1
|
Takada T, Nishida K, Honda Y, Nakano A, Nakamura M, Fan S, Kawai K, Fujitsuka M, Yamana K. Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions. Chembiochem 2021; 22:2729-2735. [PMID: 34191388 DOI: 10.1002/cbic.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Functional nucleic acids with the capability of generating fluorescence in response to hybridization events, microenvironment or structural changes are valuable as structural probes and chemical sensors. We now demonstrate the enzyme-assisted preparation of nucleic acids possessing multiple thiazole orange (TO) dyes and their fluorescent behavior, that show a spectral change from the typical monomer emission to the excimer-type red-shifted emission. We found that the fluorescent response and emission wavelength of the TO dyes were dependent on both the state of the DNA structure (single- or double-stranded DNA) and the arrangement of the TO dyes. We showed that the fluorescent behavior of the TO dyes can be applied for the detection of RNA molecules, suggesting that our approach for preparing the fluorescent nucleic acids functionalized with multiple TO dyes could be useful to design a fluorescence bioimaging and detection technique of biomolecules.
Collapse
Affiliation(s)
- Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Koma Nishida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Yurika Honda
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Aoi Nakano
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Mitsunobu Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Shuya Fan
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kazushige Yamana
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
2
|
Maity D, Matković M, Li S, Ehlers M, Wu J, Piantanida I, Schmuck C. Peptide-Based Probes with an Artificial Anion-Binding Motif for Direct Fluorescence "Switch-On" Detection of Nucleic Acid in Cells. Chemistry 2017; 23:17356-17362. [PMID: 28967979 DOI: 10.1002/chem.201703813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 01/08/2023]
Abstract
This work reports two new peptide-based fluorescence probes (1 and 2) for the detection of ds-DNA at physiological pH. Probes 1 and 2 contain a fluorophore, either amino-naphthalimide or diethyl-aminocoumarin, respectively, and two identical peptide arms each equipped with a guanidiniocarbonylpyrrole (GCP) anion-binding motif. These probes show "switch-on" fluorescence response upon binding to ds-DNA, whereby they can differentiate between various types of polynucleotides. For instance, they exhibit more pronounced fluorescence response for AT-rich polynucleotides than GC-rich polynucleotides, and both give only negligible response to ds-RNA. The fluorimetric response of 1 is proportional to the AT-basepair content in DNA, whereas the fluorescence of 2 is sensitive to the secondary structure of the polynucleotide. Fluorescence experiments, thermal melting experiments and circular dichroism studies suggest that 1 interacts with ds-DNA in a combined intercalation and minor groove binding, whereas 2 interacts mainly with the outer surface of DNA/RNA. As 1 and 2 have a very low cytotoxicity, 1 can be applied for the imaging of nuclear DNA in cells.
Collapse
Affiliation(s)
- Debabrata Maity
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | | | - Shang Li
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Martin Ehlers
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Junchen Wu
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | | | - Carsten Schmuck
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
3
|
Wang X, Hudson RHE. PNA Molecular Beacons Assembled by Post-Synthetic Click Chemistry Functionalization. Chembiochem 2015; 16:2156-61. [PMID: 26227668 DOI: 10.1002/cbic.201500248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/12/2022]
Abstract
To avoid the tedious synthesis of functionalized peptide nucleic acid (PNA) monomers for probe development, we proposed a simple approach to modify PNA oligomers by post-synthetic on-resin click chemistry. PNA molecular beacons (MBs) were prepared by incorporation of azide-containing monomers into the oligomer by automatic solid-phase peptide synthesis and subsequent derivatization with pyrene moieties by copper-catalyzed azide-alkyne cycloaddition. Two pyrene-based quencher-free PNA molecular beacons, a stemless MB and one possessing a stem-loop structure, targeting a portion of the cystic fibrosis gene, were successfully synthesized by using this method. Fluorescence studies showed that the stem-loop MB exhibited better discrimination of changes in excimer/monomer ratios as compared to the stemless MB construct.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 2K5, Canada
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 2K5, Canada.
| |
Collapse
|
4
|
Asanuma H, Akahane M, Niwa R, Kashida H, Kamiya Y. Highly Sensitive and Robust Linear Probe for Detection of mRNA in Cells. Angew Chem Int Ed Engl 2015; 54:4315-9. [DOI: 10.1002/anie.201411000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Indexed: 12/16/2022]
|
5
|
Asanuma H, Akahane M, Niwa R, Kashida H, Kamiya Y. Highly Sensitive and Robust Linear Probe for Detection of mRNA in Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Kanamori T, Ohzeki H, Masaki Y, Ohkubo A, Takahashi M, Tsuda K, Ito T, Shirouzu M, Kuwasako K, Muto Y, Sekine M, Seio K. Controlling the fluorescence of benzofuran-modified uracil residues in oligonucleotides by triple-helix formation. Chembiochem 2014; 16:167-76. [PMID: 25469677 DOI: 10.1002/cbic.201402346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/16/2022]
Abstract
We developed fluorescent turn-on probes containing a fluorescent nucleoside, 5-(benzofuran-2-yl)deoxyuridine (dU(BF)) or 5-(3-methylbenzofuran-2-yl)deoxyuridine (dU(MBF)), for the detection of single-stranded DNA or RNA by utilizing DNA triplex formation. Fluorescence measurements revealed that the probe containing dU(MBF) achieved superior fluorescence enhancement than that containing dU(BF). NMR and fluorescence analyses indicated that the fluorescence intensity increased upon triplex formation partly as a consequence of a conformational change at the bond between the 3-methylbenzofuran and uracil rings. In addition, it is suggested that the microenvironment around the 3-methylbenzofuran ring contributed to the fluorescence enhancement. Further, we developed a method for detecting RNA by rolling circular amplification in combination with triplex-induced fluorescence enhancement of the oligonucleotide probe containing dU(MBF).
Collapse
Affiliation(s)
- Takashi Kanamori
- Education Academy of Computational Life Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501 (Japan)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hövelmann F, Gaspar I, Loibl S, Ermilov EA, Röder B, Wengel J, Ephrussi A, Seitz O. Brightness through local constraint--LNA-enhanced FIT hybridization probes for in vivo ribonucleotide particle tracking. Angew Chem Int Ed Engl 2014; 53:11370-5. [PMID: 25167966 DOI: 10.1002/anie.201406022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Indexed: 11/11/2022]
Abstract
Imaging the dynamics of RNA in living cells is usually performed by means of transgenic approaches that require modification of RNA targets and cells. Fluorogenic hybridization probes would also allow the analysis of wild-type organisms. We developed nuclease-resistant DNA forced intercalation (FIT) probes that combine the high enhancement of fluorescence upon hybridization with the high brightness required to allow tracking of individual ribonucleotide particles (RNPs). In our design, a single thiazole orange (TO) intercalator dye is linked as a nucleobase surrogate and an adjacent locked nucleic acid (LNA) unit serves to introduce a local constraint. This closes fluorescence decay channels and thereby increases the brightness of the probe-target duplexes. As few as two probes were sufficient to enable the tracking of oskar mRNPs in wild-type living Drosophila melanogaster oocytes.
Collapse
Affiliation(s)
- Felix Hövelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hövelmann F, Gaspar I, Loibl S, Ermilov EA, Röder B, Wengel J, Ephrussi A, Seitz O. Helligkeit durch lokale Rigidifizierung - LNA-verstärkte FIT-Sonden zur bildgebenden Darstellung von Ribonukleotidpartikeln in vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kawai K, Majima T, Maruyama A. Detection of single-nucleotide variations by monitoring the blinking of fluorescence induced by charge transfer in DNA. Chembiochem 2013; 14:1430-3. [PMID: 23846860 DOI: 10.1002/cbic.201300380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Indexed: 01/03/2023]
Abstract
Charge transfer dynamics in DNA: Photo-induced charge separation and charge-recombination dynamics in DNA was assessed by monitoring the blinking of fluorescence. Single nucleotide variations, mismatch and one base deletion, were differentiated based on the length of the off-time of the blinking, which corresponds to the lifetime of the charge-separated state.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Japan.
| | | | | |
Collapse
|
10
|
Socher E, Imperiali B. FRET-capture: a sensitive method for the detection of dynamic protein interactions. Chembiochem 2012; 14:53-7. [PMID: 23239458 DOI: 10.1002/cbic.201200700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Indexed: 01/14/2023]
Abstract
Caught in the act: The FRET-Capture approach exploits a bound solvatochromic fluorophore, 4-N,N-dimethylamino-1,8-naphthalimide, as a FRET donor in both inter- and intramolecular energy transfer. A unique feature of this method is the additional level of signal selectivity as the FRET signal is only turned on when the donor is specifically bound to the protein of interest, eliminating high background and false positive signals.
Collapse
Affiliation(s)
- Elke Socher
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
11
|
Fujii T, Urushihara M, Kashida H, Ito H, Liang X, Yagi-Utsumi M, Kato K, Asanuma H. Reversed assembly of dyes in an RNA duplex compared with those in DNA. Chemistry 2012; 18:13304-13. [PMID: 22996355 DOI: 10.1002/chem.201201956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Indexed: 12/26/2022]
Abstract
We prepared reversed dye clusters by hybridizing two RNA oligomers, each of which tethered dyes (Methyl Red, 4'-methylthioazobenzene, and thiazole orange) on D-threoninols (threoninol nucleotides) at the center of their strands. NMR spectroscopic analyses revealed that two dyes from each strand were axially stacked in an antiparallel manner to each other in the duplex, and were located adjacent to the 3'-side of a natural nucleobase. Interestingly, this positional relationship of the dyes was completely the opposite of that assembled in DNA that we reported previously: dyes in DNA were located adjacent to the 5'-side of a natural nucleobase. This observation was also consistent with the circular dichroism of dimerized dyes in which the Cotton effect of the dyes (i.e., the winding properties of two dyes) was inverted in RNA relative to that in DNA. Further spectroscopic analyses revealed that clustering of the dyes on RNA duplexes induced distinct hypsochromicity and narrowing of the band, thus demonstrating that the dyes were axially stacked (i.e., H-aggregates) even on an A-type helix. On the basis of these results, we also prepared heterodimers of a fluorophore (thiazole orange) and quencher (Methyl Red) in an RNA duplex. Fluorescence from thiazole orange was found to be strongly quenched by Methyl Red due to the excitonic interaction, so that the ratio of fluorescent intensities of the RNA-thiazole orange conjugate with and without its complementary strand carrying a quencher became as high as 27. We believe that these RNA-dye conjugates are potentially useful probes for real-time monitoring of RNA interference (RNAi) mechanisms.
Collapse
Affiliation(s)
- Taiga Fujii
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fujii T, Hara Y, Osawa T, Kashida H, Liang X, Yoshida Y, Asanuma H. Bulge-like Asymmetric Heterodye Clustering in DNA Duplex Results in Efficient Quenching of Background Emission Based on the Maximized Excitonic Interaction. Chemistry 2012; 18:10865-72. [DOI: 10.1002/chem.201201365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 11/08/2022]
|
13
|
Rubner MM, Holzhauser C, Bohländer PR, Wagenknecht HA. A “Clickable” Styryl Dye for Fluorescent DNA Labeling by Excitonic and Energy Transfer Interactions. Chemistry 2012; 18:1299-302. [DOI: 10.1002/chem.201102622] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/30/2011] [Indexed: 12/18/2022]
|
14
|
Biner SM, Häner R. A two-color, self-controlled molecular beacon. Chembiochem 2011; 12:2733-6. [PMID: 22076865 DOI: 10.1002/cbic.201100651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Control yourself! A two-color molecular beacon with non-nucleosidic chromophores in a triplex stem is presented. Pyrene and PDI fluorophores act as mutual quenchers by formation of a donor-acceptor complex in the closed form. Hybridization with the target results in two independent fluorescence signals. The two-color read-out provides a "self-control" feature, which helps to eliminate false positive signals in imaging and screening applications.
Collapse
Affiliation(s)
- Sarah M Biner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | |
Collapse
|
15
|
Sato Y, Nishizawa S, Teramae N. Label-Free Molecular Beacon System Based on DNAs Containing Abasic Sites and Fluorescent Ligands That Bind Abasic Sites. Chemistry 2011; 17:11650-6. [DOI: 10.1002/chem.201100384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/31/2011] [Indexed: 01/13/2023]
|
16
|
Holzhauser C, Wagenknecht HA. In-stem-labeled molecular beacons for distinct fluorescent color readout. Angew Chem Int Ed Engl 2011; 50:7268-72. [PMID: 21717540 DOI: 10.1002/anie.201101968] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Indexed: 01/09/2023]
Affiliation(s)
- Carolin Holzhauser
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | |
Collapse
|
17
|
Holzhauser C, Wagenknecht HA. Deutliche Fluoreszenzfarbwechsel durch Markierung des Stamminneren von “Molecular Beacons”. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Coherent Quenching of a Fluorophore for the Design of a Highly Sensitive In-Stem Molecular Beacon. Angew Chem Int Ed Engl 2010; 49:5502-6. [DOI: 10.1002/anie.201001459] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Coherent Quenching of a Fluorophore for the Design of a Highly Sensitive In-Stem Molecular Beacon. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Fujii T, Kashida H, Asanuma H. Analysis of coherent heteroclustering of different dyes by use of threoninol nucleotides for comparison with the molecular exciton theory. Chemistry 2010; 15:10092-102. [PMID: 19722239 DOI: 10.1002/chem.200900962] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To test the molecular exciton theory for heterodimeric chromophores, various heterodimers and clusters, in which two different dyes were stacked alternately, were prepared by hybridizing two oligodeoxyribonucleotides (ODNs), each of which tethered a different dye on D-threoninol at the center of the strand. NMR analyses revealed that two different dyes from each strand were stacked antiparallel to each other in the duplex, and were located adjacent to the 5'-side of a natural nucleobase. The spectroscopic behavior of these heterodimers was systematically examined as a function of the difference in the wavelength of the dye absorption maxima (Delta lambda(max)). We found that the absorption spectrum of the heterodimer was significantly different from that of the simple sum of each monomeric dye in the single strand. When azobenzene and Methyl Red, which have lambda(max) at 336 and 480 nm, respectively, in the single strand (Delta lambda(max) = 144 nm), were assembled on ODNs, the band derived from azobenzene exhibited a small hyperchromism, whereas the band from Methyl Red showed hypochromism and both bands shifted to a longer wavelength (bathochromism). These hyper- and hypochromisms were further enhanced in a heterodimer derived from 4'-methylthioazobenzene and Methyl Red, which had a much smaller Delta lambda(max) (82 nm; lambda(max) = 398 and 480 nm in the single-strand, respectively). With a combination of 4'-dimethylamino-2-nitroazobenzene and Methyl Red, which had an even smaller Delta lambda(max) (33 nm), a single sharp absorption band that was apparently different from the sum of the single-stranded spectra was observed. These changes in the intensity of the absorption band could be explained by the molecular exciton theory, which has been mainly applied to the spectral behavior of H- and/or J-aggregates composed of homo dyes. However, the bathochromic band shifts observed at shorter wavelengths did not agree with the hypsochromism predicted by the theory. Thus, these data experimentally verify the molecular exciton theory of heterodimerization. This coherent coupling among the heterodimers could also partly explain the bathochromicity and hypochromicity that were observed when the dyes were intercalated into the duplex.
Collapse
Affiliation(s)
- Taiga Fujii
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | |
Collapse
|
21
|
Häner R, Biner S, Langenegger S, Meng T, Malinovskii V. A Highly Sensitive, Excimer-Controlled Molecular Beacon. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905829] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Hainke S, Seitz O. Binaphthyl-DNA: stacking and fluorescence of a nonplanar aromatic base surrogate in DNA. Angew Chem Int Ed Engl 2010; 48:8250-3. [PMID: 19790219 DOI: 10.1002/anie.200903194] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sven Hainke
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | |
Collapse
|
23
|
Bell NM, Micklefield J. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. Chembiochem 2010; 10:2691-703. [PMID: 19739190 DOI: 10.1002/cbic.200900341] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neil M Bell
- School of Chemistry, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
24
|
Häner R, Biner S, Langenegger S, Meng T, Malinovskii V. A Highly Sensitive, Excimer-Controlled Molecular Beacon. Angew Chem Int Ed Engl 2010; 49:1227-30. [DOI: 10.1002/anie.200905829] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Kashida H, Takatsu T, Fujii T, Sekiguchi K, Liang X, Niwa K, Takase T, Yoshida Y, Asanuma H. In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission. Angew Chem Int Ed Engl 2009; 48:7044-7. [PMID: 19705388 DOI: 10.1002/anie.200902367] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hainke S, Seitz O. Binaphthyl-DNA: Stapelung und Fluoreszenz eines nichtplanaren aromatischen Basensurrogates in DNA. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Xiao Y, Plakos KJI, Lou X, White RJ, Qian J, Plaxco KW, Soh HT. Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe. Angew Chem Int Ed Engl 2009; 48:4354-8. [PMID: 19431180 DOI: 10.1002/anie.200900369] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Singled out for its singularity: In a single-step, single-component, fluorescence-based method for the detection of single-nucleotide polymorphisms at room temperature, the sensor is comprised of a single, self-complementary DNA strand that forms a triple-stem structure. The large conformational change that occurs upon binding to perfectly matched (PM) targets results in a significant increase in fluorescence (see picture; F = fluorophore, Q = quencher).
Collapse
Affiliation(s)
- Yi Xiao
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kashida H, Takatsu T, Fujii T, Sekiguchi K, Liang X, Niwa K, Takase T, Yoshida Y, Asanuma H. In-Stem Molecular Beacon Containing a Pseudo Base Pair of Threoninol Nucleotides for the Removal of Background Emission. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Xu W, Xue X, Li T, Zeng H, Liu X. Ultrasensitive and Selective Colorimetric DNA Detection by Nicking Endonuclease Assisted Nanoparticle Amplification. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901772] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Xu W, Xue X, Li T, Zeng H, Liu X. Ultrasensitive and Selective Colorimetric DNA Detection by Nicking Endonuclease Assisted Nanoparticle Amplification. Angew Chem Int Ed Engl 2009; 48:6849-52. [DOI: 10.1002/anie.200901772] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Xiao Y, Plakos K, Lou X, White R, Qian J, Plaxco K, Soh H. Fluorescence Detection of Single-Nucleotide Polymorphisms with a Single, Self-Complementary, Triple-Stem DNA Probe. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|