1
|
Guo S, Liu L, Su F, Yang H, Liu G, Fan Y, He J, Lian Z, Li X, Guo W, Chen X, Jiang H. Monitoring Hierarchical Assembly of Ring-in-Ring and Russian Doll Complexes Based on Carbon Nanoring by Förster Resonance Energy Transfer. JACS AU 2024; 4:402-410. [PMID: 38425918 PMCID: PMC10900207 DOI: 10.1021/jacsau.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
We presented the construction of the ring-in-ring and Russian doll complexes on the basis of triptycene-derived carbon nanoring (TP-[12]CPP), which not only acts as a host for pillar[5]arene (P5A) but also serves as an energy donor for building Förster resonance energy transfer (FRET) systems. We also demonstrated that their hierarchical assembly processes could be efficiently monitored in real time using FRET. NMR, UV-vis and fluorescence, and mass spectroscopy analyses confirmed the successful encapsulation of the guests P5A/P5A-An by TP-[12]CPP, facilitated by C-H···π and ···π interactions, resulting in the formation of a distinct ring-in-ring complex with a binding constant of Ka = 2.23 × 104 M-1. The encapsulated P5A/P5A-An can further reverse its role to be a host for binding energy acceptors to form Russian doll complexes, as evidenced by the occurrence of FRET and mass spectroscopy analyses. The apparent binding constant of the Russian doll complexes was up to 3.6 × 104 M-1, thereby suggesting an enhanced synergistic effect. Importantly, the Russian doll complexes exhibited both intriguing one-step and sequential FRET dependent on the subcomponent P5A/P5A-An during hierarchical assembly, reminiscent of the structure and energy transfer of the light-harvesting system presented in purple bacteria.
Collapse
Affiliation(s)
- Shengzhu Guo
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Lin Liu
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Feng Su
- College
of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Huiji Yang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Guoqin Liu
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Yanqing Fan
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Jing He
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhe Lian
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiaonan Li
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Weijie Guo
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xuebo Chen
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Hua Jiang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
2
|
Zhang Q, Wang Y, Wang W, Min Q, Zhang JR, Zhu JJ. A Telomerase-Assisted Strategy for Regeneration of DNA Nanomachines in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202213884. [PMID: 36478372 DOI: 10.1002/anie.202213884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
DNA nanomachines have been engineered into diverse personalized devices for diagnostic imaging of biomarkers; however, the regeneration of DNA nanomachines in living cells remains challenging. Here, we report an ingenious DNA nanomachine that can implement telomerase (TE)-activated regeneration in living cells. Upon apurinic/apyrimidinic endonuclease 1 (APE1)-responsive initiation of the nanomachine, the walker of the nanomachine moves along tracks regenerated by TE, generating multiply amplified signals through which APE1 can be imaged in situ. Additionally, augmentation of the signal due to the regeneration of the nanomachines could reveal differential expression of TE in different cell lines. To the best of our knowledge, this is the first proof-of-concept demonstration of the use of biomarkers to assist in the regeneration of nanomachines in living cells. This study offers a new paradigm for the development of more applicable and efficient DNA nanomachines.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing, 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Mathew SS, Ahamed AAS, Abraham I, Prabhu DD, John F, George J. Self‐Assemblies of DNA ‐ Amphiphiles Nanostructures for New Design Strategies of Varied Morphologies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - A A Subuhan Ahamed
- School of Chemistry University of Hyderabad Hyderabad 500046 Telangana India
| | - Ignatious Abraham
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Deepak D Prabhu
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Franklin John
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Jinu George
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| |
Collapse
|
4
|
Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Del Grosso E, Prins LJ, Ricci F. Transient DNA‐Based Nanostructures Controlled by Redox Inputs. Angew Chem Int Ed Engl 2020; 59:13238-13245. [DOI: 10.1002/anie.202002180] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
6
|
Zhang S, Chen C, Xue C, Chang D, Xu H, Salena BJ, Li Y, Wu Z. Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angew Chem Int Ed Engl 2020; 59:14584-14592. [DOI: 10.1002/anie.202005624] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Shuxin Zhang
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Chang Chen
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Bruno J. Salena
- Department of Medicine McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Zai‐Sheng Wu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis, Chemoprevention and Chemotherapy National & Local Joint Biomedical Engineering Research Center on, Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| |
Collapse
|
7
|
Del Grosso E, Prins LJ, Ricci F. Transient DNA‐Based Nanostructures Controlled by Redox Inputs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
8
|
Carloni LE, Bezzu CG, Bonifazi D. Patterning Porous Networks through Self-Assembly of Programmed Biomacromolecules. Chemistry 2019; 25:16179-16200. [PMID: 31491049 DOI: 10.1002/chem.201902576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Laure-Elie Carloni
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - C Grazia Bezzu
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| | - Davide Bonifazi
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| |
Collapse
|
9
|
Karg B, Mohr S, Weisz K. Duplex‐Guided Refolding into Novel G‐Quadruplex (3+1) Hybrid Conformations. Angew Chem Int Ed Engl 2019; 58:11068-11071. [DOI: 10.1002/anie.201905372] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Beatrice Karg
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Swantje Mohr
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Klaus Weisz
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
10
|
Karg B, Mohr S, Weisz K. Duplex‐gesteuerte Umfaltung in neuartige G‐Quadruplex‐(3+1)‐ Hybridkonformationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Beatrice Karg
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Swantje Mohr
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Klaus Weisz
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
11
|
Golla M, Albert SK, Atchimnaidu S, Perumal D, Krishnan N, Varghese R. DNA‐Decorated, Helically Twisted Nanoribbons: A Scaffold for the Fabrication of One‐Dimensional, Chiral, Plasmonic Nanostructures. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Murali Golla
- School of ChemistryIndian Institute of Science Education and Research (IISER) Thiruvananthapuram Trivandrum- 695551 Kerala India
| | - Shine K. Albert
- School of ChemistryIndian Institute of Science Education and Research (IISER) Thiruvananthapuram Trivandrum- 695551 Kerala India
| | - Siriki Atchimnaidu
- School of ChemistryIndian Institute of Science Education and Research (IISER) Thiruvananthapuram Trivandrum- 695551 Kerala India
| | - Devanathan Perumal
- School of ChemistryIndian Institute of Science Education and Research (IISER) Thiruvananthapuram Trivandrum- 695551 Kerala India
| | - Nithiyanandan Krishnan
- School of ChemistryIndian Institute of Science Education and Research (IISER) Thiruvananthapuram Trivandrum- 695551 Kerala India
| | - Reji Varghese
- School of ChemistryIndian Institute of Science Education and Research (IISER) Thiruvananthapuram Trivandrum- 695551 Kerala India
| |
Collapse
|
12
|
Golla M, Albert SK, Atchimnaidu S, Perumal D, Krishnan N, Varghese R. DNA-Decorated, Helically Twisted Nanoribbons: A Scaffold for the Fabrication of One-Dimensional, Chiral, Plasmonic Nanostructures. Angew Chem Int Ed Engl 2019; 58:3865-3869. [PMID: 30690822 DOI: 10.1002/anie.201813900] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 11/06/2022]
Abstract
Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA-directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA-decorated, helically twisted nanoribbons through the amphiphilicity-driven self-assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self-assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA-wrapped nanoribbons with M-helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.
Collapse
Affiliation(s)
- Murali Golla
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-, 695551, Kerala, India
| | - Shine K Albert
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-, 695551, Kerala, India
| | - Siriki Atchimnaidu
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-, 695551, Kerala, India
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-, 695551, Kerala, India
| | - Nithiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-, 695551, Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-, 695551, Kerala, India
| |
Collapse
|
13
|
Chen T, Romesberg FE. Enzymatic Synthesis, Amplification, and Application of DNA with a Functionalized Backbone. Angew Chem Int Ed Engl 2017; 56:14046-14051. [PMID: 28914996 DOI: 10.1002/anie.201707367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/04/2017] [Indexed: 12/29/2022]
Abstract
The ability to amplify DNA along with its unprecedented sequence control has led to its use for different applications, but all are limited by the properties available to natural nucleotides. We previously reported the evolution of polymerase SFM4-3, which better tolerates 2'-modified substrates. To explore the utility of SFM4-3, we now report the characterization of its recognition of substrates with 2'-azido, 2'-chloro, 2'-amino, or arabinose sugars. We find that SFM4-3 can efficiently synthesize polymers composed of these nucleotides, and most interestingly, that SFM4-3 can also PCR amplify these modified oligonucleotides. When combined with post-amplification modification, the latter allows for the exponential amplification of polymers that may be functionalized with desired moieties arrayed in a controlled fashion, the utility of which we demonstrate with extensive small molecule functionalization and the production and initial characterization of a novel DNA hydrogel.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
14
|
Chen T, Romesberg FE. Enzymatic Synthesis, Amplification, and Application of DNA with a Functionalized Backbone. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tingjian Chen
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Floyd E. Romesberg
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
15
|
Albert SK, Golla M, Thelu HVP, Krishnan N, Varghese R. A pH-Responsive DNAsome from the Self-Assembly of DNA-Phenyleneethynylene Hybrid Amphiphile. Chemistry 2017; 23:8348-8352. [PMID: 28489295 DOI: 10.1002/chem.201701446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/18/2022]
Abstract
A pH-responsive DNAsome derived from the amphiphilicity-driven self-assembly of DNA amphiphile containing C-rich DNA sequence is reported. The acidification of DNAsome induces a structural change of C-rich DNA from random coil to an i-motif structure that triggers the disassembly of DNAsome and its subsequent morphological transformation into an open entangled network. The encapsulation of a hydrophobic guest into the membrane of DNAsome and its pH-triggered release upon acidification of DNAsome is also demonstrated.
Collapse
Affiliation(s)
- Shine K Albert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Murali Golla
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Hari Veera Prasad Thelu
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Nithiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| |
Collapse
|
16
|
Chen N, Shi X, Wang Y. Molecularly Regulated Reversible DNA Polymerization. Angew Chem Int Ed Engl 2016; 55:6657-61. [PMID: 27100911 PMCID: PMC4884157 DOI: 10.1002/anie.201601008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Indexed: 12/13/2022]
Abstract
Natural polymers are synthesized and decomposed under physiological conditions. However, it is challenging to develop synthetic polymers whose formation and reversibility can be both controlled under physiological conditions. Here we show that both linear and branched DNA polymers can be synthesized via molecular hybridization in aqueous solutions, on the particle surface, and in the extracellular matrix (ECM) without the involvement of any harsh conditions. More importantly, these polymers can be effectively reversed to dissociate under the control of molecular triggers. Since nucleic acids can be conjugated with various molecules or materials, we anticipate that molecularly regulated reversible DNA polymerization holds potential for broad biological and biomedical applications.
Collapse
Affiliation(s)
- Niancao Chen
- Department of Biomedical Engineering, Pennsylvania State University, 202 Hallowell Building, University Park, PA, 16802, USA
| | - Xuechen Shi
- Department of Biomedical Engineering, Pennsylvania State University, 202 Hallowell Building, University Park, PA, 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, 232 Hallowell Building, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Niancao Chen
- Department of Biomedical Engineering Pennsylvania State University 202 Hallowell Building University Park PA 16802 USA
| | - Xuechen Shi
- Department of Biomedical Engineering Pennsylvania State University 202 Hallowell Building University Park PA 16802 USA
| | - Yong Wang
- Department of Biomedical Engineering Pennsylvania State University 232 Hallowell Building University Park PA 16802 USA
| |
Collapse
|
18
|
Weigandt J, Chung CL, Jester SS, Famulok M. Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures. Angew Chem Int Ed Engl 2016; 55:5512-6. [PMID: 27010370 PMCID: PMC4850751 DOI: 10.1002/anie.201601042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/03/2016] [Indexed: 11/08/2022]
Abstract
We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double-stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo-DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges.
Collapse
Affiliation(s)
- Johannes Weigandt
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Chia-Ling Chung
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Stefan-S Jester
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Michael Famulok
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany. .,Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
19
|
Weigandt J, Chung C, Jester S, Famulok M. Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Weigandt
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Chia‐Ling Chung
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Stefan‐S. Jester
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Michael Famulok
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
| |
Collapse
|
20
|
Garrecht R, Meyer R, Duppach J, Reipschläger S, Watzl C, Niemeyer CM. Designed DNA Surfaces for in Vitro Modulation of Natural Killer Cells. Chembiochem 2016; 17:486-92. [DOI: 10.1002/cbic.201500629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Ruben Garrecht
- Karlsruhe Institute of Technology (KIT); Institute for Biological Interfaces (IBG 1); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Rebecca Meyer
- Karlsruhe Institute of Technology (KIT); Institute for Biological Interfaces (IBG 1); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Janine Duppach
- Leibniz Research Center for Working Environment and Human Factors (IfADo) at TU Dortmund; Ardeystrasse 67 44139 Dortmund Germany
| | - Simone Reipschläger
- Leibniz Research Center for Working Environment and Human Factors (IfADo) at TU Dortmund; Ardeystrasse 67 44139 Dortmund Germany
| | - Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors (IfADo) at TU Dortmund; Ardeystrasse 67 44139 Dortmund Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT); Institute for Biological Interfaces (IBG 1); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
21
|
Meyer R, Saccà B, Niemeyer CM. Site-directed, on-surface assembly of DNA nanostructures. Angew Chem Int Ed Engl 2015; 54:12039-43. [PMID: 26306556 DOI: 10.1002/anie.201505553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Indexed: 01/22/2023]
Abstract
Two-dimensional DNA lattices have been assembled from DNA double-crossover (DX) motifs on DNA-encoded surfaces in a site-specific manner. The lattices contained two types of single-stranded protruding arms pointing into opposite directions of the plane. One type of these protruding arms served to anchor the DNA lattice on the solid support through specific hybridization with surface-bound, complementary capture oligomers. The other type of arms allowed for further attachment of DNA-tethered probe molecules on the opposite side of the lattices exposed to the solution. Site-specific lattice assembly and attachment of fluorophore-labeled oligonucleotides and DNA-protein conjugates was demonstrated using DNA microarrays on flat, transparent mica substrates. Owing to their programmable orientation and addressability over a broad dynamic range from the nanometer to the millimeter length scale, such supramolecular architecture might be used for presenting biomolecules on surfaces, for instance, in biosensor applications.
Collapse
Affiliation(s)
- Rebecca Meyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
| | - Barbara Saccà
- Center for Nanointegration Duisburg-Essen (CENIDE), Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätstrasse 2, 45117 Essen (Germany)
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany).
| |
Collapse
|
22
|
Meyer R, Saccà B, Niemeyer CM. Site-Directed, On-Surface Assembly of DNA Nanostructures. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Mei H, Ingale SA, Seela F. Imidazolo-dC metal-mediated base pairs: purine nucleosides capture two Ag(+) ions and form a duplex with the stability of a covalent DNA cross-link. Chemistry 2014; 20:16248-57. [PMID: 25336305 DOI: 10.1002/chem.201404422] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/13/2022]
Abstract
8-Phenylimidazolo-dC ((ph) ImidC, 2) forms metal-mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent "purine" 2'-deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6. Owing to the ease of nucleobase deprotonation, the new Ag(+) -mediated base pair containing a "purine" skeleton is much stronger than that derived from the pyrrolo- [3,4-d]pyrimidine system ((ph) PyrdC, 1). The silver-mediated (ph) ImidC-(ph) ImidC base pair fits well into the DNA double helix and has the stability of a covalent cross-link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857; Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | | | | |
Collapse
|
24
|
Perlíková P, Ejlersen M, Langkjaer N, Wengel J. Bis-pyrene-modified unlocked nucleic acids: synthesis, hybridization studies, and fluorescent properties. ChemMedChem 2014; 9:2120-7. [PMID: 25044312 DOI: 10.1002/cmdc.201402185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Indexed: 11/08/2022]
Abstract
Efficient synthesis of a building block for the incorporation of a bis-pyrene-modified unlocked nucleic acid (UNA) into oligonucleotides (DNA*) was developed. The presence of bis-pyrene-modified UNA within a duplex leads to duplex destabilization that is more profound in DNA*/RNA and less distinct in DNA*/DNA duplexes. Nevertheless, the destabilization effect of bis-pyrene-modified UNA is weaker than that of unmodified UNA. Some oligonucleotides with bis-pyrene-modified UNA incorporations displayed superior mismatch discrimination capabilities. UV/Vis absorption and molecular modeling studies indicate that the pyrene groups of bis-pyrene-modified UNA are located in the major groove of a duplex. Oligonucleotides containing two bis-pyrene-modified UNA monomers showed low pyrene monomer emission in bulge-containing duplexes, high pyrene monomer emission in fully matched duplexes, and 5-(pyrenyl)uracil:pyrene exciplex emission in the single-stranded form. Such fluorescent properties enable the application of bis-pyrene-modified UNA in the development of fluorescence probes for DNA/RNA detection and for detection of deletions at specific positions.
Collapse
Affiliation(s)
- Pavla Perlíková
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | | | | | | |
Collapse
|
25
|
Tintoré M, Eritja R, Fábrega C. DNA Nanoarchitectures: Steps towards Biological Applications. Chembiochem 2014; 15:1374-90. [DOI: 10.1002/cbic.201402014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/26/2022]
|
26
|
Mei H, Yang H, Röhl I, Seela F. Silver Arrays Inside DNA Duplexes Constructed from Silver(I)-Mediated Pyrrolo-dC-Pyrrolo-dC Base Pairs. Chempluschem 2014. [DOI: 10.1002/cplu.201402060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Arrabito G, Reisewitz S, Dehmelt L, Bastiaens PI, Pignataro B, Schroeder H, Niemeyer CM. Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4243-4249. [PMID: 23881817 DOI: 10.1002/smll.201300941] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 06/02/2023]
Abstract
A general methodology for patterning of multiple protein ligands with lateral dimensions below those of single cells is described. It employs dip pen nanolithography (DPN) patterning of DNA oligonucleotides which are then used as capture strands for DNA-directed immobilization (DDI) of oligonucleotide-tagged proteins. This study reports the development and optimization of PEG-based liquid ink, used as carrier for the immobilization of alkylamino-labeled DNA oligomers on chemically activated glass surfaces. The resulting DNA arrays have typical spot sizes of 4-5 μm with a pitch of 12 μm micrometer. It is demonstrated that the arrays can be further functionalized with covalent DNA-streptavidin (DNA-STV) conjugates bearing ligands recognized by cells. To this end, biotinylated epidermal growth factor (EGF) is coupled to the DNA-STV conjugates, the resulting constructs are hybridized with the DNA arrays and the resulting surfaces used for the culturing of MCF-7 (human breast adenocarcinoma) cells. Owing to the lateral diffusion of transmembrane proteins in the cell's plasma membrane, specific recruitment and concentration of EGF receptor can be induced specifically at the sites where the ligands are bound on the solid substrate. This is a clear demonstration that this method is suitable for precise functional manipulations of subcellular areas within living cells.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto Hahn Str. 6, 44227 Dortmund, Germany; Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany; Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Giselbrecht S, Rapp BE, Niemeyer CM. Chemie der Cyborgs - zur Verknüpfung technischer Systeme mit Lebewesen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Giselbrecht S, Rapp BE, Niemeyer CM. The chemistry of cyborgs--interfacing technical devices with organisms. Angew Chem Int Ed Engl 2013; 52:13942-57. [PMID: 24288270 DOI: 10.1002/anie.201307495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 01/02/2023]
Abstract
The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented.
Collapse
Affiliation(s)
- Stefan Giselbrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz, 76344 Eggenstein-Leopoldshafen (Germany)
| | | | | |
Collapse
|
30
|
Kröner C, Göckel A, Liu W, Richert C. Binding cofactors with triplex-based DNA motifs. Chemistry 2013; 19:15879-87. [PMID: 24194407 DOI: 10.1002/chem.201303098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Indexed: 12/28/2022]
Abstract
Cofactors are pivotal compounds for the cell and many biotechnological processes. It is therefore interesting to ask how well cofactors can be bound by oligonucleotides designed not to convert but to store and release these biomolecules. Here we show that triplex-based DNA binding motifs can be used to bind nucleotides and cofactors, including NADH, FAD, SAM, acetyl CoA, and tetrahydrofolate (THF). Dissociation constants between 0.1 μM for SAM and 35 μM for THF were measured. A two-nucleotide gap still binds NADH. The selectivity for one ligand over the others can be changed by changing the sequence of the binding pocket. For example, a mismatch placed in one of the two triplets adjacent to the base-pairing site changes the selectivity, favoring the binding of FAD over that of ATP. Further, changing one of the two thymines of an A-binding motif to cytosine gives significant affinity for G, whereas changing the other does not. Immobilization of DNA motifs gives beads that store NADH. Exploratory experiments show that the beads release the cofactor upon warming to body temperature.
Collapse
Affiliation(s)
- Christoph Kröner
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany), Fax: (+49) 711-685-64321
| | | | | | | |
Collapse
|
31
|
Hartman MR, Yang D, Tran TNN, Lee K, Kahn JS, Kiatwuthinon P, Yancey KG, Trotsenko O, Minko S, Luo D. Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angew Chem Int Ed Engl 2013; 52:8699-702. [PMID: 23825018 DOI: 10.1002/anie.201302175] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Mark R Hartman
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hartman MR, Yang D, Tran TNN, Lee K, Kahn JS, Kiatwuthinon P, Yancey KG, Trotsenko O, Minko S, Luo D. Thermostable Branched DNA Nanostructures as Modular Primers for Polymerase Chain Reaction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
|
34
|
Lim KW, Phan AT. Structural basis of DNA quadruplex-duplex junction formation. Angew Chem Int Ed Engl 2013; 52:8566-9. [PMID: 23794476 DOI: 10.1002/anie.201302995] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | | |
Collapse
|
35
|
Haug R, Griesser H, Sabirov T, Richert C. DNA-porphyrin hybrids as reaction centers for photosensitized ene reactions with singlet oxygen. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612500484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent developments in DNA-mediated nanostructuring have paved the way for the development of novel reaction centers. As part of a project focused on nanostructured reaction centers for reactions catalyzed by porphyrins, we have developed a solid-phase synthesis of tetrakis(p-hydroxyphenyl)porphyrin-oligonucleotide hybrids. In these hybrids, up to four nucleic acid chains are linked to the phenolic substituents of the porphyrin via phosphodiester linkages. A representative hybrid with one oligonucleotide chain of the sequence TTAA was found to survive light irradiation under aerobic conditions for 2 h with less than 35% oxidation of the DNA chain. An assay measuring the diastereo- and enantioselectivity of the photosensitized ene reaction of mesitylol with singlet oxygen was set up that provides diastereomeric ratios via NMR of aliquots of the reaction solution. Enantiomers were separated gas chromatographically on a chiral stationary phase and were assigned based on the product distribution obtained with an enantiomerically enriched starting material. Our results are a starting point for the exploration of nanostructured reaction media based on DNA and porphyrins.
Collapse
Affiliation(s)
- Rüdiger Haug
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Helmut Griesser
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas Sabirov
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Clemens Richert
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Saccà B, Niemeyer CM. DNA Origami: The Art of Folding DNA. Angew Chem Int Ed Engl 2011; 51:58-66. [DOI: 10.1002/anie.201105846] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Indexed: 11/09/2022]
|
37
|
|
38
|
Spork AP, Wiegmann D, Granitzka M, Stalke D, Ducho C. Stereoselective synthesis of uridine-derived nucleosyl amino acids. J Org Chem 2011; 76:10083-98. [PMID: 22059552 DOI: 10.1021/jo201935w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel hybrid structures of 5'-deoxyuridine and glycine were conceived and synthesized. Such nucleosyl amino acids (NAAs) represent simplified analogues of the core structure of muraymycin nucleoside antibiotics, making them useful synthetic building blocks for structure-activity relationship (SAR) studies. The key step of the developed synthetic route was the efficient and highly diastereoselective asymmetric hydrogenation of didehydro amino acid precursors toward protected NAAs. It was anticipated that the synthesis of unprotected muraymycin derivatives via this route would require a suitable intermediate protecting group at the N-3 of the uracil base. After initial attempts using PMB- and BOM-N-3 protection, both of which resulted in problematic deprotection steps, an N-3 protecting group-free route was envisaged. In spite of the pronounced acidity of the uracil-3-NH, this route worked equally efficient and with identical stereoselectivities as the initial strategies involving N-3 protection. The obtained NAA building blocks were employed for the synthesis of truncated 5'-deoxymuraymycin analogues.
Collapse
Affiliation(s)
- Anatol P Spork
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37 077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Ravnsbaek JB, Jacobsen MF, Rosen CB, Voigt NV, Gothelf KV. DNA-Programmed Glaser-Eglinton Reactions for the Synthesis of Conjugated Molecular Wires. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Ravnsbaek JB, Jacobsen MF, Rosen CB, Voigt NV, Gothelf KV. DNA-Programmed Glaser-Eglinton Reactions for the Synthesis of Conjugated Molecular Wires. Angew Chem Int Ed Engl 2011; 50:10851-4. [DOI: 10.1002/anie.201105095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Indexed: 01/16/2023]
|
42
|
Abendroth F, Bujotzek A, Shan M, Haag R, Weber M, Seitz O. DNA-controlled bivalent presentation of ligands for the estrogen receptor. Angew Chem Int Ed Engl 2011; 50:8592-6. [PMID: 21793134 DOI: 10.1002/anie.201101655] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/02/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Frank Abendroth
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Abendroth F, Bujotzek A, Shan M, Haag R, Weber M, Seitz O. DNA-gesteuerte bivalente Präsentation von Liganden für den Östrogenrezeptor. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101655] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Eberhard H, Diezmann F, Seitz O. DNA as a molecular ruler: interrogation of a tandem SH2 domain with self-assembled, bivalent DNA-peptide complexes. Angew Chem Int Ed Engl 2011; 50:4146-50. [PMID: 21455916 DOI: 10.1002/anie.201007593] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/18/2011] [Indexed: 01/01/2023]
Affiliation(s)
- Hendrik Eberhard
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
45
|
Eberhard H, Diezmann F, Seitz O. DNA as a Molecular Ruler: Interrogation of a Tandem SH2 Domain with Self-Assembled, Bivalent DNA-Peptide Complexes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007593] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Chakraborty S, Dopfer O. Infrared spectrum of the Ag(+)-(pyridine)2 ionic complex: probing interactions in artificial metal-mediated base pairing. Chemphyschem 2011; 12:1999-2008. [PMID: 21442717 DOI: 10.1002/cphc.201001052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Indexed: 11/11/2022]
Abstract
The isolated pyridine-Ag(+)-pyridine unit (Py-Ag(+)-Py) is employed as a model system to characterize the recently observed Ag(+)-mediated base pairing in DNA oligonucleotides at the molecular level. The structure and infrared (IR) spectrum of the Ag(+)-Py(2) cationic complex are investigated in the gas phase by IR multiple-photon dissociation (IRMPD) spectroscopy and quantum chemical calculations to determine the preferred metal-ion binding site and other salient properties of the potential-energy surface. The IRMPD spectrum has been obtained in the 840-1720 cm(-1) fingerprint region by coupling the IR free electron laser at the Centre Laser Infrarouge d'Orsay (CLIO) with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization source. The spectroscopic results are interpreted with quantum chemical calculations conducted at the B3LYP/aug-cc-pVDZ level. The analysis of the IRMPD spectrum is consistent with a σ complex, in which the Ag(+) ion binds to the nitrogen lone pairs of the two Py ligands in a linear configuration. The binding motif of Py-Ag(+)-Py in the gas phase is the same as that observed in Ag(+)-mediated base pairing in solution. Ag(+) bonding to the π-electron system of the aromatic ring is predicted to be a substantially less-favorable binding motif.
Collapse
Affiliation(s)
- Shamik Chakraborty
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | | |
Collapse
|
47
|
|
48
|
Singh A, Tolev M, Meng M, Klenin K, Plietzsch O, Schilling CI, Muller T, Nieger M, Bräse S, Wenzel W, Richert C. Branched DNA that forms a solid at 95 °C. Angew Chem Int Ed Engl 2011; 50:3227-31. [PMID: 21374767 DOI: 10.1002/anie.201006992] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/18/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Arunoday Singh
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kashida H, Hayashi T, Fujii T, Asanuma H. A cationic dye triplet as a unique "glue" that can connect fully matched termini of DNA duplexes. Chemistry 2011; 17:2614-22. [PMID: 21305625 DOI: 10.1002/chem.201003059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 11/08/2022]
Abstract
In this study, we propose that three consecutive cationic p-methylstilbazoles tethered on D-threoninols (Z residues) at 5' termini act as a unique "glue" connecting DNA duplexes by their interstrand cluster formation. Interstrand clustering of p-methylstilbazoles (ZZZ triplets) induces narrowing and hypsochromic shift of bands at 350 nm, which can be assigned to the absorption of p-methylstilbazole. However, single-stranded DNA conjugates involving a ZZZ triplet at the 5' terminus of 8-mer native nucleotides is found not to induce such large spectral changes, which implies that the intrinsic self-assembling property of ZZZ triplets is weak. Interestingly, when this conjugate is hybridized with a complementary 8-mer native oligonucleotide, a remarkable spectral change is observed, indicating the dimerization of a duplex through the interstrand clustering of ZZZ triplets. Dimerization of the duplex is also evidenced by cold-spray ionization mass spectrometry. This interstrand clustering is observed only when a ZZZ triplet is tethered to a 5' rather than 3' terminus. Furthermore, the stability of the interstrand cluster increases by increasing the number of nucleobases of the DNA portion, and when mismatched base pairs are incorporated or when a base next to the Z residue is deleted, the stability substantially drops. When we apply the ZZZ triplet to the formation of a nanowire using two complementary DNA conjugates, each of which has a ZZZ triplet at the 5' termini as overhang, we demonstrate the successful formation of a nanowire by native PAGE analysis. Since native sticky ends that have three nucleotides do not serve as "glue", ZZZ triplets with their unique glue-like properties are prime candidates for constructing DNA-based nanoarchitectures.
Collapse
Affiliation(s)
- Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
50
|
Lovell JF, Jin H, Ng KK, Zheng G. Programmed nanoparticle aggregation using molecular beacons. Angew Chem Int Ed Engl 2011; 49:7917-9. [PMID: 20853381 DOI: 10.1002/anie.201003846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jonathan F Lovell
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|