1
|
Yuan M, Han K, Yang H, Mi L, Huang C, Hu X, He F. Rapid and Green Fabrication of Nanozyme with Geminal CuN 3O Configuration for Efficient Catecholase-Mimicking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401756. [PMID: 38686699 DOI: 10.1002/smll.202401756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Fabrication of nanozyme with catecholase-like catalytic activity faces the great challenge of merging outstanding activity with low cost as well as simple, rapid, and low-energy-consumed production, restricting its industrial applications. Herein, an inexpensive yet robust nanozyme (i.e., DT-Cu) via simple one-step coordination between diaminotriazole (DT) and CuSO4 within 1 h in water at room temperature is constructed. The asymmetric dicopper site with CuN3O configuration for each copper as well as Cu─O bond length of ≈1.83 Å and Cu···Cu distance of ≈3.5 Å in DT-Cu resemble those in catechol oxidase (CO), which ensure its prominent intrinsic activity, outperforming most CO-mimicking nanozymes and artificial homogeneous catalysts. The use of inexpensive DT/CuSO4 in this one-pot strategy endows DT-Cu with only ≈20% cost of natural CO per activity unit. During catalysis, O2 experienced a 4e-dominated reduction process accompanied by the formation of 1O2 and H2O2 intermediates and the product of H2O. Benefiting from the low cost as well as the distinctive structure and superior intrinsic activity, DT-Cu presents potential applications ranging from biocatalysis to analytical detection of biomolecules such as epinephrine and beyond.
Collapse
Affiliation(s)
- Meng Yuan
- School of Material Science and Engineering, University of Jinan, Jinan, 250024, China
| | - Ke Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chaofeng Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250024, China
| | - Fei He
- School of Material Science and Engineering, University of Jinan, Jinan, 250024, China
| |
Collapse
|
2
|
Devi B, Bhardwaj A, Gambhir D, Roy B, Karmakar A, Dey G, Jain A, Mondal B, Koner RR. Cu(II)-Based Coordination Polymer as a Pristine Form Usable Electrocatalyst for Oxygen Reduction Reaction: Experimental Evaluation and Theoretical Insights into Biomimetic Mechanistic Aspects. Inorg Chem 2022; 61:15699-15710. [PMID: 36123194 DOI: 10.1021/acs.inorgchem.2c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the postsynthesis-processed metal-organic material-based catalysts for energy applications add additional cost to the whole process, the importance of developing synthesized usable pristine catalysts is quite evident. The present work reports a new Cu-based coordination polymer (Cu-CP) catalyst to be used in its pristine form for oxygen reduction reaction (ORR) application. The catalyst was characterized using single-crystal X-ray diffraction, field emission scanning electron microscopy, and X-ray photoemission spectroscopy. The Cu-CP exhibits admirable electrocatalytic ORR activity with an onset potential of 0.84 V versus RHE and a half wave potential of 0.69 V versus RHE. As revealed by the density functional theory-based computational mechanistic investigation of the electrocatalytic ORR process, the electrochemically reduced Cu(I) center binds to the molecular O2 through an exergonic process (ΔG = -6.8 kcal/mol) and generates the Cu(II)-O2•- superoxo intermediate. Such superoxo intermediates are frequently encountered in the catalytic cycle of the Cu-containing metalloenzymes in their O2 reduction reaction. This intermediate undergoes coupled proton and electron transfer processes to give OH- in an alkaline medium involving H2O2 as the intermediate. The electrocatalytic performance of Cu-CP remained stable even up to 3000 cycles. Overall, the newly developed Cu-CP-based electrocatalyst holds promising potential for efficient biomimetic ORR reactivity, which opens new possibilities toward the development of robust coordination polymer-based electrocatalysts.
Collapse
Affiliation(s)
- Bandhana Devi
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Akhil Bhardwaj
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Diksha Gambhir
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Biswajit Roy
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Gourab Dey
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Anuj Jain
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Rik Rani Koner
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
3
|
Tang J, Su C, Shao Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. SMALL METHODS 2021; 5:e2100945. [PMID: 34928017 DOI: 10.1002/smtd.202100945] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient electrocatalysts for renewable energy conversion and environment purification has long been a research priority in the past 15 years. Covalent organic frameworks (COFs) have emerged as a burgeoning family of organic materials internally connected by covalent bonds and have been explored as promising candidates in electrocatalysis. The reticular geometry of COFs can provide an excellent platform for precise incorporation of the active sites in the framework, and the fine-tuning hierarchical porous architectures can enable efficient accessibility of the active sites and mass transportation. Considerable advances are made in rational design and controllable fabrication of COF-based organic-inorganic hybrids, that containing organic frameworks and inorganic electroactive species to induce novel physicochemical properties, and take advantage of the synergistic effect for targeted electrocatalysis with the hybrid system. Branches of COF-based hybrids containing a diversity form of metals, metal compounds, as well as metal-free carbons have come to the fore as highly promising electrocatalysts. This review aims to provide a systematic and profound understanding of the design principles behind the COF-based hybrids for electrocatalysis applications. Particularly, the structure-activity relationship and the synergistic effects in the COF-based hybrid systems are discussed to shed some light on the future design of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Straistari T, Morozan A, Shova S, Réglier M, Orio M, Artero V. Catalytic Reduction of Oxygen by a Copper Thiosemicarbazone Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatiana Straistari
- CEA/IRIG, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes, CNRS 17 rue des Martyrs, F‐ 38054 Grenoble cedex 9 France
- Centrale Marseille, iSm2 Aix‐Marseille Univ., CNRS Marseille France
- Institute of Chemistry. Academy of Sciences of Moldova 3, Academiei street MD 2028 Chisinau Republic of Moldova
| | - Adina Morozan
- CEA/IRIG, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes, CNRS 17 rue des Martyrs, F‐ 38054 Grenoble cedex 9 France
| | - Sergiu Shova
- Institute of Macromolecular Chemistry "Petru Poni" 41A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Marius Réglier
- Centrale Marseille, iSm2 Aix‐Marseille Univ., CNRS Marseille France
| | - Maylis Orio
- Centrale Marseille, iSm2 Aix‐Marseille Univ., CNRS Marseille France
| | - Vincent Artero
- CEA/IRIG, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes, CNRS 17 rue des Martyrs, F‐ 38054 Grenoble cedex 9 France
| |
Collapse
|
5
|
Yusran Y, Fang Q, Valtchev V. Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002038. [PMID: 32638452 DOI: 10.1002/adma.202002038] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with tailorable compositions, porosities, functionalities, and intrinsic chemical stability. The incorporation of electroactive moieties in the structure transforms COFs into electroactive materials with great potential for energy-related applications. Herein, the recent advances in the design and use of electroactive COFs as capacitors, batteries, conductors, fuel cells, water-splitting, and electrocatalysis are addressed. Their remarkable performance is discussed and compared with other porous materials; hence, perspectives in the development of electroactive COFs are presented.
Collapse
Affiliation(s)
- Yusran Yusran
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong Province, 266101, China
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, 14000, France
| |
Collapse
|
6
|
Physical and electrochemical characterization of a Cu-based oxygen reduction electrocatalyst inside and outside a lipid membrane with controlled proton transfer kinetics. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Huang ZH, Xie NH, Zhang M, Xu BQ. Nonpyrolyzed Fe-N Coordination-Based Iron Triazolate Framework: An Efficient and Stable Electrocatalyst for Oxygen Reduction Reaction. CHEMSUSCHEM 2019; 12:200-207. [PMID: 30339329 DOI: 10.1002/cssc.201801886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/29/2018] [Indexed: 05/11/2023]
Abstract
Pyrolyzed base-metal-based metal-organic frameworks (MOFs) with FeNx coordination are emerging as nonprecious metal catalysts for electrochemical oxygen reduction reaction (ORR). However, surprisingly, nonpyrolyzed MOFs involving Fe-N coordination have not been explored for the ORR. This study concerns the catalytic performance of a semiconducting nonpyrolyzed iron triazolate framework (FeTa2 ) for ORR in alkaline electrolyte. The FeTa2 catalyst is studied as composites with different amounts of conductive Ketjenblack carbon (KB). The performance of these FeTa2 -x KB (x denotes the KB/FeTa2 weight ratio) composites by onset and half-wave potentials of ORR appears to be superior to most previously documented nonpyrolyzed MOFs. Characterization by elemental analysis, FTIR spectroscopy, XPS, and cyclic voltammetry suggest that N-FeIII -OH- sites at the surface of FeTa2 function as the catalytic active sites. This FeTa2 also shows very stable activity during ORR, as supported by accelerated durability test of the FeTa2 -x KB sample (20 000 cycles, ca. 90 h). The framework structure of FeTa2 remains intact during the durability test, which would help to explain its excellent catalytic durability. This would be the first study demonstrating efficient and stable ORR catalysis by a nonpyrolyzed Fe-N coordination-based MOF material.
Collapse
Affiliation(s)
- Zheng-Hong Huang
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Nan-Hong Xie
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo-Qing Xu
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Zhao S, Gai P, Yu W, Li H, Li F. High-performance non-enzymatic biofuel cells based on an organic copper complex cathode and a nanoporous gold nanoparticle anode. Chem Commun (Camb) 2019; 55:1887-1890. [DOI: 10.1039/c8cc09333d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We developed non-enzymatic biofuel cells based on organic copper complex and nanoporous gold nanoparticle electrocatalysts in a neutral medium.
Collapse
Affiliation(s)
- Shifan Zhao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Wen Yu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| |
Collapse
|
9
|
Gautam RP, Lee YT, Herman GL, Moreno CM, Tse ECM, Barile CJ. Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rajendra P. Gautam
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Yi Teng Lee
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Gabriel L. Herman
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Cynthia M. Moreno
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Edmund C. M. Tse
- Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR Hong Kong
| | - Christopher J. Barile
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| |
Collapse
|
10
|
Gautam RP, Lee YT, Herman GL, Moreno CM, Tse ECM, Barile CJ. Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst. Angew Chem Int Ed Engl 2018; 57:13480-13483. [DOI: 10.1002/anie.201806795] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Rajendra P. Gautam
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Yi Teng Lee
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Gabriel L. Herman
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Cynthia M. Moreno
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| | - Edmund C. M. Tse
- Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR Hong Kong
| | - Christopher J. Barile
- Department of Chemistry; University of Nevada, Reno; 1664 N. Virginia St. Reno NV 89557 USA
| |
Collapse
|
11
|
Gurusamy T, Gayathri P, Mandal S, Ramanujam K. Redox-Active Copper-Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201800110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Sudip Mandal
- Department of Chemistry; IIT Madras; Chennai 600 036 India
| | | |
Collapse
|
12
|
Thiyagarajan N, Janmanchi D, Tsai YF, Wanna WH, Ramu R, Chan SI, Zen JM, Yu SSF. A Carbon Electrode Functionalized by a Tricopper Cluster Complex: Overcoming Overpotential and Production of Hydrogen Peroxide in the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Damodar Janmanchi
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | - Yi-Fang Tsai
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | | | - Ravirala Ramu
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | - Sunney I. Chan
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | - Jyh-Myng Zen
- Department of Chemistry; National Chung Hsing University; Taichung City 402 Taiwan) (R.O.C
| | - Steve S.-F. Yu
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| |
Collapse
|
13
|
Thiyagarajan N, Janmanchi D, Tsai YF, Wanna WH, Ramu R, Chan SI, Zen JM, Yu SSF. A Carbon Electrode Functionalized by a Tricopper Cluster Complex: Overcoming Overpotential and Production of Hydrogen Peroxide in the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2018; 57:3612-3616. [DOI: 10.1002/anie.201712226] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | - Damodar Janmanchi
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | - Yi-Fang Tsai
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | | | - Ravirala Ramu
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | - Sunney I. Chan
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| | - Jyh-Myng Zen
- Department of Chemistry; National Chung Hsing University; Taichung City 402 Taiwan) (R.O.C
| | - Steve S.-F. Yu
- Institute of Chemistry; Academia Sinica, Nankang; Taipei 11529 Taiwan) (R.O.C
| |
Collapse
|
14
|
Electrocatalytic Properties of Cuprous Delafossite Oxides for the Alkaline Oxygen Reduction Reaction. ChemCatChem 2017. [DOI: 10.1002/cctc.201700712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Saravanakumar D, Nagarale RK, Jirimali HC, Lee JM, Song J, Lee J, Shin W. Biomimetic Copper Complex Containing Polymer Modified Electrode for Electrocatalytic Reduction of Oxygen. J ELECTROCHEM SCI TE 2016. [DOI: 10.33961/jecst.2016.7.4.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Saravanakumar D, Nagarale RK, Jirimali HC, Lee JM, Song J, Lee J, Shin W. Biomimetic Copper Complex Containing Polymer Modified Electrode for Electrocatalytic Reduction of Oxygen. J ELECTROCHEM SCI TE 2016. [DOI: 10.5229/jecst.2016.7.4.298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Wang FF, Wei PJ, Yu GQ, Liu JG. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. Chemistry 2015; 22:382-9. [DOI: 10.1002/chem.201502589] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 11/09/2022]
|
18
|
Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Copper-Modified Covalent Triazine Frameworks as Non-Noble-Metal Electrocatalysts for Oxygen Reduction. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Copper-Modified Covalent Triazine Frameworks as Non-Noble-Metal Electrocatalysts for Oxygen Reduction. Angew Chem Int Ed Engl 2015; 54:11068-72. [DOI: 10.1002/anie.201503637] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/22/2015] [Indexed: 11/06/2022]
|
20
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014; 53:6659-63. [DOI: 10.1002/anie.201403133] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/15/2014] [Indexed: 12/28/2022]
|
21
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Lytvynenko AS, Kolotilov SV, Kiskin MA, Cador O, Golhen S, Aleksandrov GG, Mishura AM, Titov VE, Ouahab L, Eremenko IL, Novotortsev VM. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium. Inorg Chem 2014; 53:4970-9. [PMID: 24779588 DOI: 10.1021/ic403167m] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product.
Collapse
Affiliation(s)
- A S Lytvynenko
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine , Prospekt Nauki 31, Kiev 03028, Ukraine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yuan S, Shui JL, Grabstanowicz L, Chen C, Commet S, Reprogle B, Xu T, Yu L, Liu DJ. A Highly Active and Support-Free Oxygen Reduction Catalyst Prepared from Ultrahigh-Surface-Area Porous Polyporphyrin. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302924] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Yuan S, Shui JL, Grabstanowicz L, Chen C, Commet S, Reprogle B, Xu T, Yu L, Liu DJ. A Highly Active and Support-Free Oxygen Reduction Catalyst Prepared from Ultrahigh-Surface-Area Porous Polyporphyrin. Angew Chem Int Ed Engl 2013; 52:8349-53. [DOI: 10.1002/anie.201302924] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/11/2013] [Indexed: 11/05/2022]
|
25
|
Tahsini L, Kotani H, Lee YM, Cho J, Nam W, Karlin KD, Fukuzumi S. Electron-transfer reduction of dinuclear copper peroxo and bis-μ-oxo complexes leading to the catalytic four-electron reduction of dioxygen to water. Chemistry 2012; 18:1084-93. [PMID: 22237962 PMCID: PMC3316124 DOI: 10.1002/chem.201103215] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Indexed: 11/11/2022]
Abstract
The four-electron reduction of dioxygen by decamethylferrocene (Fc*) to water is efficiently catalyzed by a binuclear copper(II) complex (1) and a mononuclear copper(II) complex (2) in the presence of trifluoroacetic acid in acetone at 298 K. Fast electron transfer from Fc* to 1 and 2 affords the corresponding Cu(I) complexes, which react at low temperature (193 K) with dioxygen to afford the η(2):η(2)-peroxo dicopper(II) (3) and bis-μ-oxo dicopper(III) (4) intermediates, respectively. The rate constants for electron transfer from Fc* and octamethylferrocene (Me(8)Fc) to 1 as well as electron transfer from Fc* and Me(8)Fc to 3 were determined at various temperatures, leading to activation enthalpies and entropies. The activation entropies of electron transfer from Fc* and Me(8)Fc to 1 were determined to be close to zero, as expected for outer-sphere electron-transfer reactions without formation of any intermediates. For electron transfer from Fc* and Me(8)Fc to 3, the activation entropies were also found to be close to zero. Such agreement indicates that the η(2):η(2)-peroxo complex (3) is directly reduced by Fc* rather than via the conversion to the corresponding bis-μ-oxo complex, followed by the electron-transfer reduction by Fc* leading to the four-electron reduction of dioxygen to water. The bis-μ-oxo species (4) is reduced by Fc* with a much faster rate than the η(2):η(2)-peroxo complex (3), but this also leads to the four-electron reduction of dioxygen to water.
Collapse
Affiliation(s)
- Laleh Tahsini
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Hiroaki Kotani
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA (Japan) Science and Technology Agency (JST), Suita, Osaka 565-0871 (Japan), Fax: (+81)-6-6879-7368
| | - Yong-Min Lee
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Jaeheung Cho
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Wonwoo Nam
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Kenneth D. Karlin
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea)
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Shunichi Fukuzumi
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750 (Korea)
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA (Japan) Science and Technology Agency (JST), Suita, Osaka 565-0871 (Japan), Fax: (+81)-6-6879-7368
| |
Collapse
|