1
|
Kong J, Wang Y, Zhang J, Qi W, Su R, He Z. Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Kong
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| |
Collapse
|
2
|
Kong J, Wang Y, Zhang J, Qi W, Su R, He Z. Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo. Angew Chem Int Ed Engl 2018; 57:14032-14036. [DOI: 10.1002/anie.201805868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/06/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jia Kong
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| |
Collapse
|
3
|
Viral nanoparticles, noble metal decorated viruses and their nanoconjugates. Adv Colloid Interface Sci 2015; 222:119-34. [PMID: 24836299 DOI: 10.1016/j.cis.2014.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/28/2013] [Accepted: 04/11/2014] [Indexed: 01/09/2023]
Abstract
Virus-based nanotechnology has generated interest in a number of applications due to the specificity of virus interaction with inorganic and organic nanoparticles. A well-defined structure of virus due to its multifunctional proteinaceous shell (capsid) surrounding genomic material is a promising approach to obtain nanostructured materials. Viruses hold great promise in assembling and interconnecting novel nanosized components, allowing to develop organized nanoparticle assemblies. Due to their size, monodispersity, and variety of chemical groups available for modification, they make a good scaffold for molecular assembly into nanoscale devices. Virus based nanocomposites are useful as an engineering material for the construction of smart nanoobjects because of their ability to associate into desired structures including a number of morphologies. Viruses exhibit the characteristics of an ideal template for the formation of nanoconjugates with noble metal nanoparticles. These bioinspired systems form monodispersed units that are highly amenable through genetic and chemical modifications. As nanoscale assemblies, viruses have sophisticated yet highly ordered structural features, which, in many cases, have been carefully characterized by modern structural biological methods. Plant viruses are increasingly being used for nanobiotechnology purposes because of their relative structural and chemical stability, ease of production, multifunctionality and lack of toxicity and pathogenicity in animals or humans. The multifunctional viruses interact with nanoparticles and other functional additives to the generation of bioconjugates with different properties – possible antiviral and antibacterial activities.
Collapse
|
4
|
Eber FJ, Eiben S, Jeske H, Wege C. Bottom-Up-Assembled Nanostar Colloids of Gold Cores and Tubes Derived From Tobacco Mosaic Virus. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Eber FJ, Eiben S, Jeske H, Wege C. Bottom-Up-Assembled Nanostar Colloids of Gold Cores and Tubes Derived From Tobacco Mosaic Virus. Angew Chem Int Ed Engl 2013; 52:7203-7. [DOI: 10.1002/anie.201300834] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Indexed: 12/17/2022]
|
6
|
Ghasparian A, Riedel T, Koomullil J, Moehle K, Gorba C, Svergun DI, Perriman AW, Mann S, Tamborrini M, Pluschke G, Robinson JA. Engineered synthetic virus-like particles and their use in vaccine delivery. Chembiochem 2011; 12:100-9. [PMID: 21132689 DOI: 10.1002/cbic.201000536] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Engineered nanoparticles have been designed based on the self-assembling properties of synthetic coiled-coil lipopeptide building blocks. The presence of an isoleucine zipper within the lipopeptide together with the aggregating effects of an N-terminal lipid drives formation of 20-25 nm nanoparticles in solution. Biophysical studies support a model in which the lipid is buried in the centre of the nanoparticle, with 20-30 trimeric helical coiled-coil bundles radiating out into solution. A promiscuous T-helper epitope and a synthetic B-cell epitope mimetic derived from the circumsporozoite protein of Plasmodium falciparum have been linked to each lipopeptide chain, with the result that 60-90 copies of each antigen are displayed over the surface of the nanoparticle. These nanoparticles elicit strong humoral immune responses in mice and rabbits, including antibodies able to cross-react with the parasite, thereby, supporting the potential value of this delivery system in synthetic vaccine design.
Collapse
Affiliation(s)
- Arin Ghasparian
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Niu Z, He J, Russell TP, Wang Q. Synthese von Nano-/Mikrostrukturen an fluiden Grenzflächen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001623] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Niu Z, He J, Russell TP, Wang Q. Synthesis of Nano/Microstructures at Fluid Interfaces. Angew Chem Int Ed Engl 2010; 49:10052-66. [DOI: 10.1002/anie.201001623] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN. Wirkstoffverabreichung mithilfe polymerer Mehrschichtkapseln. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN. Polymeric Multilayer Capsules in Drug Delivery. Angew Chem Int Ed Engl 2010; 49:6954-73. [DOI: 10.1002/anie.200906266] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
de la Escosura A, Janssen P, Schenning A, Nolte R, Cornelissen J. Encapsulation of DNA-Templated Chromophore Assemblies within Virus Protein Nanotubes. Angew Chem Int Ed Engl 2010; 49:5335-8. [DOI: 10.1002/anie.201001702] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
de la Escosura A, Janssen P, Schenning A, Nolte R, Cornelissen J. Encapsulation of DNA-Templated Chromophore Assemblies within Virus Protein Nanotubes. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Wang X, Deng Y, Shi H, Mei Z, Zhao H, Xiong W, Liu P, Zhao Y, Qin C, Tang R. Functional single-virus-polyelectrolyte hybrids make large-scale applications of viral nanoparticles more efficient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:351-4. [PMID: 20077422 DOI: 10.1002/smll.200901795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Xiaoyu Wang
- Center for Biomaterials and Biopathways and Department of Chemistry, Zhejiang University Hangzhou, Zhejiang 310027, P R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Abstract
Viruses have recently proven useful for the detection of target analytes such as explosives, proteins, bacteria, viruses, spores, and toxins with high selectivity and sensitivity. Bacteriophages (often shortened to phages), viruses that specifically infect bacteria, are currently the most studied viruses, mainly because target-specific nonlytic phages (and the peptides and proteins carried by them) can be identified by using the well-established phage display technique, and lytic phages can specifically break bacteria to release cell-specific marker molecules such as enzymes that can be assayed. In addition, phages have good chemical and thermal stability, and can be conjugated with nanomaterials and immobilized on a transducer surface in an analytical device. This Review focuses on progress made in the use of phages in chemical and biological sensors in combination with traditional analytical techniques. Recent progress in the use of virus-nanomaterial composites and other viruses in sensing applications is also highlighted.
Collapse
Affiliation(s)
- Chuanbin Mao
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
16
|
Li T, Niu Z, Emrick T, Russell TP, Wang Q. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1624-1629. [PMID: 18819135 DOI: 10.1002/smll.200800403] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Tao Li
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
17
|
Endo M, Fujitsuka M, Majima T. Porphyrin Light-Harvesting Arrays Constructed in the Recombinant Tobacco Mosaic Virus Scaffold. Chemistry 2007; 13:8660-6. [PMID: 17849494 DOI: 10.1002/chem.200700895] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies.
Collapse
Affiliation(s)
- Masayuki Endo
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | |
Collapse
|