1
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Efficient Amber Suppression via Ribosomal Skipping for In Situ Synthesis of Photoconditional Nanobodies. ACS Synth Biol 2022; 11:1466-1476. [PMID: 35060375 PMCID: PMC9157392 DOI: 10.1021/acssynbio.1c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic code expansion is a versatile method for in situ synthesis of modified proteins. During mRNA translation, amber stop codons are suppressed to site-specifically incorporate non-canonical amino acids. Thus, nanobodies can be equipped with photocaged amino acids to control target binding on demand. The efficiency of amber suppression and protein synthesis can vary with unpredictable background expression, and the reasons are hardly understood. Here, we identified a substantial limitation that prevented synthesis of nanobodies with N-terminal modifications for light control. After systematic analyses, we hypothesized that nanobody synthesis was severely affected by ribosomal inaccuracy during the early phases of translation. To circumvent a background-causing read-through of a premature stop codon, we designed a new suppression concept based on ribosomal skipping. As an example, we generated intrabodies with photoactivated target binding in mammalian cells. The findings provide valuable insights into the genetic code expansion and describe a versatile synthesis route for the generation of modified nanobodies that opens up new perspectives for efficient site-specific integration of chemical tools. In the area of photopharmacology, our flexible intrabody concept builds an ideal platform to modulate target protein function and interaction.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M, Germany
| |
Collapse
|
2
|
Lee U, Ko J, Kim S, Lee P, An Y, Yun H, Flood DT, Dawson PE, Hwang NS, Kim B. Light-Triggered In Situ Biosynthesis of Artificial Melanin for Skin Protection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103503. [PMID: 34989175 PMCID: PMC8895148 DOI: 10.1002/advs.202103503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Indexed: 05/05/2023]
Abstract
Tyrosinase-mediated melanin synthesis is an essential biological process that can protect skin from UV radiation and radical species. This work reports on in situ biosynthesis of artificial melanin in native skin using photoactivatable tyrosinase (PaTy). The I41Y mutant of Streptomyces avermitilis tyrosinase (SaTy) shows enzymatic activity comparable to that of wild-type SaTy. This Y41 is replaced with photocleavable o-nitrobenzyl tyrosine (ONBY) using the introduction of amber codon and ONBY-tRNA synthetase/tRNA pairs. The ONBY efficiently blocks the active site and tyrosinase activity is rapidly recovered by the photo-cleavage of ONBY. The activated PaTy successfully oxidizes L-tyrosine and tyramine-conjugated hyaluronic acid (HA_T) to synthesize melanin particles and hydrogel, respectively. To produce artificial melanin in living tissues, PaTy is encapsulated into lipid nanoparticles as an artificial melanosome. Using liposomes containing PaTy (PaTy_Lip), PaTy is transdermally delivered into ex vivo porcine skin and in vivo mouse skin tissues, thus achieving the in situ biosynthesis of artificial melanin for skin tissue protection under UV irradiation. The results of this study demonstrate that this biomimetic system can recapitulate the biosynthetic analogs of naturally occurring melanin. It should therefore be considered to be a promising strategy for producing protective biological molecules within living systems for tissue protection.
Collapse
Affiliation(s)
- Uk‐Jae Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
| | - Junghyeon Ko
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
| | - Su‐Hwan Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Department of Chemical Engineering (BK 21 FOUR)Dong‐A UniversityBusan49315South Korea
| | - Pyung‐Gang Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
| | - Young‐Hyeon An
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk UniversitySeoul05029South Korea
| | - Dillon T. Flood
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Philip E. Dawson
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
- Institute for Engineering ResearchSeoul National UniversitySeoul08826South Korea
| | - Byung‐Gee Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
- Institute for Sustainable Development(ISD)Seoul National UniversitySeoul08826South Korea
| |
Collapse
|
3
|
Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS APPLIED BIO MATERIALS 2022; 5:413-437. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of CRISPR/Cas technology has enabled scientists to precisely edit genomic DNA sequences. This approach can be used to modulate gene expression for the treatment of genetic disorders and incurable diseases such as cancer. This potent genome-editing tool is based on a single guide RNA (sgRNA) strand that recognizes the targeted DNA, plus a Cas nuclease protein for binding and processing the target. CRISPR/Cas has great potential for editing many genes in different types of cells and organisms both in vitro and in vivo. Despite these remarkable advances, the risk of off-target effects has hindered the translation of CRISPR/Cas technology into clinical applications. To overcome this hurdle, researchers have devised gene regulatory systems that can be controlled in a spatiotemporal manner, by designing special sgRNA, Cas, and CRISPR/Cas delivery vehicles that are responsive to different stimuli, such as temperature, light, magnetic fields, ultrasound (US), pH, redox, and enzymatic activity. These systems can even respond to dual or multiple stimuli simultaneously, thereby providing superior spatial and temporal control over CRISPR/Cas gene editing. Herein, we summarize the latest advances on smart sgRNA, Cas, and CRISPR/Cas nanocarriers, categorized according to their stimulus type (physical, chemical, or biological).
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Atefeh Jahandideh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Niloofar Haeri Moghaddam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyede Mahtab Kamrani Mousavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
4
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
5
|
Broguiere N, Lüchtefeld I, Trachsel L, Mazunin D, Rizzo R, Bode JW, Lutolf MP, Zenobi-Wong M. Morphogenesis Guided by 3D Patterning of Growth Factors in Biological Matrices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908299. [PMID: 32390195 DOI: 10.1002/adma.201908299] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) control over the placement of bioactive cues is fundamental to understand cell guidance and develop engineered tissues. Two-photon patterning (2PP) provides such placement at micro- to millimeter scale, but nonspecific interactions between proteins and functionalized extracellular matrices (ECMs) restrict its use. Here, a 2PP system based on nonfouling hydrophilic photocages and Sortase A (SA)-based enzymatic coupling is presented, which offers unprecedented orthogonality and signal-to-noise ratio in both inert hydrogels and complex mammalian matrices. Improved photocaged peptide synthesis and protein functionalization protocols with broad applicability are introduced. Importantly, the method enables 2PP in a single step in the presence of fragile biomolecules and cells, and is compatible with time-controlled growth factor presentation. As a corollary, the guidance of axons through 3D-patterned nerve growth factor (NGF) within brain-mimetic ECMs is demonstrated. The approach allows for the interrogation of the role of complex signaling molecules in 3D matrices, thus helping to better understand biological guidance in tissue development and regeneration.
Collapse
Affiliation(s)
- Nicolas Broguiere
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Stem Cell Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ines Lüchtefeld
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lucca Trachsel
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Dmitry Mazunin
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Bridge T, Shaikh SA, Thomas P, Botta J, McCormick PJ, Sachdeva A. Site-Specific Encoding of Photoactivity in Antibodies Enables Light-Mediated Antibody-Antigen Binding on Live Cells. Angew Chem Int Ed Engl 2019; 58:17986-17993. [PMID: 31609054 PMCID: PMC6973043 DOI: 10.1002/anie.201908655] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Antibodies have found applications in several fields, including, medicine, diagnostics, and nanotechnology, yet methods to modulate antibody-antigen binding using an external agent remain limited. Here, we have developed photoactive antibody fragments by genetic site-specific replacement of single tyrosine residues with photocaged tyrosine, in an antibody fragment, 7D12. A simple and robust assay is adopted to evaluate the light-mediated binding of 7D12 mutants to its target, epidermal growth factor receptor (EGFR), on the surface of cancer cells. Presence of photocaged tyrosine reduces 7D12-EGFR binding affinity by over 20-fold in two out of three 7D12 mutants studied, and binding is restored upon exposure to 365 nm light. Molecular dynamics simulations explain the difference in effect of photocaging on 7D12-EGFR interaction among the mutants. Finally, we demonstrate the application of photoactive antibodies in delivering fluorophores to EGFR-positive live cancer cells in a light-dependent manner.
Collapse
Affiliation(s)
- Thomas Bridge
- School of ChemistryUniversity of East AngliaNorwichNR4 7TJUK
| | - Saher A. Shaikh
- School of ChemistryUniversity of East AngliaNorwichNR4 7TJUK
| | - Paul Thomas
- The Henry Wellcome Laboratory of Cell ImagingUniversity of East AngliaNorwichNR4 7TJUK
| | - Joaquin Botta
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University LondonCharterhouse SquareLondonEC1M 6BQUK
| | - Peter J. McCormick
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University LondonCharterhouse SquareLondonEC1M 6BQUK
| | - Amit Sachdeva
- School of ChemistryUniversity of East AngliaNorwichNR4 7TJUK
| |
Collapse
|
7
|
Bridge T, Shaikh SA, Thomas P, Botta J, McCormick PJ, Sachdeva A. Site‐Specific Encoding of Photoactivity in Antibodies Enables Light‐Mediated Antibody–Antigen Binding on Live Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas Bridge
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ UK
| | - Saher A. Shaikh
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ UK
| | - Paul Thomas
- The Henry Wellcome Laboratory of Cell ImagingUniversity of East Anglia Norwich NR4 7TJ UK
| | - Joaquin Botta
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University London Charterhouse Square London EC1M 6BQ UK
| | - Peter J. McCormick
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University London Charterhouse Square London EC1M 6BQ UK
| | - Amit Sachdeva
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ UK
| |
Collapse
|
8
|
Claaßen C, Gerlach T, Rother D. Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses. Adv Synth Catal 2019; 361:2387-2401. [PMID: 31244574 PMCID: PMC6582597 DOI: 10.1002/adsc.201900169] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/25/2019] [Indexed: 01/20/2023]
Abstract
Multi-step biocatalytic reactions have gained increasing importance in recent years because the combination of different enzymes enables the synthesis of a broad variety of industrially relevant products. However, the more enzymes combined, the more crucial it is to avoid cross-reactivity in these cascade reactions and thus achieve high product yields and high purities. The selective control of enzyme activity, i.e., remote on-/off-switching of enzymes, might be a suitable tool to avoid the formation of unwanted by-products in multi-enzyme reactions. This review compiles a range of methods that are known to modulate enzyme activity in a stimulus-responsive manner. It focuses predominantly on in vitro systems and is subdivided into reversible and irreversible enzyme activity control. Furthermore, a discussion section provides indications as to which factors should be considered when designing and choosing activity control systems for biocatalysis. Finally, an outlook is given regarding the future prospects of the field.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Tim Gerlach
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| |
Collapse
|
9
|
Luo J, Torres‐Kolbus J, Liu J, Deiters A. Genetic Encoding of Photocaged Tyrosines with Improved Light‐Activation Properties for the Optical Control of Protease Function. Chembiochem 2017; 18:1442-1447. [DOI: 10.1002/cbic.201700147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ji Luo
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Jessica Torres‐Kolbus
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Jihe Liu
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
10
|
Zhou W, Deiters A. Conditional Control of CRISPR/Cas9 Function. Angew Chem Int Ed Engl 2016; 55:5394-9. [PMID: 26996256 DOI: 10.1002/anie.201511441] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/21/2016] [Indexed: 12/26/2022]
Abstract
The recently discovered CRISPR/Cas9 endonuclease system, comprised of a guide RNA for the recognition of a DNA target and the Cas9 nuclease protein for binding and processing the target, has been extensively studied and has been widely applied in genome editing, synthetic biology, and transcriptional modulation in cells and animals. Toward more precise genomic modification and further expansion of the CRISPR/Cas9 system as a spatiotemporally controlled gene regulatory system, several approaches of conditional activation of Cas9 function using small molecules and light have recently been developed. These methods have led to improvements in the genome editing specificity of the CRISPR/Cas9 system and enabled its activation with temporal and spatial precision.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
12
|
Uprety R, Luo J, Liu J, Naro Y, Samanta S, Deiters A. Genetic Encoding of Caged Cysteine and Caged Homocysteine in Bacterial and Mammalian Cells. Chembiochem 2014; 15:1793-9. [DOI: 10.1002/cbic.201400073] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 12/19/2022]
|
13
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
14
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
15
|
Chou C, Deiters A. Light-activated gene editing with a photocaged zinc-finger nuclease. Angew Chem Int Ed Engl 2011; 50:6839-42. [PMID: 21671316 PMCID: PMC3367882 DOI: 10.1002/anie.201101157] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Chungjung Chou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (USA), Fax: (+1)919-515-5079
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 (USA), Fax: (+1)919-515-5079
| |
Collapse
|
16
|
Chou C, Deiters A. Light-Activated Gene Editing with a Photocaged Zinc-Finger Nuclease. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Killelea T, Connolly BA. Role of disulfide bridges in archaeal family-B DNA polymerases. Chembiochem 2011; 12:1330-6. [PMID: 21598372 DOI: 10.1002/cbic.201100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Indexed: 11/09/2022]
Abstract
The family-B DNA polymerases obtained from the order Thermococcales, for example, Pyrococcus furiosus (Pfu-Pol) are commonly used in the polymerase chain reaction (PCR) because of their high thermostability and low error rates. Most of these polymerases contain four cysteines, arranged as two disulfide bridges. With Pfu-Pol C429-C443 forms one of the disulfides (DB1) and C507-C510 (DB2) the other. Although the disulfides are well conserved in the enzymes from the hyperthermophilic Thermococcales, they are less prevalent in euryarchaeal polymerases from other orders, and tend to be only found in other hyperthermophiles. Here, we report on the effects of deleting the disulfide bridges by mutating the relevant cysteines to serines. A variety of techniques, including differential scanning calorimetry and differential scanning fluorimetry, have shown that both disulfides make a contribution to thermostability, with DB1 being more important than DB2. However, even when both disulfides are removed, sufficient thermostability remains for normal (identical to the wild type) performance in PCR and quantitative (real-time) PCR. Therefore, polymerases totally lacking cysteine are fully compatible with most PCR-based applications. This observation opens the way to further engineering of polymerases by introduction of a single cysteine followed by appropriate chemical modification.
Collapse
Affiliation(s)
- Tom Killelea
- Institute of Cell and Molecular Biosciences (ICaMB), University of Newcastle, Newcastle upon Tyne, UK
| | | |
Collapse
|
18
|
Chou C, Young DD, Deiters A. Photocaged t7 RNA polymerase for the light activation of transcription and gene function in pro- and eukaryotic cells. Chembiochem 2010; 11:972-7. [PMID: 20301166 DOI: 10.1002/cbic.201000041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A light-activatable bacteriophage T7 RNA polymerase (T7RNAP) has been generated through the site-specific introduction of a photocaged tyrosine residue at the crucial position Tyr639 within the active site of the enzyme. The photocaged tyrosine disrupts polymerase activity by blocking the incoming nucleotide from reaching the active site of the enzyme. However, a brief irradiation with nonphototoxic UV light of 365 nm removes the ortho-nitrobenzyl caging group from Tyr639 and restores the RNA polymerase activity of T7RNAP. The complete orthogonality of T7RNAP to all endogenous RNA polymerases in pro- and eukaryotic systems allowed for the photochemical activation of gene expression in bacterial and mammalian cells. Specifically, E. coli cells were engineered to produce photocaged T7RNAP in the presence of a GFP reporter gene under the control of a T7 promoter. UV irradiation of these cells led to the spatiotemporal activation of GFP expression. In an analogous fashion, caged T7RNAP was transfected into human embryonic kidney (HEK293T) cells. Irradiation with UV light led to the activation of T7RNAP, thereby inducing RNA polymerization and expression of a luciferase reporter gene in tissue culture. The ability to achieve spatiotemporal regulation of orthogonal RNA synthesis enables the precise dissection and manipulation of a wide range of cellular events, including gene function.
Collapse
Affiliation(s)
- Chungjung Chou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
19
|
Deiters A. Principles and applications of the photochemical control of cellular processes. Chembiochem 2010; 11:47-53. [PMID: 19911402 PMCID: PMC3768145 DOI: 10.1002/cbic.200900529] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695-8204, USA.
| |
Collapse
|