter inhibitory, glabella, and orbicularis oculi blink reflexes) and their spread into pericranial muscles in five patients with familial hyperekplexia (FH), two with acquired hyperekplexia (AH), 10 with SMS, and 15 healthy control subjects. RESULTS Both FH/AH and SMS patients had abnormal propagation of brainstem reflexes into pericranial muscles. All patients with hyperekplexia showed an abnormal short-latency (15-20 ms) reflex in the trapezius muscle with a characteristic clinical appearance ("head retraction jerk") evoked by tactile or electrical stimulation of the trigeminal nerve, but normal monosynaptic masseter reflexes. Inhibitory brainstem reflexes were attenuated in some FH/AH patients. Four of 10 patients with SMS had similar short-latency reflexes in the neck muscles and frequently showed widespread enhancement of other excitatory reflexes, reflex spasms, and attenuation of inhibitory brainstem reflexes. CONCLUSION Reflex excitation is exaggerated and inhibition is attenuated in both stiff-man syndrome and familial or acquired hyperekplexia, indicating a physiological relationship. Reflex transmission in the brainstem appears biased towards excitation which may imply dysfunction of inhibitory glycinergic or GABAergic interneurons, or both.
Collapse
Affiliation(s)
- S Khasani
- Department of Neurology, University of Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Lapunzina P, Sánchez JM, Cabrera M, Moreno A, Delicado A, de Torres ML, Mori AM, Quero J, Lopez Pajares I. Hyperekplexia (startle disease): a novel mutation (S270T) in the M2 domain of the GLRA1 gene and a molecular review of the disorder. ACTA ACUST UNITED AC 2004; 7:125-8. [PMID: 14580232 DOI: 10.1007/bf03260028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND We report on a novel mutation (S270T) in the M2 domain of the GLRA1 (alpha subunit of the glycine receptor) gene causing autosomal dominant hyperekplexia in a neonate, the mother and maternal uncle. All affected members showed the typical clinical features of the disorder. This novel S270T (T1188A) mutation is located in the boundary of the transmembrane M2 domain of the GLRA1 protein, close to other previously reported mutations. Mutations in this 'hot spot' domain of GLRA1 are frequent in autosomal dominant hyperekplexia but are not usually seen in the autosomal recessive form of the disease in which both the M1 and the carboxy terminal domains have been implicated. METHODS Genomic DNA was extracted by standard procedures from peripheral blood leukocytes and exon 6 of the GLRA1 gene was amplified using primers and PCR conditions. A complete sequence analysis of the fragment was performed. DNA sequences were analyzed both by direct observation of the electropherogram and by comparison with the published sequence. RESULTS The proband had metabolic acidosis, which was probably related to continuous contractions of somatic muscles and intractable hypertonia. Data seem to show a direct relationship between the mechanism of inheritance of the disorder and the location of the molecular defect. The patients showed almost all the clinical signs of hyperekplexia: exaggerated startle response, muscle hypertonia in response to unexpected tactile and/or auditory stimuli, hyperexcitability, and sudden falls.
Collapse
Affiliation(s)
- Pablo Lapunzina
- Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 2004; 40:797-806. [PMID: 14622583 DOI: 10.1016/s0896-6273(03)00673-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glycine transporter subtype 2 (GlyT2) is localized in the axon terminals of glycinergic neurons. Mice deficient in GlyT2 are normal at birth but during the second postnatal week develop a lethal neuromotor deficiency that resembles severe forms of human hyperekplexia (hereditary startle disease) and is characterized by spasticity, tremor, and an inability to right. Histological and immunological analyses failed to reveal anatomical or biochemical abnormalities, but the amplitudes of glycinergic miniature inhibitory currents (mIPSCs) were strikingly reduced in hypoglossal motoneurons and dissociated spinal neurons from GlyT2-deficient mice. Thus, postnatal GlyT2 function is crucial for efficient transmitter loading of synaptic vesicles in glycinergic nerve terminals, and the GlyT2 gene constitutes a candidate disease gene in human hyperekplexia patients.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/deficiency
- Amino Acid Transport Systems, Neutral/genetics
- Animals
- Animals, Newborn
- Brain Stem/growth & development
- Brain Stem/metabolism
- Brain Stem/physiopathology
- Disease Models, Animal
- Fetus
- Gene Deletion
- Genes, Lethal/genetics
- Glycine/metabolism
- Glycine Plasma Membrane Transport Proteins
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/metabolism
- Heredodegenerative Disorders, Nervous System/physiopathology
- Hypoglossal Nerve/metabolism
- Hypoglossal Nerve/physiopathology
- Mice
- Mice, Knockout
- Motor Neurons/metabolism
- Neural Inhibition/genetics
- Organ Culture Techniques
- Phenotype
- Presynaptic Terminals/metabolism
- Reflex, Startle/genetics
- Synaptic Transmission/genetics
- Synaptic Vesicles/metabolism
Collapse
Affiliation(s)
- Jesús Gomeza
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tijssen MAJ, Brown P, MacManus D, McLean MA, Davie C. Magnetic resonance spectroscopy of cerebral cortex is normal in hereditary hyperekplexia due to mutations in the GLRA1 gene. Mov Disord 2003; 18:1538-41. [PMID: 14673895 DOI: 10.1002/mds.10613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Excessive startling and stiffness in hereditary hyperekplexia has been attributed to lack of inhibition at either the cortical or brainstem level. Six patients with hereditary hyperekplexia (HH) and a confirmed mutation in the gene encoding the alpha(1) subunit of the glycine receptor (GLRA1) underwent single voxel (1)H magnetic resonance spectroscopy (MRS) of the brainstem and an area of frontal cortex and white matter using a method that allows absolute quantification of metabolites. The results of MRS were within normal limits, although there was a tendency for the neuronal marker N-acetyl aspartate to be reduced in the brainstem of patients compared with that in controls. Thus, we found no evidence to support a deficit in the cerebral cortex in patients with hereditary hyperekplexia due to mutations in the GLRA1 gene.
Collapse
Affiliation(s)
- Marina A J Tijssen
- Department of Neurology, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Chapter 30 Hyperekplexia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-4231(09)70178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Lapunzina P, S??nchez JM, Cabrera M, Moreno A, Delicado A, de Torres ML, Mori AM, Quero J, Lopez Pajares I. Hyperekplexia (Startle Disease). ACTA ACUST UNITED AC 2003. [DOI: 10.2165/00066982-200307020-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
Nielsen JB, Tijssen MAJ, Hansen NL, Crone C, Petersen NT, Brown P, Van Dijk JG, Rothwell JC. Corticospinal transmission to leg motoneurones in human subjects with deficient glycinergic inhibition. J Physiol 2002; 544:631-40. [PMID: 12381832 PMCID: PMC2290587 DOI: 10.1113/jphysiol.22.024091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Normal coordinated movement requires that the activity of antagonistic motoneurones may be depressed at appropriate times during the movement. Both glycinergic and GABAergic inhibitory mechanisms participate in this control. Patients with the major form of hyperekplexia (hereditary startle disease) have impaired inhibition of spinal motoneurones from local glycinergic interneurones and represent an ideal opportunity for studying the role of glycinergic inhibition in the control of antagonistic muscles. In the present study we investigated whether impaired glycinergic inhibition affects the corticospinal control of antagonistic spinal motoneurones in 10 patients with hyperekplexia and whether there are mechanisms that may compensate for the lack of glycinergic inhibition. In healthy subjects transcranial magnetic stimulation (TMS) produced a short-latency inhibition of the soleus H-reflex at rest and during tonic dorsiflexion. This inhibition, which has been shown to be mediated by spinal (glycinergic) inhibitory interneurones, was absent in all four patients in whom this experiment was performed. This confirms that glycinergic transmission is impaired in the patients. During voluntary dorsiflexion subthreshold TMS produced a depression of the ongoing EMG activity in the tibialis anterior (TA) muscle in both healthy subjects and all of the six tested patients. This is consistent with the idea that this EMG depression is caused by activation of cortical (GABAergic) inhibitory interneurones. Cross-correlation analysis revealed normal short-term synchronization of TA motor units accompanied by coherence in the 8-12 Hz and 18-35 Hz frequency bands in the 10 patients. As in healthy subjects, 8-12 Hz coherence accompanied by decreased tendency to discharge synchronously (de-synchronization) was found in recordings from the antagonistic TA and soleus muscles in 2 of the 10 patients. This suggests that glycinergic inhibition is not responsible for de-synchronization of antagonistic motor units, but that other GABAergic-inhibitory mechanisms must be involved. We propose that such mechanisms may compensate for the lack of glycinergic reciprocal inhibition in the hyperekplectic patients and explain why voluntary movements are not more severely affected.
Collapse
Affiliation(s)
- J B Nielsen
- Division of Neurophysiology, Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|