1
|
Chen W, Tariq F, Ashraf K, Norregaard T, Youkilis A, Kundu B, Siddiq F. Role of Functional neurosurgery in Improving Patient Outcomes in Epilepsy, Movement Disorders, and Chronic Pain. MISSOURI MEDICINE 2024; 121:149-155. [PMID: 38694614 PMCID: PMC11057851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Functional neurosurgery encompasses surgical procedures geared towards treating movement disorders (such as Parkinson's disease and essential tremor), drug-resistant epilepsy, and various types of pain disorders. It is one of the most rapidly expanding fields within neurosurgery and utilizes both traditional open surgical methods such as open temporal lobectomy for epilepsy as well as neuromodulation-based treatments such as implanting brain or nerve stimulation devices. This review outlines the role functional neurosurgery plays in treatment of epilepsy, movement disorders, and pain, and how it is being implemented at the University of Missouri by the Department of Neurosurgery.
Collapse
Affiliation(s)
- Wesley Chen
- Department of Neurosurgery, University of Missouri - Columbia, Columbia, Missouri
| | - Farzana Tariq
- Department of Neurosurgery, University of Missouri - Columbia, Columbia, Missouri
| | - Komal Ashraf
- School of Medicine, University of Missouri - Columbia, Columbia, Missouri
| | - Thorklid Norregaard
- Department of Neurosurgery, University of Missouri - Columbia, Columbia, Missouri
| | - Andrew Youkilis
- Department of Neurosurgery, University of Missouri - Columbia, Columbia, Missouri
| | - Bornali Kundu
- Department of Neurosurgery, University of Missouri - Columbia, Columbia, Missouri
| | - Farhan Siddiq
- Department of Neurosurgery, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
2
|
Wang K, Wen Q, Wu D, Hsu YC, Heo HY, Wang W, Sun Y, Ma Y, Wu D, Zhang Y. Lateralization of temporal lobe epileptic foci with automated chemical exchange saturation transfer measurements at 3 Tesla. EBioMedicine 2023; 89:104460. [PMID: 36773347 PMCID: PMC9945641 DOI: 10.1016/j.ebiom.2023.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/17/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI) is an indispensable tool for the diagnosis of temporal lobe epilepsy (TLE). However, about 30% of TLE patients show no lesion on structural MRI (sMRI-negative), posing a significant challenge for presurgical evaluation. This study aimed to investigate whether chemical exchange saturation transfer (CEST) MRI at 3 Tesla can lateralize the epileptic focus of TLE and study the metabolic contributors to the CEST signal measured. METHODS Forty TLE subjects (16 males and 24 females) were included in this study. An automated data analysis pipeline was established, including segmentation of the hippocampus and amygdala (HA), calculation of four CEST metrics and quantitative relaxation times (T1 and T2), and construction of prediction models by logistic regression. Furthermore, a modified two-stage Bloch-McConnell fitting method was developed to investigate the molecular imaging mechanism of 3 T CEST in identifying epileptic foci of TLE. FINDINGS The mean CEST ratio (CESTR) metric within 2.25-3.25 ppm in the HA was the most powerful index in predicting seizure laterality, with an area under the receiver-operating characteristic curve (AUC) of 0.84. And, the combination of T2 and CESTR further increased the AUC to 0.92. Amine and guanidinium moieties were the two leading contributors to the CEST contrast between the epileptogenic HA and the normal HA. INTERPRETATION CEST at 3 Tesla is a powerful modality that can predict seizure laterality with high accuracy. This study can potentially facilitate the clinical translation of CEST MRI in identifying the epileptic foci of TLE or other localization-related epilepsies. FUNDING National Natural Science Foundation of China, Science Technology Department of Zhejiang Province, and Zhejiang University.
Collapse
Affiliation(s)
- Kang Wang
- Epilepsy Center, Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qingqing Wen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dengchang Wu
- Epilepsy Center, Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, 201318, China
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenqi Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, 201318, China
| | - Yuehui Ma
- Epilepsy Center, Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
3
|
Haemels M, Van Weehaeghe D, Cleeren E, Dupont P, van Loon J, Theys T, Van Laere K, Van Paesschen W, Goffin K. Predictive value of metabolic and perfusion changes outside the seizure onset zone for postoperative outcome in patients with refractory focal epilepsy. Acta Neurol Belg 2022; 122:325-335. [PMID: 33544336 DOI: 10.1007/s13760-020-01569-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 01/30/2023]
Abstract
The value of functional molecular changes outside the seizure onset zone as independent predictive factors of surgical outcome has been scarcely evaluated. The aim of this retrospective study was to evaluate relative metabolic and perfusion changes outside the seizure onset zone as predictors of postoperative outcome in patients with unifocal refractory focal epilepsy. Eighty-six unifocal epilepsy patients who underwent 18F-FDG PET prior to surgery were included. Ictal and interictal perfusion SPECT was available in 65 patients. Good postoperative outcome was defined as the International League against Epilepsy class 1. Using univariate statistical analysis, the predictive ability of volume-of-interest based relative metabolism/perfusion for outcome classification was quantified by AUC ROC-curve, using composite, unilateral cortical (frontal, orbitofrontal, temporal, parietal, occipital) and central volumes-of-interest. The results were cross-validated, and a false discovery rate (FDR) correction was applied. As a secondary objective, a subgroup analysis was performed on temporal lobe epilepsy patients (N = 64). Increased relative ictal perfusion in the contralateral central volume-of-interest was significantly associated with the good surgical outcome both in the total population (AUC 0.79, pFDR = 0.009) and the temporal lobe epilepsy subgroup (AUC 0.80, pFDR = 0.028). No other significant associations between functional molecular changes and postoperative outcome were found. Increased relative ictal perfusion in the contralateral central region significantly predicted outcome after epilepsy surgery in patients with refractory focal epilepsy. We postulate that these relative perfusion changes could be an expression of better preoperative neuronal network integration and centralization in the contralateral central structures, which is suggested to be associated with better postoperative outcome.
Collapse
|
4
|
Presurgical evaluation of drug-resistant paediatric focal epilepsy with PISCOM compared to SISCOM and FDG-PET. Seizure 2022; 97:43-49. [DOI: 10.1016/j.seizure.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
|
5
|
Kumar A, Shandal V, Juhász C, Chugani HT. PET imaging in epilepsy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment? Eur J Nucl Med Mol Imaging 2021; 49:221-233. [PMID: 34120191 DOI: 10.1007/s00259-021-05449-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1-2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.
Collapse
Affiliation(s)
- Viviane Bouilleret
- Unité de Neurophysiologie et d'Epileptologie (UNCE), Université Paris-Saclay APHP, 78, Rue du Général Leclerc, 94275, Le Kremlin Bicêtre, France.
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay, France.
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, Early Solutions, UCB Pharma, Braine-l'Alleud, Belgium
- Experimental Laboratory of Haematology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Elisevich K, Davoodi-Bojd E, Heredia JG, Soltanian-Zadeh H. Prospective Quantitative Neuroimaging Analysis of Putative Temporal Lobe Epilepsy. Front Neurol 2021; 12:747580. [PMID: 34803885 PMCID: PMC8602195 DOI: 10.3389/fneur.2021.747580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: A prospective study of individual and combined quantitative imaging applications for lateralizing epileptogenicity was performed in a cohort of consecutive patients with a putative diagnosis of mesial temporal lobe epilepsy (mTLE). Methods: Quantitative metrics were applied to MRI and nuclear medicine imaging studies as part of a comprehensive presurgical investigation. The neuroimaging analytics were conducted remotely to remove bias. All quantitative lateralizing tools were trained using a separate dataset. Outcomes were determined after 2 years. Of those treated, some underwent resection, and others were implanted with a responsive neurostimulation (RNS) device. Results: Forty-eight consecutive cases underwent evaluation using nine attributes of individual or combinations of neuroimaging modalities: 1) hippocampal volume, 2) FLAIR signal, 3) PET profile, 4) multistructural analysis (MSA), 5) multimodal model analysis (MMM), 6) DTI uncertainty analysis, 7) DTI connectivity, and 9) fMRI connectivity. Of the 24 patients undergoing resection, MSA, MMM, and PET proved most effective in predicting an Engel class 1 outcome (>80% accuracy). Both hippocampal volume and FLAIR signal analysis showed 76% and 69% concordance with an Engel class 1 outcome, respectively. Conclusion: Quantitative multimodal neuroimaging in the context of a putative mTLE aids in declaring laterality. The degree to which there is disagreement among the various quantitative neuroimaging metrics will judge whether epileptogenicity can be confined sufficiently to a particular temporal lobe to warrant further study and choice of therapy. Prediction models will improve with continued exploration of combined optimal neuroimaging metrics.
Collapse
Affiliation(s)
- Kost Elisevich
- Department of Clinical Neurosciences, Spectrum Health, Grand Rapids, MI, United States
- Department of Surgery, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Esmaeil Davoodi-Bojd
- Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
| | - John G. Heredia
- Imaging Physics, Department of Radiology, Spectrum Health, Grand Rapids, MI, United States
| | - Hamid Soltanian-Zadeh
- Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Lam J, DuBois JM, Rowley J, Rousset OG, González-Otárula KA, Soucy JP, Massarweh G, Hall JA, Guiot MC, Zimmermann M, Minuzzi L, Rosa-Neto P, Kobayashi E. In vivo hippocampal cornu ammonis 1-3 glutamatergic abnormalities are associated with temporal lobe epilepsy surgery outcomes. Epilepsia 2021; 62:1559-1568. [PMID: 34060082 DOI: 10.1111/epi.16952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Previous positron emission tomography (PET) studies using [11 C]ABP688 show reduced metabotropic glutamate receptor type 5 (mGluR5) allosteric binding site availability in the epileptogenic hippocampus of mesial temporal lobe epilepsy (MTLE) patients. However, the link between mGluR5 abnormalities and postsurgical outcomes remains unclear. Here, we test whether reduced PET [11 C]ABP688 binding in cornu ammonis (CA) sectors more vulnerable to glutamatergic excitotoxicity relates to surgical outcomes. METHODS We obtained magnetic resonance imaging (MRI) and [11 C]ABP688-PET from 31 unilateral MTLE patients and 30 healthy controls. MRI hippocampal subfields were segmented using FreeSurfer. To respect the lower PET special resolution, MRI-derived anatomical subfields were combined into CA1-3, CA4/dentate gyrus, and Subiculum. Partial volume corrected [11 C]ABP688 nondisplaceable binding potential (BPND ) values were averaged across each subfield, and Z-scores were calculated. Subfield [11 C]ABP688-BPND was compared between seizure-free and non-seizure-free patients. In addition, we also assessed subfield volumes and [18 F]fluorodeoxyglucose (FDG) uptake in each clinical group. RESULTS MTLE [11 C]ABP688-BPND was reduced in ipsilateral (epileptogenic) CA1-3 and CA4/dentate-gyrus (p < .001, 95% confidence interval [CI] = .29-.51) compared to controls, with no difference in Subiculum. [11 C]ABP688-BPND and subfield volumes were compared between seizure-free (Engel IA, n = 13) and non-seizure-free patients (Engel IC-III, n = 10). In ipsilateral CA1-3 only, [11 C]ABP688-BPND was lower in seizure-free patients than in non-seizure-free patients (p = .012, 95% CI = 1.46-11.0) independently of volume. A subset analysis of 12 patients with [11 C]ABP688-PET+[18 F]FDG-PET showed no between-group significant difference in [18 F]FDG uptake, whereas CA1-3 [11 C]ABP688-BPND remained significantly lower in the seven of 12 seizure-free patients (p = .03, 95% CI = -3.13 to -.21). SIGNIFICANCE Reduced mGluR5 allosteric site availability in hippocampal CA1-3, measured in vivo by [11 C]ABP688-PET, is associated with postsurgery seizure freedom independent of atrophy or hypometabolism. Information derived from hippocampal CA1-3 [11 C]ABP688-PET is a promising imaging biomarker potentially impactful in surgical decisions for MRI-negative/PET-negative MTLE patients.
Collapse
Affiliation(s)
- Jack Lam
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jonathan M DuBois
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jared Rowley
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec, Canada
| | - Olivier G Rousset
- Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karina A González-Otárula
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Gassan Massarweh
- PET Unit, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Maria Zimmermann
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.,Translational Neuroimaging Laboratory, McGill University, Montréal, Québec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Lee RK, Burns J, Ajam AA, Broder JS, Chakraborty S, Chong ST, Kendi AT, Ledbetter LN, Liebeskind DS, Pannell JS, Pollock JM, Rosenow JM, Shaines MD, Shih RY, Slavin K, Utukuri PS, Corey AS. ACR Appropriateness Criteria® Seizures and Epilepsy. J Am Coll Radiol 2020; 17:S293-S304. [PMID: 32370973 DOI: 10.1016/j.jacr.2020.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Seizures and epilepsy are a set of conditions that can be challenging to diagnose, treat, and manage. This document summarizes recommendations for imaging in different clinical scenarios for a patient presenting with seizures and epilepsy. MRI of the brain is usually appropriate for each clinical scenario described with the exception of known seizures and unchanged semiology (Variant 3). In this scenario, it is unclear if any imaging would provide a benefit to patients. In the emergent situation, a noncontrast CT of the head is also usually appropriate as it can diagnose or exclude emergent findings quickly and is an alternative to MRI of the brain in these clinical scenarios. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania.
| | - Judah Burns
- Panel Chair, Montefiore Medical Center, Bronx, New York
| | | | - Joshua S Broder
- Duke University School of Medicine, Durham, North Carolina; American College of Emergency Physicians
| | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada; Canadian Association of Radiologists
| | | | | | | | - David S Liebeskind
- University of California Los Angeles, Los Angeles, California; American Academy of Neurology
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; Neurosurgery expert
| | - Matthew D Shaines
- Albert Einstein College of Medicine Montefiore Medical Center, Bronx, New York; Primary care physician
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Konstantin Slavin
- University of Illinois at Chicago College of Medicine, Chicago, Illinois; Neurosurgery expert
| | | | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging 2019; 46:1806-1816. [PMID: 31144060 DOI: 10.1007/s00259-019-04356-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE FDG PET is an established tool in presurgical epilepsy evaluation, but it is most often used selectively in patients with discordant MRI and EEG results. Interpretation is complicated by the presence of remote or multiple areas of hypometabolism, which leads to doubt as to the true location of the seizure onset zone (SOZ) and might have implications for predicting the surgical outcome. In the current study, we determined the sensitivity and specificity of PET localization prospectively in a consecutive unselected cohort of patients with focal epilepsy undergoing in-depth presurgical evaluation. METHODS A total of 130 patients who underwent PET imaging between 2006 and 2015 matched our inclusion criteria, and of these, 86 were operated on (72% with a favourable surgical outcome, Engel class I). Areas of focal hypometabolism were identified using statistical parametric mapping and concordance with MRI, EEG and intracranial EEG was evaluated. In the surgically treated patients, postsurgical outcome was used as the gold standard for correctness of localization (minimum follow-up 12 months). RESULTS PET sensitivity and specificity were both 95% in 86 patients with temporal lobe epilepsy (TLE) and 80% and 95%, respectively, in 44 patients with extratemporal epilepsy (ETLE). Significant extratemporal hypometabolism was observed in 17 TLE patients (20%). Temporal hypometabolism was observed in eight ETLE patients (18%). Among the 86 surgically treated patients, 26 (30%) had hypometabolism extending beyond the SOZ. The presence of unilobar hypometabolism, included in the resection, was predictive of complete seizure control (p = 0.007), with an odds ratio of 5.4. CONCLUSION Additional hypometabolic areas were found in one of five of this group of nonselected patients with focal epilepsy, including patients with "simple" lesional epilepsy, and this finding should prompt further in-depth evaluation of the correlation between EEG findings, semiology and PET. Hypometabolism confined to the epileptogenic zone as defined by EEG and MRI is associated with a favourable postoperative outcome in both TLE and ETLE patients.
Collapse
|
11
|
Fujimoto A, Okanishi T, Kanai S, Sato K, Itamura S, Baba S, Nishimura M, Masui T, Enoki H. Double match of 18F-fluorodeoxyglucose-PET and iomazenil-SPECT improves outcomes of focus resection surgery. Acta Neurochir (Wien) 2018; 160:1875-1882. [PMID: 29858947 DOI: 10.1007/s00701-018-3573-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND When the results of electroencephalography (EEG), magnetic resonance imaging (MRI), and seizure semiology are discordant or no structural lesion is evident on MRI, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are important examinations for lateralization or localization of epileptic regions. We hypothesized that the concordance between interictal 2-[18F]fluoro-2-deoxy-D-glucose (18FDG)-PET and iomazenil (IMZ)-SPECT could suggest the epileptogenic lobe in patients with non-lesional findings on MRI. METHOD Fifty-nine patients (31 females, 28 males; mean age, 29 years; median age, 27 years; range, 7-56 years) underwent subdural electrode implantation followed by focus resection. All patients underwent 18FDG-PET, IMZ-SPECT, and focus resection surgery. Follow-up was continued for ≥ 2 years. We evaluated surgical outcomes as seizure-free or not and analyzed correlations between outcomes and concordances of low-uptake lobes on PET, SPECT, or both PET and SPECT to the resection lobes. We used uni- and multivariate logistic regression analyses. RESULTS In univariate analyses, all three concordances correlated significantly with seizure-free outcomes (PET, p = 0.017; SPECT, p = 0.030; both PET and SPECT, p = 0.006). In multivariate analysis, concordance between resection and low-uptake lobes in both PET and SPECT correlated significantly with seizure-free outcomes (p = 0.004). The odds ratio was 6.0. CONCLUSION Concordance between interictal 18FDG-PET and IMZ-SPECT suggested that the epileptogenic lobe is six times better than each examination alone among patients with non-lesional findings on MRI. IMZ-SPECT and 18FDG-PET are complementary examinations in the assessment of localization-related epilepsy.
Collapse
|
12
|
Long Z, Hanson DP, Mullan BP, Hunt CH, Holmes DR, Brinkmann BH, O'Connor MK. Analysis of Brain SPECT Images Coregistered with MRI in Patients with Epilepsy: Comparison of Three Methods. J Neuroimaging 2018; 28:307-312. [PMID: 29319202 DOI: 10.1111/jon.12496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE SISCOM and STATISCOM were clinically proved to be effective for ictal/inter-ictal single-photon emission computed tomography (SPECT) analysis coregistered with magnetic resonance imaging (MRI) for seizure localization. Recently, a software package also became available for this analysis. This study aimed to investigate and compare the performance of these analysis methods for seizure localization. METHODS A total of 378 patients who underwent 99m Tc-ethyl cysteinate dimer (ECD) SPECT scans were retrospectively reviewed and 28 remained after applying exclusion criteria. Their SPECT and MRI images were analyzed with SISCOM (with z-score of 1.5 and 2), STATISCOM, and MIMneuro, resulting in a total of 112 image data sets. Two experienced radiologists participated in the blind review process using a custom tool and they can mark up to two hyper- and/or hypoperfusion regions. Their review results were analyzed using the Jackknife Free Response Receiver-Operating Characteristics (JAFROC) test and the JAFROC figure-of-merit (FoM) was reported for each method. The interobserver agreement was also assessed using Cohen's kappa test. RESULTS Based on the readers' two choices, averaged FoM was 85.7%, 83.9%, 66.1%, and 51.8% for STATISCOM, MIMneuro, SISCOM (z-score = 2), and SISCOM (z-score = 1.5), respectively. The average confidence rating was 2.5, 2.3, 1.6, and 1.1 for STATISCOM, MIMneuro, SISCOM (z-score = 2), and SISCOM (z-score = 1.5), respectively. For interobserver agreement, kappa was .742 for STATISCOM, .816 for MIMneuro, .517 for SISCOM (z-score = 2), and .441 for SISCOM (z-score = 1.5; all P < .001). CONCLUSION Our study demonstrated that STATISCOM showed the best performance for seizure localization, which was closely followed by MIMneuro. In addition, MIMneuro was not inferior to SISCOM with either z-score.
Collapse
Affiliation(s)
- Zaiyang Long
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | | | | - David R Holmes
- Biomedical Imaging Resources, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
13
|
Verger A, Lagarde S, Maillard L, Bartolomei F, Guedj E. Brain molecular imaging in pharmacoresistant focal epilepsy: Current practice and perspectives. Rev Neurol (Paris) 2018; 174:16-27. [DOI: 10.1016/j.neurol.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
|
14
|
Bankstahl M, Bankstahl JP. Recent Advances in Radiotracer Imaging Hold Potential for Future Refined Evaluation of Epilepsy in Veterinary Neurology. Front Vet Sci 2017; 4:218. [PMID: 29326952 PMCID: PMC5733338 DOI: 10.3389/fvets.2017.00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
Non-invasive nuclear imaging by positron emission tomography and single photon emission computed tomography has significantly contributed to epileptic focus localization in human neurology for several decades now. Offering functional insight into brain alterations, it is also of particular relevance for epilepsy research. Access to these techniques for veterinary medicine is becoming more and more relevant and has already resulted in first studies in canine patients. In view of the substantial proportion of drug-refractory epileptic dogs and cats, image-guided epileptic focus localization will be a prerequisite for selection of patients for surgical focus resection. Moreover, radiotracer imaging holds potential for a better understanding of the pathophysiology of underlying epilepsy syndromes as well as to forecast disease risk after epileptogenic brain insults. Importantly, recent advances in epilepsy research demonstrate the suitability and value of several novel radiotracers for non-invasive assessment of neuroinflammation, blood–brain barrier alterations, and neurotransmitter systems. It is desirable that veterinary epilepsy patients will also benefit from these promising developments in the medium term. This paper reviews the current use of radiotracer imaging in the veterinary epilepsy patient and suggests possible future directions for the technique.
Collapse
Affiliation(s)
- Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Center of Systems Neuroscience Hannover, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Granados Sánchez AM, Orejuela Zapata JF. Diagnosis of mesial temporal sclerosis: sensitivity, specificity and predictive values of the quantitative analysis of magnetic resonance imaging. Neuroradiol J 2017; 31:50-59. [PMID: 28899220 DOI: 10.1177/1971400917731301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the diagnosis of mesial temporal sclerosis (MTS), sensitivity, specificity and predictive values of qualitative assessment using conventional magnetic resonance imaging are low, mainly in mild or bilateral atrophy. Quantitative analysis may improve this performance. We evaluated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of quantitative analysis using the hippocampal volumetric index (HVI) and hippocampal asymmetry index (HAI) compared with qualitative assessment in the MTS diagnosis. Twenty-five patients diagnosed with MTS, and 25 healthy subjects underwent conventional magnetic resonance imaging. Hippocampal volumes were obtained using an automated software (FreeSurfer); HVI and HAI were calculated. Receiver operating characteristic curve analysis was performed to obtain the optimal threshold values. Sensitivity, specificity and predictive values were calculated. Sensitivity, specificity, PPV and NPV for qualitative analysis were 44.00%, 96.00%, 91.67% and 63.16%, respectively. In the quantitative analysis, a threshold value of K = 0.22 for HVI provided a sensitivity value of 76.00%, specificity value of 96.00%, PPV of 95.00% and NPV of 80.00%. A threshold value of K = 0.06 for HAI provided the minimum C1 and C2 errors, with a sensitivity value of 88.00%, specificity value of 100%, PPV of 100% and NPV of 89.30%. A statistically significant difference was observed for HAI ( P < 0.0001), and ipsilateral HVI (left MTS, P = 0.0152; right MTS, P < 0.0001), between MTS and healthy groups. The HVI and HAI, both individually and in conjunction, improved the sensitivity, specificity and predictive values of magnetic resonance imaging in the diagnosis of MTS compared to the qualitative analysis and other quantitative techniques. The HAI is highly accurate in the diagnosis of unilateral MTS, whereas the HVI may be better for bilateral MTS cases.
Collapse
|
16
|
Ergün EL, Saygi S, Yalnizoglu D, Oguz KK, Erbas B. SPECT-PET in Epilepsy and Clinical Approach in Evaluation. Semin Nucl Med 2017; 46:294-307. [PMID: 27237440 DOI: 10.1053/j.semnuclmed.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In epilepsy, a detailed history, blood chemistry, routine electroencephalography, and brain MRI are important for the diagnosis of seizure type or epilepsy syndrome for the decision of appropriate drug treatment. Although antiepileptic drugs are mostly successful for controlling epileptic seizures, 20%-30% patients are resistant to medical treatment and continue to have seizures. In this intractable patient group, surgical resection is the primarily preferred treatment option. This particular group of patients should be referred to the epilepsy center for detailed investigation and further treatment. When the results of electroencephalography, MRI, and clinical status are discordant or there is no structural lesion on MRI, ictal-periictal SPECT, and interictal PET play key roles for lateralization or localization of epileptic region and guidance for the subsequent subdural electrode placement in intractable epilepsy. SPECT and PET show the functional status of the brain. SPECT and PET play important roles in the evaluation of epilepsy sydromes in childhood by showing abnormal brain regions. Most of the experience has been gained with (18)FDG-PET, in this respect. (11)C-flumazenil-PET usually deliniates the seizure focus more smaller than (18)FDG-PET and is sensitive in identifying medial temporal sclerosis. (11)C-alpha-methyl-l-tryptophan is helpful in the differentiation of epileptogenic and nonepileptogenic regions in children especially in tuberous sclerosis and multifocal cortical dysplasia for the evaluation of surgery. Finally, when there is concordance among these detailed investigations, resective surgery or palliative procedures can be discussed individually.
Collapse
Affiliation(s)
- Eser Lay Ergün
- Department of Nuclear Medicine, Hacettepe University, Medical School, Ankara, Turkey.
| | - Serap Saygi
- Department of Neurology, Hacettepe University, Medical School, Ankara, Turkey
| | - Dilek Yalnizoglu
- Department of Pediatric Neurology, Hacettepe University, Medical School, Ankara, Turkey
| | - Kader Karli Oguz
- Department of Diagnostic Radiology, Hacettepe University, Medical School, Ankara, Turkey
| | - Belkis Erbas
- Department of Nuclear Medicine, Hacettepe University, Medical School, Ankara, Turkey
| |
Collapse
|
17
|
Kumar A, Chugani HT. The Role of Radionuclide Imaging in Epilepsy, Part 1: Sporadic Temporal and Extratemporal Lobe Epilepsy. J Nucl Med Technol 2017; 45:14-21. [PMID: 28258205 DOI: 10.2967/jnumed.112.114397] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/06/2013] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is one of the most common yet diverse neurologic disorders, affecting almost 1%-2% of the population. Presently, radionuclide imaging such as PET and SPECT is not used in the primary diagnosis or evaluation of recent-onset epilepsy. However, it can play a unique and important role in certain specific situations, such as in noninvasive presurgical localization of epileptogenic brain regions in intractable-seizure patients being considered for epilepsy surgery. Radionuclide imaging can be particularly useful if MR imaging is either negative for lesions or shows several lesions of which only 1 or 2 are suspected to be epileptogenic and if electroencephalogram changes are equivocal or discordant with the structural imaging. Similarly, PET and SPECT can also be useful for evaluating the functional integrity of the rest of the brain and may provide useful information on the possible pathogenesis of the neurocognitive and behavioral abnormalities frequently observed in these patients.
Collapse
Affiliation(s)
- Ajay Kumar
- PET Center, Department of Pediatrics, Neurology, and Radiology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Harry T Chugani
- PET Center, Department of Pediatrics, Neurology, and Radiology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
18
|
Hartl E, Rémi J, Vollmar C, Goc J, Loesch AM, Rominger A, Noachtar S. PET imaging in extratemporal epilepsy requires consideration of electroclinical findings. Epilepsy Res 2016; 125:72-6. [DOI: 10.1016/j.eplepsyres.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
|
19
|
Sarikaya I. PET studies in epilepsy. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2015; 5:416-430. [PMID: 26550535 PMCID: PMC4620171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. (18)Fluoro-2-deoxyglucose ((18)F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced (11)C-flumazenil (GABAA-cBDZ) and (18)F-MPPF (5-HT1A serotonin) and increased (11)C-cerfentanil (mu opiate) and (11)C-MeNTI (delta opiate) bindings in the area of seizure. (11)C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that (11)C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex. (15)O-H2O PET was reported to have a similar sensitivity to FDG-PET in detecting epileptic foci.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Nuclear Medicine Section, Baskent University Hospital Istanbul, Turkey
| |
Collapse
|
20
|
Bonilha L, Keller SS. Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Med Surg 2015; 5:204-24. [PMID: 25853080 DOI: 10.3978/j.issn.2223-4292.2015.01.01] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/07/2015] [Indexed: 11/14/2022]
Abstract
Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome.
Collapse
Affiliation(s)
- Leonardo Bonilha
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA ; 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK ; 3 Department of Radiology, The Walton Centre NHS Foundation Trust, Liverpool, UK ; 4 Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon S Keller
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA ; 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK ; 3 Department of Radiology, The Walton Centre NHS Foundation Trust, Liverpool, UK ; 4 Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
21
|
|
22
|
|
23
|
Nazem-Zadeh MR, Elisevich KV, Schwalb JM, Bagher-Ebadian H, Mahmoudi F, Soltanian-Zadeh H. Lateralization of temporal lobe epilepsy by multimodal multinomial hippocampal response-driven models. J Neurol Sci 2014; 347:107-18. [PMID: 25300772 DOI: 10.1016/j.jns.2014.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Multiple modalities are used in determining laterality in mesial temporal lobe epilepsy (mTLE). It is unclear how much different imaging modalities should be weighted in decision-making. The purpose of this study is to develop response-driven multimodal multinomial models for lateralization of epileptogenicity in mTLE patients based upon imaging features in order to maximize the accuracy of noninvasive studies. METHODS AND MATERIALS The volumes, means and standard deviations of FLAIR intensity and means of normalized ictal-interictal SPECT intensity of the left and right hippocampi were extracted from preoperative images of a retrospective cohort of 45 mTLE patients with Engel class I surgical outcomes, as well as images of a cohort of 20 control, nonepileptic subjects. Using multinomial logistic function regression, the parameters of various univariate and multivariate models were estimated. Based on the Bayesian model averaging (BMA) theorem, response models were developed as compositions of independent univariate models. RESULTS A BMA model composed of posterior probabilities of univariate response models of hippocampal volumes, means and standard deviations of FLAIR intensity, and means of SPECT intensity with the estimated weighting coefficients of 0.28, 0.32, 0.09, and 0.31, respectively, as well as a multivariate response model incorporating all mentioned attributes, demonstrated complete reliability by achieving a probability of detection of one with no false alarms to establish proper laterality in all mTLE patients. CONCLUSION The proposed multinomial multivariate response-driven model provides a reliable lateralization of mesial temporal epileptogenicity including those patients who require phase II assessment.
Collapse
Affiliation(s)
- Mohammad-Reza Nazem-Zadeh
- Department of Research Administration, Henry Ford Health System, Detroit, MI 48202, USA; Department of Radiology, Henry Ford Health System, Detroit, MI, 48202, USA.
| | - Kost V Elisevich
- Department of Clinical Neurosciences, Spectrum Health Medical Group, Grand Rapids, MI 49503, USA.
| | - Jason M Schwalb
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Hassan Bagher-Ebadian
- Department of Radiology, Henry Ford Health System, Detroit, MI, 48202, USA; Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Fariborz Mahmoudi
- Department of Research Administration, Henry Ford Health System, Detroit, MI 48202, USA; Department of Radiology, Henry Ford Health System, Detroit, MI, 48202, USA; Computer and IT engineering Faculty, Islamic Azad University, Qazvin Branch, Iran.
| | - Hamid Soltanian-Zadeh
- Department of Research Administration, Henry Ford Health System, Detroit, MI 48202, USA; Department of Radiology, Henry Ford Health System, Detroit, MI, 48202, USA; Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Zhang J, Liu Q, Mei S, Zhang X, Liu W, Chen H, Xia H, Zhou Z, Wang X, Li Y. Identifying the affected hemisphere with a multimodal approach in MRI-positive or negative, unilateral or bilateral temporal lobe epilepsy. Neuropsychiatr Dis Treat 2014; 10:71-81. [PMID: 24476628 PMCID: PMC3891647 DOI: 10.2147/ndt.s56404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Patients with non-lesional or bilateral temporal-lobe epilepsy (TLE) are often excluded from surgical treatment. This study investigated focus lateralization in TLE to understand identification of the affected hemisphere with regard to non-lesional or bilateral affection and postsurgical outcome. A total of 24 TLE patients underwent presurgical evaluation with magnetic resonance imaging (MRI), proton magnetic resonance spectroscopy ((1)H-MRS), video-electroencephalogram (video-EEG), and/or intracranial EEG (icEEG), and they were classified as MRI-positive or negative, unilateral or bilateral TLE cases. In patients with positive-MRI, MRI and (1)H-MRS indicated high (100%) concordant lateralization to EEG findings in unilateral TLE, and moderate (75%) concordance to icEEG findings in bilateral TLE; whereas in patients with negative-MRI, (1)H-MRS indicated moderate (60%-75%) concordance to EEG and/or icEEG in unilateral TLE, and relatively low (50%) concordance to icEEG in bilateral TLE. Ninety point nine percent of patients with unilateral TLE and 41.7% of patients with bilateral TLE (including 50% of MRI-negative bilateral TLE) became seizure-free. The MRS findings were not correlated with seizure outcome, while non-seizure-free patients had an insignificantly higher percentage of contralateral N-acetyl aspartate (NAA) reduction compared with seizure-free patients, indicating the relatively low predictive value of (1)H-MRS for surgical outcome. Further, EEG and icEEG findings were significantly correlated with seizure outcome, and for patients with positive MRI, MRI findings were also correlated with seizure outcome, indicating the predictive value of these modalities. The results suggested that a multimodal approach including neuroimaging, EEG, and/or icEEG could identify seizure focus in most cases, and provide surgical options for non-lesional or bilateral TLE patients with a possible good outcome.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Qingzhu Liu
- Department of Functional Neurolog and Neurosurgery, Beijing Haidian Hospital, Beijing, People's Republic of China
| | - Shanshan Mei
- Department of Functional Neurolog and Neurosurgery, Beijing Haidian Hospital, Beijing, People's Republic of China
| | - Xiaoming Zhang
- Department of Functional Neurolog and Neurosurgery, Beijing Haidian Hospital, Beijing, People's Republic of China
| | - Weifang Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Hui Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Hong Xia
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Zhen Zhou
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Xiaofei Wang
- Department of Functional Neurolog and Neurosurgery, Beijing Haidian Hospital, Beijing, People's Republic of China
| | - Yunlin Li
- Department of Functional Neurolog and Neurosurgery, Beijing Haidian Hospital, Beijing, People's Republic of China
| |
Collapse
|
25
|
Kerr WT, Nguyen ST, Cho AY, Lau EP, Silverman DH, Douglas PK, Reddy NM, Anderson A, Bramen J, Salamon N, Stern JM, Cohen MS. Computer-Aided Diagnosis and Localization of Lateralized Temporal Lobe Epilepsy Using Interictal FDG-PET. Front Neurol 2013; 4:31. [PMID: 23565107 PMCID: PMC3615243 DOI: 10.3389/fneur.2013.00031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially before structural MRI, that does not require rare and transient epileptiform discharges or seizures on EEG. The visual interpretation of iPET is challenging and requires years of epilepsy-specific expertise. We have developed an automated computer-aided diagnostic (CAD) tool that has the potential to work both independent of and synergistically with expert analysis. Our tool operates on distributed metabolic changes across the whole brain measured by iPET to both diagnose and lateralize temporal lobe epilepsy (TLE). When diagnosing left TLE (LTLE) or right TLE (RTLE) vs. non-epileptic seizures (NES), our accuracy in reproducing the results of the gold standard long term video-EEG monitoring was 82% [95% confidence interval (CI) 69-90%] or 88% (95% CI 76-94%), respectively. The classifier that both diagnosed and lateralized the disease had overall accuracy of 76% (95% CI 66-84%), where 89% (95% CI 77-96%) of patients correctly identified with epilepsy were correctly lateralized. When identifying LTLE, our CAD tool utilized metabolic changes across the entire brain. By contrast, only temporal regions and the right frontal lobe cortex, were needed to identify RTLE accurately, a finding consistent with clinical observations and indicative of a potential pathophysiological difference between RTLE and LTLE. The goal of CADs is to complement - not replace - expert analysis. In our dataset, the accuracy of manual analysis (MA) of iPET (∼80%) was similar to CAD. The square correlation between our CAD tool and MA, however, was only 30%, indicating that our CAD tool does not recreate MA. The addition of clinical information to our CAD, however, did not substantively change performance. These results suggest that automated analysis might provide clinically valuable information to focus treatment more effectively.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Biomathematics, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Stefan T. Nguyen
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Andrew Y. Cho
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Edward P. Lau
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Daniel H. Silverman
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Pamela K. Douglas
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Navya M. Reddy
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Ariana Anderson
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Jennifer Bramen
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Noriko Salamon
- Department of Neurology, Seizure Disorder Center, University of California Los AngelesLos Angeles, CA, USA
| | - John M. Stern
- Department of Neurology, Seizure Disorder Center, University of California Los AngelesLos Angeles, CA, USA
| | - Mark S. Cohen
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
- Laboratory of Integrative Neuroimaging Technology, Departments of Psychiatry, Neurology, Radiology, Biomedical Physics, Psychology and Bioengineering, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
26
|
Widjaja E, Shammas A, Vali R, Otsubo H, Ochi A, Snead OC, Go C, Charron M. FDG-PET and magnetoencephalography in presurgical workup of children with localization-related nonlesional epilepsy. Epilepsia 2013; 54:691-9. [DOI: 10.1111/epi.12114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 11/28/2022]
|
27
|
|
28
|
Abstract
Among various neuroimaging techniques used for the evaluation of children with intractable epilepsy, positron emission tomography (PET) employing various PET tracers plays a very important role, especially in localizing areas of focal cortical dysplasia. This is particularly important in infants, where incomplete myelination may limit the structural information provided by MRI. In children with tuberous sclerosis, PET can differentiate between epileptogenic and nonepileptogenic tubers, previously not thought to be possible with neuroimaging. PET may reveal cortical or subcortical abnormalities in various epilepsy syndromes, such as infantile spasms and Landau-Kleffner syndrome. Various other applications of PET have included the investigation of epileptic networks, secondary epileptic foci, dual pathology, and neuroinflammation. Finally, PET can also be used to evaluate various cognitive processes and their underlying neurological substrates and can help in addressing the issue of brain plasticity and reorganization, related to epilepsy.
Collapse
Affiliation(s)
- Ajay Kumar
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, and PET Center, Children's Hospital of Michigan, Detroit, MI, USA
| | | |
Collapse
|
29
|
|
30
|
Desai A, Bekelis K, Thadani VM, Roberts DW, Jobst BC, Duhaime AC, Gilbert K, Darcey TM, Studholme C, Siegel A. Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia 2012; 54:341-50. [PMID: 23030361 DOI: 10.1111/j.1528-1167.2012.03686.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Interictal positron emission tomography (PET) and ictal subtraction single photon emission computed tomography (SPECT) of the brain have been shown to be valuable tests in the presurgical evaluation of epilepsy. To determine the relative utility of these methods in the localization of seizure foci, we compared interictal PET and ictal subtraction SPECT to subdural and depth electrode recordings in patients with medically intractable epilepsy. METHODS Between 2003 and 2009, clinical information on all patients at our institution undergoing intracranial electroencephalography (EEG) monitoring was charted in a prospectively recorded database. Patients who underwent preoperative interictal PET and ictal subtraction SPECT were selected from this database. Patient characteristics and the findings on preoperative interictal PET and ictal subtraction SPECT were analyzed. Sensitivity of detection of seizure foci for each modality, as compared to intracranial EEG monitoring, was calculated. KEY FINDINGS Fifty-three patients underwent intracranial EEG monitoring with preoperative interictal PET and ictal subtraction SPECT scans. The average patient age was 32.7 years (median 32 years, range 1-60 years). Twenty-seven patients had findings of reduced metabolism on interictal PET scan, whereas all 53 patients studied demonstrated a region of relative hyperperfusion on ictal subtraction SPECT suggestive of an epileptogenic zone. Intracranial EEG monitoring identified a single seizure focus in 45 patients, with 39 eventually undergoing resective surgery. Of the 45 patients in whom a seizure focus was localized, PET scan identified the same region in 25 cases (56% sensitivity) and SPECT in 39 cases (87% sensitivity). Intracranial EEG was concordant with at least one study in 41 cases (91%) and both studies in 23 cases (51%). In 16 (80%) of 20 cases where PET did not correlate with intracranial EEG, the SPECT study was concordant. Conversely, PET and intracranial EEG were concordant in two (33%) of the six cases where the SPECT did not demonstrate the seizure focus outlined by intracranial EEG. Thirty-three patients had surgical resection and >2 years of follow-up, and 21 of these (64%) had Engel class 1 outcome. No significant effect of imaging concordance on seizure outcome was seen. SIGNIFICANCE Interictal PET and ictal subtraction SPECT studies can provide important information in the preoperative evaluation of medically intractable epilepsy. Of the two studies, ictal subtraction SPECT appears to be the more sensitive. When both studies are used together, however, they can provide complementary information.
Collapse
Affiliation(s)
- Atman Desai
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu XT, Rampp S, Hopfengärtner R, Buchfelder M, Zhou D, Stefan H. Complementary use of video-electroencephalography and magnetoencephalography in frontal lobe epilepsy. Seizure 2012; 21:426-30. [DOI: 10.1016/j.seizure.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022] Open
|
32
|
Abstract
Positron emission tomography (PET) has been widely used in the study of seizure disorders. As a research tool, PET has been used to determine the pathophysiology of different seizures disorders, prognostic and diagnostic information, and the response to various interventions. PET imaging has also been used clinically to help with the detection of seizure foci. With the continued development of a large array of radiopharmaceuticals that can evaluate all of the components of different neurotransmitter systems as well as cerebral blood flow and metabolism, PET imaging will continue to play a key role in research and clinical applications for seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
33
|
Kumar A, Semah F, Chugani HT, Theodore WH. Epilepsy diagnosis: positron emission tomography. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:409-24. [PMID: 22938986 DOI: 10.1016/b978-0-444-52898-8.00026-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ajay Kumar
- Department of Pediatrics & Neurology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | |
Collapse
|
34
|
Epilepsy. Neurology 2012. [DOI: 10.1007/978-0-387-88555-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Stefan H, Wu X, Buchfelder M, Rampp S, Kasper B, Hopfengärtner R, Schmitt F, Dörfler A, Blümcke I, Zhou D, Weigel D. MEG in frontal lobe epilepsies: Localization and postoperative outcome. Epilepsia 2011; 52:2233-8. [DOI: 10.1111/j.1528-1167.2011.03265.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Presurgical epilepsy localization with interictal cerebral dysfunction. Epilepsy Behav 2011; 20:194-208. [PMID: 21257351 DOI: 10.1016/j.yebeh.2010.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022]
Abstract
Localization of interictal cerebral dysfunction with 2-[(18)F]fluoro-2-D-deoxyglucose (FDG) positron emission tomography (PET) and neuropsychological examination usefully supplements electroencephalography (EEG) and brain magnetic resonance imaging (MRI) in planning epilepsy surgery. In MRI-negative mesial temporal lobe epilepsy, correlation of temporal lobe hypometabolism with extracranial ictal EEG can support resection without prior intracranial EEG monitoring. In refractory localization-related epilepsies, hypometabolic sites may supplement other data in hypothesizing likely ictal onset zones in order to intracranial electrodes for ictal recording. Prognostication of postoperative seizure freedom with FDG PET appears to have greater positive than negative predictive value. Neuropsychological evaluation is critical to evaluating the potential benefit of epilepsy surgery. Cortical deficits measured with neuropsychometry are limited in lateralizing and localizing value for determination of ictal onset sites, however. Left temporal resection risks iatrogenic verbal memory deficits and dysnomia, and neuropsychological findings are useful in predicting those at greatest risk. Prognostication of cognitive risks with resection at other sites is less satisfactory.
Collapse
|
37
|
Abstract
Positron emission tomography (PET) imaging has been widely used in the evaluation and management of patients with seizure disorders. The ability of PET to measure cerebral function makes it ideal for studying the neurophysiologic correlates of seizure activity during ictal and interictal states. PET imaging is also useful for evaluating patients before surgical interventions to determine the best surgical method and maximize outcomes. Thus, PET will continue to play a major role not only in the clinical arena but in further investigations of the pathogenesis and management of various seizure disorders. This article reviews the literature regarding the current uses and indications for PET in the study and management of patients with seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Andrew B Newberg
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, Somerville E, Mohamed A. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia 2010; 51:1365-73. [DOI: 10.1111/j.1528-1167.2010.02552.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Shen J, Zhang L, Tian X, Liu J, Ge X, Zhang X. Use of short echo time two-dimensional 1H-magnetic resonance spectroscopy in temporal lobe epilepsy with negative magnetic resonance imaging findings. J Int Med Res 2009; 37:1211-9. [PMID: 19761706 DOI: 10.1177/147323000903700428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We evaluated short echo time two-dimensional 1H magnetic resonance spectroscopy (2D-1HMRS) with the point-resolved spatial selection (PRESS) protocol in temporal lobe epilepsy (TLE) patients with negative magnetic resonance imaging (MRI) findings and described the characteristics of 2D-(1)HMRS in the epileptic focus. Thirty-eight TLE patients with negative conventional MRI findings and 10 healthy controls were studied by 2D-1HMRS. A 128-channel prolonged video-electroencephalographic (EEG) method was used as the standard for epileptogenic focus localization to evaluate N-acetyl aspartate/(choline + creatine + phosphocreatine) (NAA/[Cho + Cr-PCr]), glutamate + glutamine/creatine (Glx/Cr-PCr) and myo-inositol/Cr-PCr ratios in patients with negative MRI findings. The 2D-1HMRS showed that 32/38 patients and all healthy controls had stable baselines and good signal-to-noise ratios. Compared with the healthy controls, 32 patients showed abnormal NAA/(Cho + Cr-PCr) ratios in the hippocampus and, in 25 of these patients, focus lateralization agreed with the EEG. It is concluded that short echo time 2D-1HMRS with the PRESS protocol can help find abnormalities in lateralization of temporal epilepsy in patients with negative MRI findings.
Collapse
Affiliation(s)
- J Shen
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
40
|
McLean MA, Cross JJ. Magnetic resonance spectroscopy: principles and applications in neurosurgery. Br J Neurosurg 2009; 23:5-13. [PMID: 19234903 DOI: 10.1080/02688690802491673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although MRI is a routine and invaluable tool in diagnosis and presurgical planning, the related technique of magnetic resonance spectroscopy (MRS) is not often applied. MRS shows the chemical content of brain tissue and can therefore increase the specificity of diagnosis considerably. It also is able to detect abnormality in some tissues which appear normal on conventional MRI, with potential to aid in both discriminating lesion borders and in predicting post-operative outcome. The physical principles of MRS and its technical limitations are discussed, with examples of applications in tumors, epilepsy and traumatic brain injury.
Collapse
Affiliation(s)
- Mary A McLean
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
41
|
Tan KM, Britton JW, Buchhalter JR, Worrell GA, Lagerlund TD, Shin C, Cascino GD, Meyer FB, So EL. Influence of subtraction ictal SPECT on surgical management in focal epilepsy of indeterminate localization: A prospective study. Epilepsy Res 2008; 82:190-3. [DOI: 10.1016/j.eplepsyres.2008.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/08/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
42
|
Single-voxel magnetic resonance spectroscopy of brain tissue adjacent to arachnoid cysts of epileptic patients. Neurologist 2008; 14:382-9. [PMID: 19008744 DOI: 10.1097/nrl.0b013e318177819c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracranial arachnoid cysts (ACs) are usually asymptomatic, benign developmental anomalies. The most frequent clinical manifestations are cranial expansion, hydrocephaly, headache, epileptic seizures, psychomotor retardation, and aphasia. It is unknown whether there is a correlation between intracranial AC and epileptic seizures without obvious intracranial pressure signs. In vivo magnetic resonance spectroscopy is a technique used for the noninvasive investigation of the various metabolites of cerebral biochemical reactions. Magnetic resonance spectroscopy is also being used increasingly commonly in epileptogenic situations as a noninvasive technique. The purpose of this study was to evaluate the proton magnetic resonance spectroscopic pattern of the contents of tissue adjacent to AC and to determine whether there are any characteristic spectral patterns that may be helpful in evaluating whether these lesions are epileptogenic foci. In conclusion, although the number of cases was limited, this finding may be seen as indicating that there is no association between AC and epilepsy.
Collapse
|
43
|
Rastogi S, Lee C, Salamon N. Neuroimaging in pediatric epilepsy: a multimodality approach. Radiographics 2008; 28:1079-95. [PMID: 18635630 DOI: 10.1148/rg.284075114] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pediatric patients with intractable epilepsy represent a challenging clinical population. However, recent advances in neuroimaging with a multimodality imaging approach that combines fluorine 18 fluorodeoxyglucose positron emission tomography, magnetoencephalography, diffusion tensor imaging, and magnetic source imaging with conventional magnetic resonance imaging continue to improve diagnosis and treatment in affected patients. These advances are increasing the understanding of the underlying disease process and improving the ability to noninvasively detect epileptogenic foci that in the past went undetected and whose accurate localization is crucial for a good outcome following surgical resection.
Collapse
Affiliation(s)
- Sachin Rastogi
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room BL-428/CHS, Los Angeles, CA 90095-1721, USA.
| | | | | |
Collapse
|
44
|
Abstract
The idea of surgical treatment for epilepsy is not new. However, widespread use and general acceptance of this treatment has only been achieved during the past three decades. A crucial step in this direction was the development of video electroencephalographic monitoring. Improvements in imaging resulted in an increased ability for preoperative identification of intracerebral and potentially epileptogenic lesions. High resolution magnetic resonance imaging plays a major role in structural and functional imaging; other functional imaging techniques (e.g., positron emission tomography and single-photon emission computed tomography) provide complementary data and, together with corresponding electroencephalographic findings, result in a hypothesis of the epileptogenic lesion, epileptogenic zone, and the functional deficit zone. The development of microneurosurgical techniques was a prerequisite for the general acceptance of elective intracranial surgery. New less invasive and safer resection techniques have been developed, and new palliative and augmentative techniques have been introduced. Today, epilepsy surgery is more effective and conveys a better seizure control rate. It has become safer and less invasive, with lower morbidity and mortality rates. This article summarizes the various developments of the past three decades and describes the present tools for presurgical evaluation and surgical strategy, as well as ideas and future perspectives for epilepsy surgery.
Collapse
Affiliation(s)
- Johannes Schramm
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | | |
Collapse
|
45
|
Imaging malformations of cortical development. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18809040 DOI: 10.1016/s0072-9752(07)87026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
46
|
Doelken M, Stefan H, Pauli E, Stadlbauer A, Struffert T, Engelhorn T, Richter G, Ganslandt O, Doerfler A, Hammen T. 1H-MRS profile in MRI positive- versus MRI negative patients with temporal lobe epilepsy. Seizure 2008; 17:490-7. [DOI: 10.1016/j.seizure.2008.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/08/2008] [Accepted: 01/23/2008] [Indexed: 01/09/2023] Open
|
47
|
Musiek ES, Torigian DA, Newberg AB. Investigation of Nonneoplastic Neurologic Disorders with PET and MRI. PET Clin 2008; 3:317-34. [DOI: 10.1016/j.cpet.2009.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Knowlton RC, Elgavish RA, Bartolucci A, Ojha B, Limdi N, Blount J, Burneo JG, Ver Hoef L, Paige L, Faught E, Kankirawatana P, Riley K, Kuzniecky R. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 2008; 64:35-41. [DOI: 10.1002/ana.21419] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Kuzniecky R, Devinsky O. Surgery Insight: surgical management of epilepsy. ACTA ACUST UNITED AC 2008; 3:673-81. [PMID: 18046440 DOI: 10.1038/ncpneuro0663] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/18/2007] [Indexed: 11/09/2022]
Abstract
Epilepsy surgery has been shown to be an effective treatment for patients with intractable epilepsy. The only randomized controlled trial conducted in this setting to date found a dramatic advantage for surgery over medical treatment in temporal lobe epilepsy. In carefully selected patients, epilepsy surgery can control seizures, improve quality of life and reduce costs of medical care. Advances in diagnostic techniques are likely to improve patient selection, facilitate localization of epileptic foci and functional areas, and enable better prediction of outcomes.
Collapse
Affiliation(s)
- Ruben Kuzniecky
- New York University Comprehensive Epilepsy Center, New York, NY 10016, USA.
| | | |
Collapse
|
50
|
Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy. Seizure 2007; 16:509-20. [PMID: 17532231 DOI: 10.1016/j.seizure.2007.04.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To assess the predictive diagnostic added value of positron emission tomography (PET) in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy (TLE). METHODS A meta-analysis of publications from 1992 to 2006 was performed. Forty-six studies were identified that met inclusion criteria presenting detailed diagnostic test results and a classified postoperative outcome. Studies exclusively reporting on patients with brain tumors or on children were excluded. RESULTS The analyses were complicated by significant differences in study design and often by lack of precise patient data. Ipsilateral PET hypometabolism showed a predictive value of 86% for good outcome. The predictive value was 80% in patients with normal MRI and 72% in patients with non-localized ictal scalp EEG. In a selected population of 153 TLE patients with a follow-up of >12 months PET correlated well with other non-invasive diagnostic tests, but none of the odds ratios of any test combination was significant. CONCLUSION Our data confirm that ipsilateral PET hypometabolism may be an indicator for good postoperative outcome in presurgical evaluation of drug-resistant TLE, although the actual diagnostic added value remained questionable and unclear. PET does not appear to add value in patients localized by ictal scalp EEG and MRI. Prospective studies limited to non-localized ictal scalp EEG or MRI-negative patients are required for validation.
Collapse
Affiliation(s)
- O Willmann
- Department of Neurology, University Hospital Mannheim, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|