1
|
Del Castillo GFD, Kyriakidou M, Adali Z, Xiong K, Hailes RLN, Dahlin A. Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments. Angew Chem Int Ed Engl 2022; 61:e202115745. [PMID: 35289480 PMCID: PMC9311814 DOI: 10.1002/anie.202115745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Interfaces functionalized with polymers are known for providing excellent resistance towards biomolecular adsorption and for their ability to bind high amounts of protein while preserving their structure. However, making an interface that switches between these two states has proven challenging and concepts to date rely on changes in the physiochemical environment, which is static in biological systems. Here we present the first interface that can be electrically switched between a high‐capacity (>1 μg cm−2) multilayer protein binding state and a completely non‐fouling state (no detectable adsorption). Switching is possible over multiple cycles without any regeneration. Importantly, switching works even when the interface is in direct contact with biological fluids and a buffered environment. The technology offers many applications such as zero fouling on demand, patterning or separation of proteins as well as controlled release of biologics in a physiological environment, showing high potential for future drug delivery in vivo.
Collapse
Affiliation(s)
| | - Maria Kyriakidou
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| | - Zeynep Adali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| | - Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| | - Rebekah L N Hailes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| |
Collapse
|
2
|
Castillo GF, Kyriakidou M, Adali Z, Xiong K, Hailes RLN, Dahlin A. Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gustav Ferrand‐Drake Castillo
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 41296 Göteborg Sweden
| | - Maria Kyriakidou
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 41296 Göteborg Sweden
| | - Zeynep Adali
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 41296 Göteborg Sweden
| | - Kunli Xiong
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 41296 Göteborg Sweden
| | - Rebekah L. N. Hailes
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 41296 Göteborg Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 41296 Göteborg Sweden
| |
Collapse
|
3
|
Su Y, Li D, Liu B, Xiao M, Wang F, Li L, Zhang X, Pei H. Rational Design of Framework Nucleic Acids for Bioanalytical Applications. Chempluschem 2019; 84:512-523. [DOI: 10.1002/cplu.201900118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yuwei Su
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Bingyi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Fei Wang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Xueli Zhang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
- Southern Medical University Affiliated Fengxian Hospital Shanghai 201499 P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| |
Collapse
|
4
|
Schneider A, Niemeyer CM. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ann‐Kathrin Schneider
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Schneider A, Niemeyer CM. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angew Chem Int Ed Engl 2018; 57:16959-16967. [DOI: 10.1002/anie.201811713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ann‐Kathrin Schneider
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
6
|
Peschke T, Bitterwolf P, Gallus S, Hu Y, Oelschlaeger C, Willenbacher N, Rabe KS, Niemeyer CM. Self‐Assembling All‐Enzyme Hydrogels for Flow Biocatalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Theo Peschke
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Patrick Bitterwolf
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sabrina Gallus
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Yong Hu
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Claude Oelschlaeger
- Karlsruhe Institute of Technology (KIT) Institute for Mechanical Process Engineering and Mechanics Gotthard-Franz-Strasse 3 76131 Karlsruhe Germany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology (KIT) Institute for Mechanical Process Engineering and Mechanics Gotthard-Franz-Strasse 3 76131 Karlsruhe Germany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT) Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
7
|
Peschke T, Bitterwolf P, Gallus S, Hu Y, Oelschlaeger C, Willenbacher N, Rabe KS, Niemeyer CM. Self-Assembling All-Enzyme Hydrogels for Flow Biocatalysis. Angew Chem Int Ed Engl 2018; 57:17028-17032. [PMID: 30380178 DOI: 10.1002/anie.201810331] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/31/2022]
Abstract
Continuous flow biocatalysis is an emerging field of industrial biotechnology that uses enzymes immobilized in flow channels for the production of value-added chemicals. We describe the construction of self-assembling all-enzyme hydrogels that are comprised of two tetrameric enzymes. The stereoselective dehydrogenase LbADH and the cofactor-regenerating glucose 1-dehydrogenase GDH were genetically fused with a SpyTag or SpyCatcher domain, respectively, to generate two complementary homo-tetrameric building blocks that polymerize under physiological conditions into porous hydrogels. Mounted in microfluidic reactors, the gels show excellent stereoselectivity with near quantitative conversion in the reduction of prochiral ketones along with high robustness under process and storage conditions. The gels function as compartment that retains intermediates thus enabling high total turnover numbers of the expensive cofactor NADP(H).
Collapse
Affiliation(s)
- Theo Peschke
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Patrick Bitterwolf
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sabrina Gallus
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yong Hu
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Claude Oelschlaeger
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Strasse 3, 76131, Karlsruhe, Germany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Strasse 3, 76131, Karlsruhe, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Xie Y, Cheng L, Gao Y, Cai X, Yang X, Yi L, Xi Z. Tetrafluorination of Aromatic Azide Yields a Highly Efficient Staudinger Reaction: Kinetics and Biolabeling. Chem Asian J 2018; 13:1791-1796. [PMID: 29714052 DOI: 10.1002/asia.201800503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Indexed: 02/28/2024]
Abstract
The development of highly efficient bioorthogonal reactions is of paramount importance for the research fields of biomaterials and chemical biology. We found that the o,o'-difluorinated aromatic azide was able to react with triphenylphosphine to produce water-stable phosphanimine. To further improve the efficiency of this kind of nonhydrolysis Staudinger reaction, a tetrafluorinated aromatic azide was employed to develop a faster nonhydrolysis Staudinger reaction with a rate of up to 51 m-1 s-1 , as revealed by high-performance liquid chromatography (HPLC) analysis and fluorescence kinetics. As a proof-of-concept study, the highly efficient Staudinger reaction was successfully used for chemoselective fluorescence labeling of proteins and nucleic acids (DNA and RNA) as well as for protein polyethyleneglycol (PEG)ylation. We believe that this bioorthogonal reaction can provide a broadly useful tool for various bioconjugations.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, China
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, China
| | - Yasi Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
| | - Xuekang Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, China
| |
Collapse
|
9
|
Maier M, Radtke CP, Hubbuch J, Niemeyer CM, Rabe KS. On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes. Angew Chem Int Ed Engl 2018; 57:5539-5543. [PMID: 29466613 DOI: 10.1002/anie.201711072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/25/2018] [Indexed: 11/06/2022]
Abstract
The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three-dimensional (3D) printing techniques offer high-throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose-based inks for a simple temperature-controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D-printed parts for a continuous, two-step sequential biotransformation in a fluidic setup.
Collapse
Affiliation(s)
- Manfred Maier
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten P Radtke
- Karlsruhe Institute of Technology (KIT), Institute for Engineering in Life Science, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute for Engineering in Life Science, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Maier M, Radtke CP, Hubbuch J, Niemeyer CM, Rabe KS. Herstellung direkt nutzbarer Durchflussreaktorkartuschen durch 3D-Druck von thermostabilen Enzymen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Manfred Maier
- Karlsruher Institut für Technologie (KIT); Institut für Biologische Grenzflächen (IBG 1); Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Carsten P. Radtke
- Karlsruher Institut für Technologie (KIT); Institut für Bio- und Lebensmitteltechnik, Teilinstitut IV: Molekulare Aufarbeitung von Bioprodukten; Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - Jürgen Hubbuch
- Karlsruher Institut für Technologie (KIT); Institut für Bio- und Lebensmitteltechnik, Teilinstitut IV: Molekulare Aufarbeitung von Bioprodukten; Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - Christof M. Niemeyer
- Karlsruher Institut für Technologie (KIT); Institut für Biologische Grenzflächen (IBG 1); Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Kersten S. Rabe
- Karlsruher Institut für Technologie (KIT); Institut für Biologische Grenzflächen (IBG 1); Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
11
|
Pan Y, Maddox A, Min T, Gonzaga F, Goff J, Arkles B. Surface-Triggered Tandem Coupling Reactions of Cyclic Azasilanes. Chem Asian J 2017; 12:1198-1203. [PMID: 28317319 PMCID: PMC5485057 DOI: 10.1002/asia.201700137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/13/2017] [Indexed: 01/17/2023]
Abstract
Cyclic azasilanes have been synthesized for the purpose of developing coupling agents appropriate for a variety of nanotechnologies including surface modification of nanoparticles, nanocrystals, mesoporous materials and substrates. N‐Methyl‐aza‐2,2,4‐trimethylsilacyclopentane is representative of this class of compounds. Preliminary data for the treatment of inorganic surfaces, including nanoparticles and oxidized silicon wafers, with cyclic azasilanes suggest high‐density monolayer deposition by a ring‐opening reaction. Cyclic azasilanes contain a cryptic amine functionality that can perform a subsequent tandem coupling reaction with functional molecules after the surface‐triggered ring‐opening reaction, allowing for a one‐pot self‐assembly route on nanostructures. Tandem coupling reactions are demonstrated via addition reactions of the cryptic amine with epoxy and acrylate systems.
Collapse
Affiliation(s)
- Youlin Pan
- Gelest, Inc., 11 Steel Road E, Morrisville, PA, 19067, USA
| | | | - Taewoo Min
- Gelest, Inc., 11 Steel Road E, Morrisville, PA, 19067, USA
| | | | - Jonathan Goff
- Gelest, Inc., 11 Steel Road E, Morrisville, PA, 19067, USA
| | - Barry Arkles
- Gelest, Inc., 11 Steel Road E, Morrisville, PA, 19067, USA
| |
Collapse
|
12
|
Sánchez‐Molina M, López‐Romero JM, Hierrezuelo‐León J, Martín‐Rufián M, Díaz A, Valpuesta M, Contreras‐Cáceres R. Synthesis and Covalent Grafting of Tripod‐Shaped Oligo(
p
‐phenylene)s End‐Capped with Azide Groups. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- María Sánchez‐Molina
- Dep. Química OrgánicaUniversidad de Málaga Campus de Teatinos s/n Malaga 29071 Spain
| | - Juan M. López‐Romero
- Dep. Química OrgánicaUniversidad de Málaga Campus de Teatinos s/n Malaga 29071 Spain
| | | | - Mercedes Martín‐Rufián
- Unidad de Proteómica. Servicio Central de Apoyo a la InvestigaciónUniversidad de Málaga Malaga 29071 Spain
| | - Amelia Díaz
- Dep. Química OrgánicaUniversidad de Málaga Campus de Teatinos s/n Malaga 29071 Spain
| | - María Valpuesta
- Dep. Química OrgánicaUniversidad de Málaga Campus de Teatinos s/n Malaga 29071 Spain
| | | |
Collapse
|
13
|
Angelin A, Weigel S, Garrecht R, Meyer R, Bauer J, Kumar RK, Hirtz M, Niemeyer CM. Multiscale Origami Structures as Interface for Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro Angelin
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Simone Weigel
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ruben Garrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Rebecca Meyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Jens Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ravi Kapoor Kumar
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Michael Hirtz
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| |
Collapse
|
14
|
Angelin A, Weigel S, Garrecht R, Meyer R, Bauer J, Kumar RK, Hirtz M, Niemeyer CM. Multiscale Origami Structures as Interface for Cells. Angew Chem Int Ed Engl 2015; 54:15813-7. [DOI: 10.1002/anie.201509772] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/12/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Alessandro Angelin
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Simone Weigel
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ruben Garrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Rebecca Meyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Jens Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Ravi Kapoor Kumar
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Michael Hirtz
- Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann‐von‐Helmholtz‐Platz, 76344 Eggenstein‐Leopoldshafen (Germany)
| |
Collapse
|
15
|
Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L. Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry 2015; 21:18466-73. [DOI: 10.1002/chem.201502461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/08/2023]
|
16
|
Manoli K, Magliulo M, Mulla MY, Singh M, Sabbatini L, Palazzo G, Torsi L. Druckbare Bioelektronik zur Untersuchung funktioneller biologischer Grenzflächen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Manoli K, Magliulo M, Mulla MY, Singh M, Sabbatini L, Palazzo G, Torsi L. Printable Bioelectronics To Investigate Functional Biological Interfaces. Angew Chem Int Ed Engl 2015; 54:12562-76. [DOI: 10.1002/anie.201502615] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Indexed: 01/14/2023]
|
18
|
Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R. Protein Interactions with Polymer Coatings and Biomaterials. Angew Chem Int Ed Engl 2014; 53:8004-31. [DOI: 10.1002/anie.201400546] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 01/07/2023]
|
19
|
Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R. Wechselwirkungen von Proteinen mit Polymerbeschichtungen und Biomaterialien. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400546] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Arrabito G, Reisewitz S, Dehmelt L, Bastiaens PI, Pignataro B, Schroeder H, Niemeyer CM. Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4243-4249. [PMID: 23881817 DOI: 10.1002/smll.201300941] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 06/02/2023]
Abstract
A general methodology for patterning of multiple protein ligands with lateral dimensions below those of single cells is described. It employs dip pen nanolithography (DPN) patterning of DNA oligonucleotides which are then used as capture strands for DNA-directed immobilization (DDI) of oligonucleotide-tagged proteins. This study reports the development and optimization of PEG-based liquid ink, used as carrier for the immobilization of alkylamino-labeled DNA oligomers on chemically activated glass surfaces. The resulting DNA arrays have typical spot sizes of 4-5 μm with a pitch of 12 μm micrometer. It is demonstrated that the arrays can be further functionalized with covalent DNA-streptavidin (DNA-STV) conjugates bearing ligands recognized by cells. To this end, biotinylated epidermal growth factor (EGF) is coupled to the DNA-STV conjugates, the resulting constructs are hybridized with the DNA arrays and the resulting surfaces used for the culturing of MCF-7 (human breast adenocarcinoma) cells. Owing to the lateral diffusion of transmembrane proteins in the cell's plasma membrane, specific recruitment and concentration of EGF receptor can be induced specifically at the sites where the ligands are bound on the solid substrate. This is a clear demonstration that this method is suitable for precise functional manipulations of subcellular areas within living cells.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto Hahn Str. 6, 44227 Dortmund, Germany; Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany; Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Giselbrecht S, Rapp BE, Niemeyer CM. Chemie der Cyborgs - zur Verknüpfung technischer Systeme mit Lebewesen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Giselbrecht S, Rapp BE, Niemeyer CM. The chemistry of cyborgs--interfacing technical devices with organisms. Angew Chem Int Ed Engl 2013; 52:13942-57. [PMID: 24288270 DOI: 10.1002/anie.201307495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 01/02/2023]
Abstract
The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented.
Collapse
Affiliation(s)
- Stefan Giselbrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz, 76344 Eggenstein-Leopoldshafen (Germany)
| | | | | |
Collapse
|
23
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of Microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013; 52:7477-81. [PMID: 23757366 DOI: 10.1002/anie.201302455] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 01/21/2023]
Abstract
Ligand libraries can be printed onto a sandwich composed of activated lipids embedded in a hydrophobic layer conjugated to an indium-tin oxide (ITO) surface. Arrays produced this way can be analyzed by fluorescence spectroscopy and mass spectrometry. Applications include the assignment of enzyme specificity, the profiling of glycoforms and the identification of lectins.
Collapse
Affiliation(s)
- Ana Beloqui
- CICbiomaGUNE, Biofunctional Nanomaterials Unit, Paseo Miramon 182, 20009 San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Identifizierung der Zielproteine bioaktiver Verbindungen: Die Suche nach der Nadel im Heuhaufen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013; 52:2744-92. [PMID: 23418026 DOI: 10.1002/anie.201208749] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 01/10/2023]
Abstract
Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie, Abt. Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
27
|
Hecht M, Fischer T, Dietrich P, Kraus W, Descalzo AB, Unger WES, Rurack K. Fluorinated Boron-Dipyrromethene (BODIPY) Dyes: Bright and Versatile Probes for Surface Analysis. ChemistryOpen 2013; 2:25-38. [PMID: 24551526 PMCID: PMC3594589 DOI: 10.1002/open.201200039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 12/22/2022] Open
Abstract
A family of bright boron-dipyrromethene-type fluorophores with a high number of fluorine atoms (F-BODIPYs) has been developed and characterized by X-ray crystallography and optical spectroscopy. The introduction of 3,5-bis(trifluoromethyl)phenyl and pentafluorophenyl moieties significantly enhances the photostability of such dyes, yielding for instance photostable near-infrared (NIR) fluorophores that show emission maxima>750 nm, when the BODIPY's π system is extended with two (dimethylamino)styryl and (dimethylamino)naphthastyryl moieties, or green-emitting BODIPYs with fluorescence quantum yields of unity. When equipped with a suitable group that selectively reacts for instance with amines, F-BODIPYs can be used as potent dual labels for the quantification of primary amino groups on surfaces by X-ray photoelectron spectroscopy (XPS) and fluorescence, two powerful yet complementary tools for the analysis of organic surface functional groups. The advantage of reactive F-BODIPYs is that they allow a fast and non-destructive mapping of the labelled supports with conventional fluorescence scanners and a subsequent quantification of selected areas of the same sample by the potentially traceable XPS technique. The performance is exemplarily shown here for the assessment of the amino group density on SiO2 supports, one of the most common reactive silica supports, in particular, for standard microarray applications.
Collapse
Affiliation(s)
- Mandy Hecht
- Division 1.9 Sensor Materials, BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11, 12489 Berlin (Germany) E-mail:
| | - Tobias Fischer
- Division 1.9 Sensor Materials, BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11, 12489 Berlin (Germany) E-mail:
| | - Paul Dietrich
- Division 6.8 Surface Analysis and Interfacial Chemistry, BAM Federal Institute for Materials Research and Testing Unter den Eichen 44-46, 12203 Berlin (Germany)
| | - Werner Kraus
- Division 1.3 Structural Analysis, BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11, 12489 Berlin (Germany)
| | - Ana B Descalzo
- Division 1.9 Sensor Materials, BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11, 12489 Berlin (Germany) E-mail:
| | - Wolfgang E S Unger
- Division 6.8 Surface Analysis and Interfacial Chemistry, BAM Federal Institute for Materials Research and Testing Unter den Eichen 44-46, 12203 Berlin (Germany)
| | - Knut Rurack
- Division 1.9 Sensor Materials, BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11, 12489 Berlin (Germany) E-mail:
| |
Collapse
|
28
|
Timm C, Niemeyer CM. On-Chip Protein Biosynthesis. Angew Chem Int Ed Engl 2013; 52:2652-4. [DOI: 10.1002/anie.201208880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Indexed: 01/18/2023]
|
29
|
|
30
|
Arrabito G, Galati C, Castellano S, Pignataro B. Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes. LAB ON A CHIP 2013; 13:68-72. [PMID: 23132304 DOI: 10.1039/c2lc40948h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Here we show the fabrication of the Luminometric Sub-nanoliter Droplet-to-droplet Array (LUMDA chip) by inkjet printing. The chip is easy to be implemented and allows for a multiplexed multi-step biochemical assay in sub-nanoliter liquid spots. This concept is here applied to the integral membrane enzyme CYP3A4, i.e. the most relevant enzymatic target for phase I drug metabolism, and to some structurally-related inhibitors.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Scuola Superiore di Catania, Via Valdisavoia, 9 95123 Catania, Italy
| | | | | | | |
Collapse
|
31
|
Gogolin L, Schroeder H, Itzen A, Goody RS, Niemeyer CM, Becker CFW. Protein-DNA arrays as tools for detection of protein-protein interactions by mass spectrometry. Chembiochem 2012. [PMID: 23208955 DOI: 10.1002/cbic.201200597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Analysis of multiple protein-protein interactions using microarray technology remains challenging, and site-specific immobilization of functional proteins is a key step in these approaches. Here we establish the efficient synthesis of protein-DNA conjugates for several members of a small family of GTPases. The family of Rab/Ypt GTPases is intimately involved in vesicular trafficking in yeast and serves as a model for the much larger group of analogous human proteins, the Rab protein family, with more than 60 members. The Ypt-DNA hybrid molecules described here are used for DNA-directed immobilization on glass- and silica-based microarrays. Methods for the detection of protein-DNA conjugates, as well as approaches for nucleotide exchange and distinguishing between GDP- and GTP-bound Ypts on microarrays, are reported. The high specificity of different Rab/Ypt-effector interactions, which also depends on the bound nucleotide, is shown by fluorescence readout of microarrays. Furthermore, initial experiments demonstrate that direct readout by mass spectrometry can be achieved with commercially available instruments. These developments will significantly contribute to the elucidation of complex transport networks in eukaryotic cells.
Collapse
Affiliation(s)
- Lars Gogolin
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Rapp HM, Bacher S, Ahrens A, Rapp W, Kammerer B, Nienhaus GU, Bannwarth W. Attachment of Proteins to Surfaces by Fluorous-Fluorous Interactions Restoring Their Structure and Activity. Chempluschem 2012. [DOI: 10.1002/cplu.201200234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Patra M, Gasser G. Organometallic Compounds: An Opportunity for Chemical Biology? Chembiochem 2012; 13:1232-52. [DOI: 10.1002/cbic.201200159] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 12/12/2022]
|
34
|
Nicosia C, Cabanas-Danés J, Jonkheijm P, Huskens J. A fluorogenic reactive monolayer platform for the signaled immobilization of thiols. Chembiochem 2012; 13:778-82. [PMID: 22374781 DOI: 10.1002/cbic.201200062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Carlo Nicosia
- Molecular Nanofabrication group, MESA+Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | | | | | | |
Collapse
|
35
|
Ma Y, Liang J, Sun H, Wu L, Dang Y, Wu Y. Honeycomb Micropatterning of Proteins on Polymer Films through the Inverse Microemulsion Approach. Chemistry 2011; 18:526-31. [DOI: 10.1002/chem.201102337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 01/10/2023]
|
36
|
Jung UY, Park JW, Han EH, Kang SG, Lee S, Jun CH. Facile One-Step Catalytic Grafting of N-Hydroxysuccinimidyl-Ester-Functionalized Methallylsilane onto Silica for Enzyme Immobilization. Chem Asian J 2011; 6:638-45. [DOI: 10.1002/asia.201000713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 11/11/2022]
|
37
|
Ogaki R, Lyckegaard F, Kingshott P. High‐Resolution Surface Chemical Analysis of a Trifunctional Pattern Made by Sequential Colloidal Shadowing. Chemphyschem 2010; 11:3609-16. [DOI: 10.1002/cphc.201000737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryosuke Ogaki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK‐8000, Aarhus C, (Denmark), Fax: (+45) 89423690
| | - Folmer Lyckegaard
- Department of Physics and Astronomy, Aarhus University, DK‐8000, Aarhus C, Denmark
| | - Peter Kingshott
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK‐8000, Aarhus C, (Denmark), Fax: (+45) 89423690
| |
Collapse
|
38
|
Yashchenok AM, Delcea M, Videnova K, Jares-Erijman EA, Jovin TM, Konrad M, Möhwald H, Skirtach AG. Enzyme Reaction in the Pores of CaCO3 Particles upon Ultrasound Disruption of Attached Substrate-Filled Liposomes. Angew Chem Int Ed Engl 2010; 49:8116-20. [DOI: 10.1002/anie.201003244] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Yashchenok AM, Delcea M, Videnova K, Jares-Erijman EA, Jovin TM, Konrad M, Möhwald H, Skirtach AG. Enzymreaktion in den Poren von CaCO3-Partikeln mit angelagerten, mit Substrat gefüllten Liposomen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Niemeyer CM. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed Engl 2010; 49:1200-16. [PMID: 20091721 DOI: 10.1002/anie.200904930] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conjugation with artificial nucleic acids allows proteins to be modified with a synthetically accessible, robust tag. This attachment is addressable in a highly specific manner by means of molecular recognition events, such as Watson-Crick hybridization. Such DNA-protein conjugates, with their combined properties, have a broad range of applications, such as in high-performance biomedical diagnostic assays, fundamental research on molecular recognition, and the synthesis of DNA nanostructures. This Review surveys current approaches to generate DNA-protein conjugates as well as recent advances in their applications. For example, DNA-protein conjugates have been assembled into model systems for the investigation of catalytic cascade reactions and light-harvesting devices. Such hybrid conjugates are also used for the biofunctionalization of planar surfaces for micro- and nanoarrays, and for decorating inorganic nanoparticles to enable applications in sensing, materials science, and catalysis.
Collapse
Affiliation(s)
- Christof M Niemeyer
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| |
Collapse
|
41
|
|
42
|
Weinrich D, Köhn M, Jonkheijm P, Westerlind U, Dehmelt L, Engelkamp H, Christianen PCM, Kuhlmann J, Maan JC, Nüsse D, Schröder H, Wacker R, Voges E, Breinbauer R, Kunz H, Niemeyer CM, Waldmann H. Preparation of biomolecule microstructures and microarrays by thiol-ene photoimmobilization. Chembiochem 2010; 11:235-47. [PMID: 20043307 DOI: 10.1002/cbic.200900559] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mild, fast and flexible method for photoimmobilization of biomolecules based on the light-initiated thiol-ene reaction has been developed. After investigation and optimization of various surface materials, surface chemistries and reaction parameters, microstructures and microarrays of biotin, oligonucleotides, peptides, and MUC1 tandem repeat glycopeptides were prepared with this photoimmobilization method. Furthermore, MUC1 tandem repeat glycopeptide microarrays were successfully used to probe antibodies in mouse serum obtained from vaccinated mice. Dimensions of biomolecule microstructures were shown to be freely controllable through photolithographic techniques, and features down to 5 microm in size covering an area of up to 75x25 mm were created. Use of a confocal laser microscope with a UV laser as UV-light source enabled further reduction of biotin feature size opening access to nanostructured biochips.
Collapse
Affiliation(s)
- Dirk Weinrich
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ebisu K, Tateno H, Kuroiwa H, Kawakami K, Ikeuchi M, Hirabayashi J, Sisido M, Taki M. N-terminal specific point-immobilization of active proteins by the one-pot NEXT-A method. Chembiochem 2010; 10:2460-4. [PMID: 19739192 DOI: 10.1002/cbic.200900430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Keitaro Ebisu
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Weinrich D, Lin PC, Jonkheijm P, Nguyen U, Schröder H, Niemeyer C, Alexandrov K, Goody R, Waldmann H. Oriented Immobilization of Farnesylated Proteins by the Thiol-Ene Reaction. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Niemeyer C. Halbsynthetische DNA-Protein-Konjugate für Biosensorik und Nanofabrikation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904930] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Weinrich D, Lin PC, Jonkheijm P, Nguyen U, Schröder H, Niemeyer C, Alexandrov K, Goody R, Waldmann H. Oriented Immobilization of Farnesylated Proteins by the Thiol-Ene Reaction. Angew Chem Int Ed Engl 2010; 49:1252-7. [DOI: 10.1002/anie.200906190] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed Engl 2009; 48:7744-51. [PMID: 19757463 PMCID: PMC7159567 DOI: 10.1002/anie.200901480] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Progress in the development of protein‐immobilization strategies and methods has made protein biochips increasingly accessible. The integration of these assay and analysis platforms into biomedical and biotechnological research has substantially expanded the repertoire of methods available for proteomics and biomarker research and for drug development. This Minireview highlights selected developments in the application of protein biochips in these fields.
Collapse
Affiliation(s)
- Dirk Weinrich
- Max-Planck-Institut für molekulare Physiologie and Technische Universität Dortmund, Fachbereich Chemie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
48
|
Young JF, Nguyen HD, Yang L, Huskens J, Jonkheijm P, Brunsveld L. Strong and Reversible Monovalent Supramolecular Protein Immobilization. Chembiochem 2009; 11:180-3. [DOI: 10.1002/cbic.200900599] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Weinrich D, Jonkheijm P, Niemeyer C, Waldmann H. Proteinbiochips in der Biomedizin und Biotechnologie. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Zheng Z, Daniel W, Giam L, Huo F, Senesi A, Zheng G, Mirkin C. Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902649] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|