1
|
Abozeid SM, Asik D, Sokolow GE, Lovell JF, Nazarenko AY, Morrow JR. Co II Complexes as Liposomal CEST Agents. Angew Chem Int Ed Engl 2020; 59:12093-12097. [PMID: 32330368 PMCID: PMC7502271 DOI: 10.1002/anie.202003479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/23/2022]
Abstract
Three paramagnetic CoII macrocyclic complexes containing 2-hydroxypropyl pendant groups, 1,1',1'',1'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetrakis- (propan-2-ol) ([Co(L1)]2+ , 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(propan-2-ol) ([Co(L2)]2+ ), and 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(octadecan-2-ol) ([Co(L3)]2+ ) were synthesized to prepare transition metal liposomal chemical exchange saturation transfer (lipoCEST) agents. In solution, ([Co(L1)]2+ ) forms two isomers as shown by 1 H NMR spectroscopy. X-ray crystallographic studies show one isomer with 1,8-pendants in cis-configuration and a second isomer with 1,4-pendants in trans-configuration. The [Co(L2)]2+ complex has 1,8-pendants in a cis-configuration. Remarkably, the paramagnetic-induced shift of water 1 H NMR resonances in the presence of the [Co(L1)]2+ complex is as large as that observed for one of the most effective LnIII water proton shift agents. Incorporation of [Co(L1)]2+ into the liposome aqueous core, followed by dialysis against a solution of 300 mOsm L-1 produces a CEST peak at 3.5 ppm. Incorporation of the amphiphilic [Co(L3)]2+ complex into the liposome bilayer produces a more highly shifted CEST peak at -13 ppm. Taken together, these data demonstrate the feasibility of preparing CoII lipoCEST agents.
Collapse
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Gregory E. Sokolow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Alexander Y. Nazarenko
- Chemistry Department, SUNY College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| |
Collapse
|
2
|
Abozeid SM, Asik D, Sokolow GE, Lovell JF, Nazarenko AY, Morrow JR. Co
II
Complexes as Liposomal CEST Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| | - Didar Asik
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| | - Gregory E. Sokolow
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering University at Buffalo The State University of New York Amherst NY 14260 USA
| | | | - Janet R. Morrow
- Department of Chemistry University at Buffalo, The State University of New York Amherst NY 14260 USA
| |
Collapse
|
3
|
Tripepi M, Ferrauto G, Bennardi PO, Aime S, Delli Castelli D. Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Martina Tripepi
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino Via Nizza 52 10126 Torino Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino Via Nizza 52 10126 Torino Italy
| | - Paolo Oronzo Bennardi
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino Via Nizza 52 10126 Torino Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino Via Nizza 52 10126 Torino Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino Via Nizza 52 10126 Torino Italy
| |
Collapse
|
4
|
Tripepi M, Ferrauto G, Bennardi PO, Aime S, Delli Castelli D. Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs). Angew Chem Int Ed Engl 2020; 59:2279-2283. [PMID: 31803970 DOI: 10.1002/anie.201912327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 12/16/2022]
Abstract
Moving from nano- to micro-systems may not just be a matter of scale, but it might imply changes in the properties of the systems that can open new routes for the development of efficient MRI contrast agents. This is the case reported in the present paper, where giant liposomes (giant unilamellar vesicles, GUVs) loaded with LnIII complexes have been studied as chemical exchange saturation transfer (CEST) MRI contrast agents. The comparison between nanosized liposomes (small unilamellar vesicles, SUVs) and GUVs sharing the same formulation led to differences that could not be accounted for only in terms of the increase in size (from 100-150 nm to 1-2 μm). Upon osmotic shrinkage, GUVs yielded a saturation-transfer effect three order of magnitude higher than SUVs consistent with the increase in vesicles volume. Confocal microscopy showed that the shrinkage of GUVs resulted in multilamellar particles whereas SUVs are known to yield asymmetrical, discoidal shape.
Collapse
Affiliation(s)
- Martina Tripepi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Paolo Oronzo Bennardi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| |
Collapse
|
5
|
Perlman O, Herz K, Zaiss M, Cohen O, Rosen MS, Farrar CT. CEST MR-Fingerprinting: Practical considerations and insights for acquisition schedule design and improved reconstruction. Magn Reson Med 2019; 83:462-478. [PMID: 31400034 DOI: 10.1002/mrm.27937] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE To understand the influence of various acquisition parameters on the ability of CEST MR-Fingerprinting (MRF) to discriminate different chemical exchange parameters and to provide tools for optimal acquisition schedule design and parameter map reconstruction. METHODS Numerical simulations were conducted using a parallel computing implementation of the Bloch-McConnell equations, examining the effect of TR, TE, flip-angle, water T 1 and T 2 , saturation-pulse duration, power, and frequency on the discrimination ability of CEST-MRF. A modified Euclidean distance matching metric was evaluated and compared to traditional dot product matching. L-Arginine phantoms of various concentrations and pH were scanned at 4.7T and the results compared to numerical findings. RESULTS Simulations for dot product matching demonstrated that the optimal flip-angle and saturation times are 30 ∘ and 1100 ms, respectively. The optimal maximal saturation power was 3.4 μT for concentrated solutes with a slow exchange rate, and 5.2 μT for dilute solutes with medium-to-fast exchange rates. Using the Euclidean distance matching metric, much lower maximum saturation powers were required (1.6 and 2.4 μT, respectively), with a slightly longer saturation time (1500 ms) and 90 ∘ flip-angle. For both matching metrics, the discrimination ability increased with the repetition time. The experimental results were in agreement with simulations, demonstrating that more than a 50% reduction in scan-time can be achieved by Euclidean distance-based matching. CONCLUSIONS Optimization of the CEST-MRF acquisition schedule is critical for obtaining the best exchange parameter accuracy. The use of Euclidean distance-based matching of signal trajectories simultaneously improved the discrimination ability and reduced the scan time and maximal saturation power required.
Collapse
Affiliation(s)
- Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ouri Cohen
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,Department of Physics, Harvard University, Cambridge, Massachusetts
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
6
|
Ferrauto G, Di Gregorio E, Ruzza M, Catanzaro V, Padovan S, Aime S. Enzyme-Responsive LipoCEST Agents: Assessment of MMP-2 Activity by Measuring the Intra-liposomal Water 1
H NMR Shift. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Marta Ruzza
- Bioindustry Park “Silvano Fumero”; Colleretto Giacosa Torino Italy
| | - Valeria Catanzaro
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Sergio Padovan
- Institutes for Biostructures and Bioimages (CNR) c/o; Molecular Biotechnology Center; Via Nizza 52 10126 Torino Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
- Institutes for Biostructures and Bioimages (CNR) c/o; Molecular Biotechnology Center; Via Nizza 52 10126 Torino Italy
| |
Collapse
|
7
|
Ferrauto G, Di Gregorio E, Ruzza M, Catanzaro V, Padovan S, Aime S. Enzyme-Responsive LipoCEST Agents: Assessment of MMP-2 Activity by Measuring the Intra-liposomal Water 1 H NMR Shift. Angew Chem Int Ed Engl 2017; 56:12170-12173. [PMID: 28746744 DOI: 10.1002/anie.201706271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/22/2017] [Indexed: 12/25/2022]
Abstract
Mobile proton-containing solutes can be detected by MRI by the chemical exchange saturation transfer (CEST) method. CEST sensitivity is dramatically enhanced by using, as exchanging protons, the water molecules confined inside liposomes, shifted by a paramagnetic shift reagent. The chemical shift of the intraliposomal water resonance (δIL ) is affected by the overall shape of the supramolecular system. δIL of a spherical LipoCEST acts as a sensitive reporter of the distribution of streptavidin proteins anchored at the liposome surface by biotinylated phospholipids. This finding prompted the design of a MMP-2 responsive LipoCEST agent as the streptavidin moieties can be released from the liposome surfaces when a properly tailored enzyme-cleavable peptide is inserted on the phospholipids before the terminal biotin residues. δIL reports on the overall changes in the supramolecular architecture associated to the cleavage carried out by MMP-2.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marta Ruzza
- Bioindustry Park "Silvano Fumero", Colleretto Giacosa, Torino, Italy
| | - Valeria Catanzaro
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sergio Padovan
- Institutes for Biostructures and Bioimages (CNR) c/o, Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Institutes for Biostructures and Bioimages (CNR) c/o, Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy
| |
Collapse
|
8
|
Yang X, Song X, Li Y, Liu G, Banerjee SR, Pomper MG, McMahon MT. Salicylic acid and analogues as diaCEST MRI contrast agents with highly shifted exchangeable proton frequencies. Angew Chem Int Ed Engl 2013; 52:8116-9. [PMID: 23794432 PMCID: PMC3819166 DOI: 10.1002/anie.201302764] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/27/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Xing Yang
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA)
| | - Xiaolei Song
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA)
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA)
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA); F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway Ave., Baltimore, Maryland 21287 (USA)
| | - Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA)
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA)
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA); F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway Ave., Baltimore, Maryland 21287 (USA)
| |
Collapse
|
9
|
Yang X, Song X, Li Y, Liu G, Ray Banerjee S, Pomper MG, McMahon MT. Salicylic Acid and Analogues as diaCEST MRI Contrast Agents with Highly Shifted Exchangeable Proton Frequencies. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Stevens TK, Ramirez RM, Pines A. Nanoemulsion Contrast Agents with Sub-picomolar Sensitivity for Xenon NMR. J Am Chem Soc 2013; 135:9576-9. [DOI: 10.1021/ja402885q] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Todd K. Stevens
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720,
United States
| | - R. Matthew Ramirez
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720,
United States
| | - Alexander Pines
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720,
United States
| |
Collapse
|
11
|
Burdinski D, Pikkemaat J, Emrullahoglu M, Costantini F, Verboom W, Langereis S, Grüll H, Huskens J. Targeted LipoCEST Contrast Agents for Magnetic Resonance Imaging: Alignment of Aspherical Liposomes on a Capillary Surface. Angew Chem Int Ed Engl 2010; 49:2227-9. [DOI: 10.1002/anie.200905731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Burdinski D, Pikkemaat J, Emrullahoglu M, Costantini F, Verboom W, Langereis S, Grüll H, Huskens J. Zielspezifische LipoCEST-Kontrastmittel für die Magnetresonanztomographie: die Ausrichtung asphärischer Liposomen auf einer Kapillaroberfläche. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Terreno E, Delli Castelli D, Violante E, Sanders HMHF, Sommerdijk NAJM, Aime S. Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry 2009; 15:1440-8. [PMID: 19115311 DOI: 10.1002/chem.200801766] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The peculiar properties of osmotically shrunken liposomes acting as magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) contrast agents have been investigated. Attention has been primarily devoted to assessing the contribution arising from encapsulated and incorporated paramagnetic lanthanide(III)-based shift reagents in determining the chemical shift of the intraliposomal water protons, which is a relevant factor for generating the CEST contrast. It is demonstrated that a highly shifted resonance for the encapsulated water can be attained by increasing the percentage of the amphiphilic shift reagent incorporated in the liposome bilayer. It is also demonstrated that the shift contribution arising from the bulk magnetic susceptibility can be optimized through the modulation of the osmotic shrinkage. In terms of sensitivity, it is shown that the saturation transfer efficiency can be significantly improved by increasing the size of the vesicle, thus allowing a high number of exchangeable protons to be saturated. In addition, the role played by the intensity of the saturating radiofrequency field has also been highlighted.
Collapse
Affiliation(s)
- Enzo Terreno
- Department of Chemistry IFM and Molecular Imaging Center, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | | | | | | | | | | |
Collapse
|