1
|
Bhattacharya M, Hota A, Kar A, Sankar Chini D, Chandra Malick R, Chandra Patra B, Kumar Das B. In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout ( Zoarces americanus, Bloch & Schneider 1801). J Genet Eng Biotechnol 2018; 16:721-730. [PMID: 30733793 PMCID: PMC6353770 DOI: 10.1016/j.jgeb.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
Abstract
Antifreeze proteins (AFPs) are known to polypeptide components formed by certain plants, animals, fungi and bacteria which support to survive in sub-zero temperature. Current study highlighted the seven different antifreeze proteins of fish Ocean pout (Zoarces americanus), in which protein (amino acids sequence) were collected from National Centre for Biotechnology Information and finely characterized using several in silico tools. Such biocomputational techniques applied to figure out the physicochemical, functional and conformational characteristics of targeted AFPs. Multiple physicochemical properties such as Isoelectric Point, Extinction Coefficient and Instability Index, Aliphatic Index, Grand Average Hydropathy were calculated and analysed by ExPASy-ProtParam prediction web server. EMBOSS: pepwheel online tool was used to represent the protein sequences in a helical form. The primary structure analysis shows that most of the AFPs are hydrophobic in nature due to the high content of non-polar residues. The secondary structure of these proteins was calculated using SOPMA tool. SOSUI server and CYS_REC program also run for ideal prediction of transmembrane helices and disulfide bridges of experimental proteins respectively. The modelling of 3D structures of seven desired AFPs were executed by the homology modelling programmes; SWISS MODEL and ProSA web server. UCSF Chimera, Antheprot 3D, PyMOL and RAMPAGE were used to visualize and analysis of the structural variation of the predicted protein model. MEGA7.0.9 software used to know the phylogenetic relationship among these AFPs. These models offered excellent and reliable baseline information for functional characterization of the experimentally derived protein domain composition by using the advanced tools and techniques of Computational Biology.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Arpita Hota
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Avijit Kar
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Deep Sankar Chini
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
- Corresponding author.
| |
Collapse
|
2
|
Wang ZA, Ding XZ, Tian CL, Zheng JS. Protein/peptide secondary structural mimics: design, characterization, and modulation of protein–protein interactions. RSC Adv 2016. [DOI: 10.1039/c6ra13976k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review discusses general aspects of novel artificial peptide secondary structure mimics for modulation of PPIs, their therapeutic applications and future prospects.
Collapse
Affiliation(s)
- Zhipeng A. Wang
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
- Department of Chemistry
| | - Xiaozhe Z. Ding
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
- Department of Bioengineering
| | - Chang-Lin Tian
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
| | - Ji-Shen Zheng
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
3
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
4
|
Fahs S, Patil-Sen Y, Snape TJ. Foldamers as Anticancer Therapeutics: Targeting Protein-Protein Interactions and the Cell Membrane. Chembiochem 2015; 16:1840-1853. [DOI: 10.1002/cbic.201500188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 01/10/2023]
|
5
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Scheepstra M, Nieto L, Hirsch AKH, Fuchs S, Leysen S, Lam CV, in het Panhuis L, van Boeckel CAA, Wienk H, Boelens R, Ottmann C, Milroy L, Brunsveld L. A Natural‐Product Switch for a Dynamic Protein Interface. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Lidia Nieto
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Anna K. H. Hirsch
- Stratingh Institue for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen (The Netherlands)
| | - Sascha Fuchs
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Chan Vinh Lam
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Leslie in het Panhuis
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Constant A. A. van Boeckel
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Hans Wienk
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584CH Utrecht (The Netherlands)
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584CH Utrecht (The Netherlands)
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Lech‐Gustav Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| |
Collapse
|
7
|
Scheepstra M, Nieto L, Hirsch AKH, Fuchs S, Leysen S, Lam CV, in het Panhuis L, van Boeckel CAA, Wienk H, Boelens R, Ottmann C, Milroy LG, Brunsveld L. A natural-product switch for a dynamic protein interface. Angew Chem Int Ed Engl 2014; 53:6443-8. [PMID: 24821627 DOI: 10.1002/anie.201403773] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 01/11/2023]
Abstract
Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Current ligands target the ligand-binding pocket side of the AF2. Few ligands are known, which selectively target the coactivator side of the AF2, or which can be selectively switched from one side of the interface to the other. We use NMR spectroscopy and modeling to identify a natural product, which targets the retinoid X receptor (RXR) at both sides of the AF2. We then use chemical synthesis, cellular screening and X-ray co-crystallography to split this dual activity, leading to a potent and molecularly efficient RXR agonist, and a first-of-kind inhibitor selective for the RXR/coactivator interaction. Our findings justify future exploration of natural products at dynamic protein interfaces.
Collapse
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bayly AR, White AJP, Spivey AC. Design and Synthesis of a Prototype Scaffold for Five-Residue α-Helix Mimetics. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Sun A, Moore TW, Gunther JR, Kim MS, Rhoden E, Du Y, Fu H, Snyder JP, Katzenellenbogen JA. Discovering small-molecule estrogen receptor α/coactivator binding inhibitors: high-throughput screening, ligand development, and models for enhanced potency. ChemMedChem 2011; 6:654-66. [PMID: 21365764 PMCID: PMC3177402 DOI: 10.1002/cmdc.201000507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/13/2011] [Indexed: 11/08/2022]
Abstract
Small molecules, namely coactivator binding inhibitors (CBIs), that block estrogen signaling by directly inhibiting the interaction of the estrogen receptor (ER) with coactivator proteins act in a fundamentally different way to traditional antagonists, which displace the endogenous ligand estradiol. To complement our prior efforts at CBI discovery by de novo design, we used high-throughput screening (HTS) to identify CBIs of novel structure and subsequently investigated two HTS hits by analogue synthesis, finding many compounds with low micromolar potencies in cell-based reporter gene assays. We examined structure-activity trends in both series, using induced-fit computational docking to propose binding poses for these molecules in the coactivator binding groove. Analysis of the structure of the ER-steroid receptor coactivator (SRC) complex suggests that all four hydrophobic residues within the SRC nuclear receptor box sequence are important binding elements. Thus, insufficient water displacement upon binding of the smaller CBIs in the expansive complexation site may be limiting the potency of the compounds in these series, which suggests that higher potency CBIs might be found by screening compound libraries enriched with larger molecules.
Collapse
Affiliation(s)
- Aiming Sun
- Department of Chemistry, Emory University 1515 Dickey Drive, Atlanta, GA 30322 (USA)
| | - Terry W. Moore
- Department of Chemistry, University of Illinois 600 South Mathews Avenue, Urbana, Illinois 61801 (USA)
| | - Jillian R. Gunther
- Department of Chemistry, University of Illinois 600 South Mathews Avenue, Urbana, Illinois 61801 (USA)
| | - Mi-Sun Kim
- Department of Chemistry, Emory University 1515 Dickey Drive, Atlanta, GA 30322 (USA)
| | - Eric Rhoden
- Department of Pharmacology, Emory University 1510 Clifton Road, Atlanta GA 30322 (USA)
| | - Yuhong Du
- Department of Pharmacology, Emory University 1510 Clifton Road, Atlanta GA 30322 (USA)
| | - Haian Fu
- Department of Pharmacology, Emory University 1510 Clifton Road, Atlanta GA 30322 (USA)
| | - James P. Snyder
- Department of Chemistry, Emory University 1515 Dickey Drive, Atlanta, GA 30322 (USA)
| | - John A. Katzenellenbogen
- Department of Chemistry, University of Illinois 600 South Mathews Avenue, Urbana, Illinois 61801 (USA)
| |
Collapse
|
10
|
Saraogi I, Hebda JA, Becerril J, Estroff LA, Miranker AD, Hamilton AD. Synthetic alpha-helix mimetics as agonists and antagonists of islet amyloid polypeptide aggregation. Angew Chem Int Ed Engl 2010; 49:736-9. [PMID: 20029853 PMCID: PMC2872138 DOI: 10.1002/anie.200901694] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ishu Saraogi
- Department of Chemistry, Yale University 225 Prospect Street, P.O. Box 208107 New Haven, CT 06520-8107, USA
| | - James A. Hebda
- Molecular Biophysics and Biochemistry, Yale University 266 Whitney Avenue, P.O. Box 208114 New Haven, CT 06520-8114, USA
| | - Jorge Becerril
- Department of Chemistry, Yale University 225 Prospect Street, P.O. Box 208107 New Haven, CT 06520-8107, USA
| | - Lara A. Estroff
- Department of Chemistry, Yale University 225 Prospect Street, P.O. Box 208107 New Haven, CT 06520-8107, USA
| | - Andrew D. Miranker
- Molecular Biophysics and Biochemistry, Yale University 266 Whitney Avenue, P.O. Box 208114 New Haven, CT 06520-8114, USA
| | - Andrew D. Hamilton
- Department of Chemistry, Yale University 225 Prospect Street, P.O. Box 208107 New Haven, CT 06520-8107, USA
| |
Collapse
|
11
|
Saraogi I, Hebda J, Becerril J, Estroff L, Miranker A, Hamilton A. Synthetic α-Helix Mimetics as Agonists and Antagonists of Islet Amyloid Polypeptide Aggregation. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901694] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Margulies D, Opatowsky Y, Fletcher S, Saraogi I, Tsou LK, Saha S, Lax I, Schlessinger J, Hamilton AD. Surface binding inhibitors of the SCF-KIT protein-protein interaction. Chembiochem 2009; 10:1955-8. [PMID: 19637142 DOI: 10.1002/cbic.200900079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David Margulies
- Department of Chemistry, Yale University, New Haven, CT 06520-8107 (USA)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Robinson JA. Design of Protein-Protein Interaction Inhibitors Based on Protein Epitope Mimetics. Chembiochem 2009; 10:971-3. [DOI: 10.1002/cbic.200900055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Rodriguez JM, Nevola L, Ross NT, Lee GI, Hamilton AD. Synthetic Inhibitors of Extended Helix-Protein Interactions Based on a Biphenyl 4,4′-Dicarboxamide Scaffold. Chembiochem 2009; 10:829-33. [DOI: 10.1002/cbic.200800715] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Vaz B, Möcklinghoff S, Brunsveld L. Targeting the Nuclear Receptor–Cofactor Interaction. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527623297.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Saraogi I, Incarvito C, Hamilton A. Controlling Curvature in a Family of Oligoamide α-Helix Mimetics. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803778] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Saraogi I, Incarvito C, Hamilton A. Controlling Curvature in a Family of Oligoamide α-Helix Mimetics. Angew Chem Int Ed Engl 2008; 47:9691-4. [DOI: 10.1002/anie.200803778] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Seitz M, Maillard LT, Obrecht D, Robinson JA. Molecular characterization of the NCoA-1-STAT 6 interaction. Chembiochem 2008; 9:1318-22. [PMID: 18464232 DOI: 10.1002/cbic.200700773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many protein-protein interactions involved in cell signalling, cell adhesion and regulation of transcription are mediated by short alpha-helical recognition motifs with the sequence Leu-Xaa-Xaa-Leu-Leu (LXXLL, where Xaa is any amino acid). Originally observed in cofactors that interact with hormone-activated nuclear receptors, LXXLL motifs are now known to occur in many transcription factors, including the STAT family, which transmit signals from activated cytokine receptors at the cell surface to target genes in the nucleus. STAT 6 becomes activated in response to IL-4 and IL-13, which regulate immune and anti-inflammatory responses. Structural studies have revealed how an LXXLL motif located in 2.5 turns of an alpha-helical peptide derived from STAT 6 provide contacts through the leucine side chains to the coactivator of transcription, NCoA-1. However, since many protein-protein interactions are mediated by LXXLL motifs, it is important to understand how specificity is achieved in this and other signalling pathways. Here, we show that energetically important contacts between STAT 6 and NCoA-1 are made in residues that flank the LXXLL motif, including the underlined residues in the sequence LLPPTEQDLTKLL. We also demonstrate how the affinity for NCoA-1 of peptides derived from this region of STAT 6 can be significantly improved by optimising knobs-into-holes contacts on the surface of the protein. The results provide important new insights into the origins of binding specificity, and might be of practical value in the design of novel small-molecule inhibitors of this important protein-protein interaction.
Collapse
Affiliation(s)
- Markus Seitz
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
19
|
Stadlbauer S, Riechers A, Späth A, König B. Utilizing Reversible Copper(II) Peptide Coordination in a Sequence-Selective Luminescent Receptor. Chemistry 2008; 14:2536-41. [DOI: 10.1002/chem.200701442] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|