1
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Mohammadi A, Kashi PA, Ulbrich M. A smart thermoresponsive macroporous 4D structure by 4D printing of Pickering-high internal phase emulsions stabilized by plasma-functionalized starch nanomaterials for a possible delivery system. Curr Res Food Sci 2024; 8:100686. [PMID: 38380133 PMCID: PMC10878850 DOI: 10.1016/j.crfs.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment). An innovative procedure to fabricate the functionalized starch nanomaterials was accomplished by grafting 1,2-butene oxide using a cold plasma technique to enhance their surface hydrophobicity, improving their aggregation, and thus attaining a colloidally stabilized Pickering-HIPEs with a low concentration of each surface-active starch nanomaterial. A flocculation of droplets in Pickering-HIPEs was developed after the addition of modified SNCs or SNPs, leading to the formation of a gel-like structure. The 3D printing of these Pickering-HIPEs developed a highly interconnected large pore structure, possessing a self-assembly property with thermoresponsive behavior. As a potential drug delivery system, this thermoresponsive macroporous 3D structure offered a lower critical solution temperature (LCST)-type phase transition at body temperature, which can be used in the field of smart releasing of bioactive compounds.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Adeleh Mohammadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4913815739, Iran
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources, Tehran University, 31587-77871, Karaj, Iran
| | - Marco Ulbrich
- Department of Food Technology and Food Chem., Chair of Food Process Engineering, Technische Universität Berlin, OfficeTK1, Ackerstraße 76, 13355, Berlin, Germany
| |
Collapse
|
2
|
Galvão AMMT, Freitas JC, Karatay GGB, Furtado GDF, Rasera ML, Tavares GM, Hubinger MD. Thermo-induced changes in the structure of lentil protein isolate (Lens culinaris) to stabilize high internal phase emulsions. Int J Biol Macromol 2023; 253:127313. [PMID: 37820922 DOI: 10.1016/j.ijbiomac.2023.127313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
This study aims to assess the impact of heat treatment on the emulsifying properties of lentil protein isolate (LPI) dispersion to produce high internal phase emulsions (HIPEs). The heat-treated LPI dispersion was characterized by size, turbidity, solubility, zeta potential, free sulfhydryl group, electrophoresis, differential scanning calorimetry, circular dichroism, Fourier transforms infrared spectroscopy and intrinsic fluorescence. HIPEs were produced with 25% of LPI dispersion (2%, w/w) and soybean oil (75%) using a rotor-stator (15,500 rpm/1 min). HIPEs were evaluated for their droplet size, zeta potential, centrifugal stability, microscopy, appearance, Turbiscan stability, and rheology over 60 days (25 °C). Heat treatment reduced the size of LPI, resulting in increased turbidity, solubility, and exposure of hydrophobic groups. HIPEs produced with heat-treated LPI at 70 °C (HIPE70) and 80 °C (HIPE80) for 20 min exhibited lower droplet sizes, increased stability, reduced oil loss, and a homogeneous appearance compared to HIPE produced with untreated LPI (HIPEc). In addition, HIPE70 and HIPE80 displayed resistance to shear stress, higher apparent viscosity, and increased storage modulus than HIPEc. HIPEs produced with heat-treated LPI were stable, suggesting that the treatment was efficient for improving the functional properties of the protein and the possibility of future research focusing on fat substitutes in food applications.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil.
| | - João Cury Freitas
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Graziele Grossi Bovi Karatay
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Mariana Lamy Rasera
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Department of Food Engineering and Technology, School of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
3
|
Muratspahić E, Schöffmann J, Jiang Q, Bismarck A. Poly(acrylamide- co-styrene): A Macrosurfactant for Oil/Water Emulsion Templating toward Robust Macroporous Hydrogels. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Emina Muratspahić
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Doctoral College Advanced Functional Materials, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Jana Schöffmann
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Qixiang Jiang
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
4
|
Durgut E, Sherborne C, Aldemir Dikici B, Reilly GC, Claeyssens F. Preparation of Interconnected Pickering Polymerized High Internal Phase Emulsions by Arrested Coalescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10953-10962. [PMID: 36027593 PMCID: PMC9476866 DOI: 10.1021/acs.langmuir.2c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emulsion templating is a method that enables the production of highly porous and interconnected polymer foams called polymerized high internal phase emulsions (PolyHIPEs). Since emulsions are inherently unstable systems, they can be stabilized either by surfactants or by particles (Pickering HIPEs). Surfactant-stabilized HIPEs form materials with an interconnected porous structure, while Pickering HIPEs typically form closed pore materials. In this study, we describe a system that uses submicrometer polymer particles to stabilize the emulsions. Polymers fabricated from these Pickering emulsions exhibit, unlike traditional Pickering emulsions, highly interconnected large pore structures, and we related these structures to arrested coalescence. We describe in detail the morphological properties of this system and their dependence on different production parameters. This production method might provide an interesting alternative to poly-surfactant-stabilized-HIPEs, in particular where the application necessitates large pore structures.
Collapse
Affiliation(s)
- Enes Durgut
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Colin Sherborne
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Betül Aldemir Dikici
- Department
of Bioengineering, Izmir Institute of Technology, Urla, Izmir, 35433, Turkey
| | - Gwendolen C. Reilly
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Frederik Claeyssens
- Kroto
Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for in Silico
Medicine, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
5
|
Recio-Colmenares C, Ortíz-Rios D, Pelayo-Vázquez JB, Moreno-Medrano ED, Arratia-Quijada J, Torres-Lubian JR, Huerta-Marcial ST, Mota-Morales JD, Pérez-García MG. Polystyrene Macroporous Magnetic Nanocomposites Synthesized through Deep Eutectic Solvent-in-Oil High Internal Phase Emulsions and Fe 3O 4 Nanoparticles for Oil Sorption. ACS OMEGA 2022; 7:21763-21774. [PMID: 35785308 PMCID: PMC9245104 DOI: 10.1021/acsomega.2c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report a nonaqueous one-step method to synthesize polystyrene macroporous magnetic nanocomposites through high internal phase emulsions (HIPEs) formulated with the deep eutectic solvent (DES) composed of urea:choline chloride (U:ChCl, in a 2:1 molar ratio) as the internal phase and co-stabilized with mixtures of Span 60 surfactant and non-functionalized magnetite nanoparticles (Fe3O4 NPs). The porous structure and the magnetic and lipophilic properties of the nanocomposite materials were easily tailored by varying the amount of Fe3O4 NPs (0, 2, 5 and 10 wt %) and the surfactant Span 60 (0, 5, 10, and 20 wt %) used in the precursor emulsion. The resultant nanocomposite polyHIPEs exhibit high sorption capacity toward different oils (hexane, gasoline, and vegetable oil) due to their high porosity, interconnectivity, and hydrophobic surface. It was observed that the oil sorption capacity was improved when the amount of surfactant decreased and Fe3O4 NPs increased in HIPE formulation. Therefore, polyHIPE formulated with 5 and 10 wt % Span 60 and Fe3O4 NPs, respectively, showed the highest oil sorption capacities of 4.151, 3.556, and 3.266 g g-1 for gasoline, hexane, and vegetable oil, respectively. In addition, the magnetic monoliths were reused for more than ten sorption/desorption cycles without losing their oil sorption capacity.
Collapse
Affiliation(s)
| | - Daniela Ortíz-Rios
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| | - José B. Pelayo-Vázquez
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| | | | - Jenny Arratia-Quijada
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| | | | - Silvia T. Huerta-Marcial
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Josué D. Mota-Morales
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - María G. Pérez-García
- Centro
Universitario de Tonalá, Universidad
de Guadalajara, Tonalá, Jalisco 45425, México
| |
Collapse
|
6
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
7
|
Shen D, Chen X, Luo J, Wang Y, Sun Y, Pan J. Boronate affinity imprinted Janus nanosheets for macroscopic assemblies: From amphiphilic surfactants to porous sorbents for catechol adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Zhao Q, Zaaboul F, Liu Y, Li J. Recent advances on protein‐based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Compr Rev Food Sci Food Saf 2020; 19:1934-1968. [DOI: 10.1111/1541-4337.12570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Qiaoli Zhao
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Farah Zaaboul
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Yuanfa Liu
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| | - Jinwei Li
- Key Laboratory of Food Science and TechnologyJiangnan University Wuxi China
| |
Collapse
|
9
|
Mazaj M, Bjelica M, Žagar E, Logar NZ, Kovačič S. Zeolite Nanocrystals Embedded in Microcellular Carbon Foam as a High-Performance CO 2 Capture Adsorbent with Energy-Saving Regeneration Properties. CHEMSUSCHEM 2020; 13:2089-2097. [PMID: 31968150 DOI: 10.1002/cssc.201903116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Here, the facile synthesis of four-length-scaled (ultramicro-micro-meso-macroporous) hierarchically structured porous carbon nanocomposite by an emulsion-template strategy is reported. This previously unreported combination of zeolite nanocrystals embedded in the walls of microcellular carbon foams gives unique textural and structural properties, which result in their excellent ability to selectively capture CO2 owing to the presence of ultra-micropores. The zeolite-microcellular carbon foam synergism delivers an adsorbent with a significantly enhanced CO2 capture capacity of up to 5 mmol g-1 , CO2 /N2 selectivity of up to 80, and an outstanding multi-cycle capture performance under humid conditions (70 % performance retention after 30 regeneration cycles). More impressively, the electrically conductive carbon framework enables Joule heating and cooling, and thus fast and energy-efficient regeneration is possible, with an estimated energy consumption of only about 12 kWh.
Collapse
Affiliation(s)
- Matjaž Mazaj
- National Institute of Chemistry, Department for Inorganic Chemistry and Technology, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Milan Bjelica
- School of Electrical Engineering (ETF), University of Belgrade, Bulevar kralja Aleksandra 73, 11120, Belgrade, Serbia
| | - Ema Žagar
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Nataša Zabukovec Logar
- National Institute of Chemistry, Department for Inorganic Chemistry and Technology, Hajdrihova 19, 1000, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000, Nova Gorica, Slovenia
| | - Sebastijan Kovačič
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia
| |
Collapse
|
10
|
Wei Z, Cheng Y, Zhu J, Huang Q. Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Huang XN, Zhou FZ, Yang T, Yin SW, Tang CH, Yang XQ. Fabrication and characterization of Pickering High Internal Phase Emulsions (HIPEs) stabilized by chitosan-caseinophosphopeptides nanocomplexes as oral delivery vehicles. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Zhou C, Qiao M, Zhang X, Zhu Y, Zhang S, Chen J. Production of High Internal Phase Emulsion with a Miniature Twin Screw Extruder. ACS OMEGA 2019; 4:9957-9963. [PMID: 31460088 PMCID: PMC6648423 DOI: 10.1021/acsomega.9b01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/28/2019] [Indexed: 05/04/2023]
Abstract
Emulsions are traditionally prepared by batched emulsifying an oil phase and aqueous phase with a magnetic/mechanical stirrer, homogenizer, or ultrasonic machine, etc. Herein, high internal phase emulsions (HIPEs) produced with a miniature twin screw extruder were first investigated. Adding an oil phase (the mixture of styrene, divinylbenzene, and span 80) and aqueous phase to the inlet of a miniature twin screw extruder, a series of white and viscous HIPEs were obtained at the outlet of the extruder. With the screw rotation speed and the surfactant content varied respectively in the ranges of 50-200 rpm and 5-20%, a series of HIPEs having uniform droplet size were produced. Polymerizing these HIPEs caused a series of polymerized HIPES, which have a well-defined open-cell structure. The method developed herein shows that it is possible to prepare emulsions with oil and water by twin screw extrusion. Also, it may also cause a continuous preparation of HIPEs when the miniature twin screw extruder was replaced by an industrial extruder.
Collapse
Affiliation(s)
- Ce Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of
Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Min Qiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of
Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of
Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Yun Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of
Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of
Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of
Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Azhar U, Huo Z, Yaqub R, Xu A, Zhang S, Geng B. Non-crosslinked fluorinated copolymer particles stabilized Pickering high internal phase emulsion for fabrication of porous polymer monoliths. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Xu D, Zou W, Du Z, Wang H, Liu B, Zhang C. Novel Synthesis of CdSe Quantum Dots in a Confined Space by Using a High Internal Phase Emulsion and Their Application in Fluorescent Labeling. ChemistrySelect 2019. [DOI: 10.1002/slct.201803228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dawei Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Jiangsu 213164 PR China
| | - Zhongjie Du
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Jiangsu 213164 PR China
| | - Hong Wang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
| | - Bin Liu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Jiangsu 213164 PR China
| |
Collapse
|
15
|
Mao S, Sun B, Yu T, Mao W, Zhu S, Ni Y, Wang H, Zhao Y, Chen Y. pH-Modulated memristive behavior based on an edible garlic-constructed bio-electronic device. NEW J CHEM 2019. [DOI: 10.1039/c9nj02433f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new type of memristive memory device with an edible garlic-constructed Ag/garlic/fluorine-doped SnO2(FTO) structure for analog neuromorphic sensor applications was designed.
Collapse
Affiliation(s)
- Shuangsuo Mao
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Bai Sun
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Tian Yu
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Weiwei Mao
- School of Science
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- China
| | - Shouhui Zhu
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yuxiang Ni
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Hongyan Wang
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yong Zhao
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yuanzheng Chen
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
16
|
Wang J, Zhu H, Li BG, Zhu S. Interconnected Porous Monolith Prepared via UiO-66 Stabilized Pickering High Internal Phase Emulsion Template. Chemistry 2018; 24:16426-16431. [DOI: 10.1002/chem.201803628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jierui Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - He Zhu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
- School of Science and Engineering; The Chinese University of Hong Kong; Shenzhen Guangdong 518172 China
| | - Bo-Geng Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shiping Zhu
- School of Science and Engineering; The Chinese University of Hong Kong; Shenzhen Guangdong 518172 China
- Department of Chemical Engineering; McMaster University; Hamilton Ontario L8S4L7 Canada
| |
Collapse
|
17
|
Dai L, Yang S, Wei Y, Sun C, McClements DJ, Mao L, Gao Y. Development of stable high internal phase emulsions by pickering stabilization: Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers. Food Chem 2018; 275:246-254. [PMID: 30724194 DOI: 10.1016/j.foodchem.2018.09.122] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
In this study, zein-propylene glycol alginate-rhamnolipid complex particles were prepared with suitable three-phase contact angles (θ) for stabilizing oil-in-water Pickering high internal phase emulsions (HIPEs). At a fixed oil phase volume (φ = 0.75), particle concentration influenced the stability, physical properties, and rheology of HIPEs. Confocal laser scanning microscopy showed that complex particles formed a densely packed particle layer around the oil droplets and a three-dimensional network in the continuous phase, highlighting the potential for the complex particles to act as effective HIPE stabilizers. The storage modulus (G') was higher than loss modulus (G″) over the entire angular frequency range, suggesting HIPEs had an elastic gel-like structure. The HIPEs had good stability across a range of environmental conditions (pH, temperatures and salt concentrations). These findings may extend the application of zein in foods and the HIPEs formed may be used as novel delivery system for bioactives.
Collapse
Affiliation(s)
- Lei Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shufang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yang Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cuixia Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | | | - Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
18
|
Ma Y, Gao Y, Zhao X, Zhu Y, Du F, Hu J. A Natural Triterpene Saponin‐Based Pickering Emulsion. Chemistry 2018; 24:11703-11710. [DOI: 10.1002/chem.201801619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yue Ma
- Department of Applied ChemistryCollege of ScienceChina Agricultural University Beijing 100193 China
| | - Yuxia Gao
- Department of Applied ChemistryCollege of ScienceChina Agricultural University Beijing 100193 China
| | - Xin Zhao
- Department of Applied ChemistryCollege of ScienceChina Agricultural University Beijing 100193 China
| | - Yanqiu Zhu
- Department of Applied ChemistryCollege of ScienceChina Agricultural University Beijing 100193 China
| | - Fengpei Du
- Department of Applied ChemistryCollege of ScienceChina Agricultural University Beijing 100193 China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
19
|
Jiao B, Shi A, Wang Q, Binks BP. High-Internal-Phase Pickering Emulsions Stabilized Solely by Peanut-Protein-Isolate Microgel Particles with Multiple Potential Applications. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801350] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bo Jiao
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; 2 Yuanmingyuan West Road Beijing 100193 China
| | - Aimin Shi
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; 2 Yuanmingyuan West Road Beijing 100193 China
| | - Qiang Wang
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; 2 Yuanmingyuan West Road Beijing 100193 China
| | - Bernard P. Binks
- School of Mathematics and Physical Sciences; University of Hull; Hull HU6 7RX UK
| |
Collapse
|
20
|
Jiao B, Shi A, Wang Q, Binks BP. High-Internal-Phase Pickering Emulsions Stabilized Solely by Peanut-Protein-Isolate Microgel Particles with Multiple Potential Applications. Angew Chem Int Ed Engl 2018; 57:9274-9278. [PMID: 29845713 DOI: 10.1002/anie.201801350] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 01/29/2023]
Abstract
High-internal-phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe high-internal-phase Pickering emulsions with 87 % edible oil or 88 % n-hexane in water stabilized by peanut-protein-isolate microgel particles. These dispersed phase fractions are the highest in all known food-grade Pickering emulsions. The protein-based microgel particles are in different aggregate states depending on the pH value. The emulsions can be utilized for multiple potential applications simply by changing the internal-phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n-hexane, the emulsion can be used as a template to produce porous materials, which are advantageous for tissue engineering.
Collapse
Affiliation(s)
- Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
21
|
Zhu H, Zhang Q, Zhu S. Assembly of a Metal-Organic Framework into 3 D Hierarchical Porous Monoliths Using a Pickering High Internal Phase Emulsion Template. Chemistry 2016; 22:8751-5. [PMID: 27123547 DOI: 10.1002/chem.201600313] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- He Zhu
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L7 Canada
| | - Qi Zhang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Shiping Zhu
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L7 Canada
| |
Collapse
|
22
|
Zhang Y, Chen Y, Shen Y, Yan Y, Pan J, Shi W, Yu L. Hierarchically Macro-/Mesoporous Polymer Foam as an Enhanced and Recyclable Catalyst System for the Sustainable Synthesis of 5-Hydroxymethylfurfural from Renewable Carbohydrates. Chempluschem 2015; 81:108-118. [DOI: 10.1002/cplu.201500357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Yunlei Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Yao Chen
- School of the Environment and Safety Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Yating Shen
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Longbao Yu
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| |
Collapse
|
23
|
Kwon T, Ku KH, Kang DJ, Lee WB, Kim BJ. Aspect-Ratio Effect of Nanorod Compatibilizers in Conducting Polymer Blends. ACS Macro Lett 2014; 3:398-404. [PMID: 35590771 DOI: 10.1021/mz500024n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanoparticles (NPs) at the interface between two different polymer blends or fluid mixtures can function as compatibilizers, thereby dramatically improving the interfacial properties of the blends or the fluid mixtures. Their compatibilizing ability is strongly dependent on their size, shape, and aspect ratios (ARs), which determines their adsorption energy to the interface as well as their entropic penalty when they are being strongly segregated at the interface. Herein, we investigated the effect of the ARs of nanorod surfactants on the conducting polymer blend of poly(triphenylamine) (PTPA) templated by polystyrene (PS) colloids. The lengths of the polymer-coated CuPt nanorods (CuPt NRs) were 5, 15, and 32 nm with a fixed width of 5 nm, thus producing three different AR values of 1, 3, and 6, respectively. For quantitative analysis, the morphological and electrical behaviors of the polymer blends were investigated in terms of the volume fraction and AR of the NRs. The dramatic change in the morphological and electrical properties of the blend film was observed for all three NR surfactants at the NR volume fraction of approximately 1 vol %. Therefore, NR surfactants with larger ARs had better compatibilizing power for a given number of NRs in the blends. Also, they exhibited a stronger tendency to be aligned parallel to the PS/PTPA interface. Also, we demonstrated the successful use of the NR surfactants in the fabrication of conducting polymer blend film that requires only minimal concentrations of conducting polymers. To the best of our knowledge, this is the first report of an experiment on the AR effect of NR compatibilizers in polymer blends.
Collapse
Affiliation(s)
- Taegyun Kwon
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701 Republic of Korea
| | - Kang Hee Ku
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701 Republic of Korea
| | - Dong Jin Kang
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701 Republic of Korea
| | - Won Bo Lee
- Department
of Chemical and Biomolecular Engineering, Sogang University, Seoul, 121-742 Republic of Korea
| | - Bumjoon J. Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701 Republic of Korea
| |
Collapse
|
24
|
|
25
|
Leclercq L, Mouret A, Proust A, Schmitt V, Bauduin P, Aubry JM, Nardello-Rataj V. Pickering emulsion stabilized by catalytic polyoxometalate nanoparticles: a new effective medium for oxidation reactions. Chemistry 2012; 18:14352-8. [PMID: 22996259 DOI: 10.1002/chem.201201799] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Indexed: 11/09/2022]
Abstract
Decyl-, dodecyl-, and tetradecyltrimethylammonium cations were combined with the catalytic polyoxometalate [PW(12)O(40)](3-) anion to give spherical and monodisperse nanoparticles that are able to stabilize emulsions in the presence of water and an aromatic solvent. This triphasic liquid/solid/liquid system, based on a catalytic surfactant, is particularly efficient as a reaction medium for epoxidation reactions that involve hydrogen peroxide. The reactions proceed at competitive rates with straightforward separation of the phases by centrifugation. Such catalytic "Pickering" emulsions combine the advantages of heterogeneous catalysis and biphasic catalysis without the drawbacks (e.g., catalyst leaching or separation time).
Collapse
Affiliation(s)
- Loïc Leclercq
- Université Lille Nord de France, Université Lille 1, ENSCL, EA 4478, Chimie Moléculaire et Formulation, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Dyab AKF. Macroporous Polymer Beads and Monoliths From Pickering Simple, Double, and Triple Emulsions. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Kang DJ, Kwon T, Kim MP, Cho CH, Jung H, Bang J, Kim BJ. Creating opal-templated continuous conducting polymer films with ultralow percolation thresholds using thermally stable nanoparticles. ACS NANO 2011; 5:9017-9027. [PMID: 21961852 DOI: 10.1021/nn203209c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We propose a novel and robust strategy for creating continuous conducting polymer films with ultralow percolation thresholds using polymer-coated gold nanoparticles (Au NPs) as surfactant. Continuous poly(triphenylamine) (PTPA) films of high internal phase polymeric emulsions were fabricated using an assembly of cross-linked polystyrene (PS) colloidal particles as template. Polymer-coated Au NPs were designed to be thermally stable even above 200 °C and neutral to both the PS and PTPA phases. Therefore, the Au NPs localize at the PS/PTPA interface and function as surfactant to efficiently produce a continuous conducting PTPA polymer film with very low percolation thresholds. The volume fraction threshold for percolation of the PTPA phase with insulating PS colloids (as measured by electron microscopy and conductivity measurements) was found to be 0.20. In contrast, with the addition of an extremely low volume fraction (φ(p) = 0.35 vol %) of surfactant Au NPs, the volume fraction threshold for percolation of the PTPA phase was dramatically reduced to 0.05. The SEM and TEM measurements clearly demonstrated the formation of a continuous PTPA phase within the polyhedral phase of PS colloids. To elucidate the influence of the nanoparticle surfactant on the blend films, the morphology and conductivity of the blends at different PS colloid/PTPA volume ratios were carefully characterized as a function of the Au NP concentration. Our approach provides a methodology for a variety of applications that require a continuous phase for the transport of molecular species, ions, or electrons at low concentrations and a second phase for mechanical support or the conduction of a separate species.
Collapse
Affiliation(s)
- Dong Jin Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Liang F, Shen K, Qu X, Zhang C, Wang Q, Li J, Liu J, Yang Z. Inorganic Janus Nanosheets. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007519] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Liang F, Shen K, Qu X, Zhang C, Wang Q, Li J, Liu J, Yang Z. Inorganic Janus Nanosheets. Angew Chem Int Ed Engl 2011; 50:2379-82. [DOI: 10.1002/anie.201007519] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 11/10/2022]
|
30
|
Sun G, Li Z, Ngai T. Inversion of particle-stabilized emulsions to form high-internal-phase emulsions. Angew Chem Int Ed Engl 2010; 49:2163-6. [PMID: 20175179 DOI: 10.1002/anie.200907175] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guanqing Sun
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|
31
|
Ni D, Wang L, Sun Y, Guan Z, Yang S, Zhou K. Amphiphilic Hollow Carbonaceous Microspheres with Permeable Shells. Angew Chem Int Ed Engl 2010; 49:4223-7. [DOI: 10.1002/anie.201000697] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Ni D, Wang L, Sun Y, Guan Z, Yang S, Zhou K. Amphiphilic Hollow Carbonaceous Microspheres with Permeable Shells. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Sun G, Li Z, Ngai T. Inversion of Particle-Stabilized Emulsions to Form High-Internal-Phase Emulsions. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907175] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Li Z, Ming T, Wang J, Ngai T. High internal phase emulsions stabilized solely by microgel particles. Angew Chem Int Ed Engl 2010; 48:8490-3. [PMID: 19798705 DOI: 10.1002/anie.200902103] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zifu Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | |
Collapse
|
35
|
Li Z, Ming T, Wang J, Ngai T. High Internal Phase Emulsions Stabilized Solely by Microgel Particles. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|